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Abstract

Pursuit-Evasion Games (in discrete time) are stochastic games
with nonnegative daily payoffs, with the final payoff being the cu-
mulative sum of payoffs during the game. We show that such games
admit a value even in the presence of incomplete information and that
this value is uniform, i.e. there are ε-optimal strategies for both play-
ers that are ε-optimal in any long enough prefix of the game. We give
an example to demonstrate that nonnegativity is essential and expand
the results to Leavable Games.

Key words: pursuit-evasion games, incomplete information, zero-sum sto-

chastic games, recursive games, nonnegative payoffs.

1 Introduction

Games of Pursuit and Evasion are two-player zero-sum games involving a

Pursuer (P) and an Evader (E). P’s goal is to capture E, and the game

consist of the space of possible locations and the allowed motions for P and

E. These games are usually encountered within the domain of differential
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games, i.e., the location space and the allowed motions have the cardinality

of the continuum and they tend to be of differentiable or at least continuous

nature.

The subject of Differential Games in general, and Pursuit-Evasion Games

in particular, was pioneered in the 50s by Isaacs (1965). These games evolved

from the need to solve military problems such as airfights, as opposed to clas-

sical game theory which was oriented toward solving economical problems.

The basic approach was akin to differential equations techniques and op-

timal control, rather than standard game theoretic tools. The underlying

assumption was that of complete information, and optimal pure strategies

were searched for. Conditions were given, under which a pure strategies

saddle point exists (see, for example, Varaiya and Lin (1969)). Usually the

solution was given together with a value function, which assigned each state

of the game its value. Complete information was an essential requirement in

this case. For a thorough introduction to Pursuit-Evasion and Differential

Games see Basar and Olsder (1999).

A complete-information continuous-time game “intuitively” shares some

relevant features with perfect-information discrete-time games. The latter

are games with complete knowledge of past actions and without simultane-

ous actions. Indeed, if one player decides to randomly choose between two

pure strategies which differ from time t0 and on, his opponent will discover

this “immediately” after t0, thus enabling himself to respond optimally al-

most instantly. Assuming the payoff is continuous, the small amount of time

needed to discover the strategy chosen by the opponent should affect the

payoff negligibly. A well-known result of Martin (1975, 1985) implies that

every perfect-information discrete-time game has ε-optimal pure strategies

(assuming a Borel payoff function) and so should, in a sense, continuous

time games.

Another reason to restrict oneself to pure strategies is that unlike discrete-

time games, there is no good formal framework for continuous-time games.

By framework we mean a way to properly define the space of pure strategies

and the measurable σ-algebra on them. There are some approaches but none

is as general or complete as for discrete-time games. This kind of framework

is essential when dealing with a general incomplete information setting.
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This paper will therefore deal with discrete-time Pursuit-Evasion Games.

We hope that our result will be applied in the future to discrete approxima-

tions of continuous-time games. Pursuit-Evasion Games in discrete time are

formalized and discussed in Kumar and Shiau (1981).

Pursuit-Evasion Games are generally divided into two categories: Games

of Kind and Games of Degree. Games of Kind deal with the question of

capturability : whether a capture can be achieved by the Pursuer or not.

In a complete-information setting this is a yes-or-no question, completely

decided by the rules of the game and the starting positions. With incomplete

information incorporated, we simply assign a payoff of 1 for the event of

capture and payoff 0 otherwise. Games of Degree have the Pursuer try to

minimize a certain payoff function such as the time needed for capture. The

question of capturability is encountered here only indirectly: if the Evader

have a chance of escaping capture indefinitely, the expected time of capture

is infinity. The payoff, in general, can be any function, such as the minimal

distance between the Evader and some target set.

What unites the two categories is that the payoff function in both is

positive and cumulative. The maximizing player, be it the Pursuer or the

Evader, gains his payoff and never loses anything. This is in contrast with

other classes of infinitely repeated games, such as undiscounted stochastic

games, where the payoff is the limit of the averages of daily payoffs.

Discrete-time stochastic games were introduced by Shapley (1953) who

proved the existence of the discounted value in two-player zero-sum games

with finite state and action sets. Recursive games were introduced by Everett

(1957). These are stochastic games, in which the payoff is 0 except for

absorbing states, when the game terminates. Thus, absorbing states are as

happens in Pursuit-Evasion Games, where the payoff is obtained only when

the game terminates. The game is said to have a uniform value if ε-optimal

strategies exist that are also ε-optimal in any long enough prefix of the game.

Everett proved the existence of the uniform value for two-player, zero-sum

recursive games.

We shall now formally define Pursuit-Evasion Games to be two-player

zero-sum games with cumulative and positive payoffs. To avoid confusion, the

players will be called the Maximizer and the Minimizer, and their respective
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goals should be obvious.

Our main result is the existence of uniform value for Pursuit-Evasion

Games with incomplete-information and finite action and signal sets, fol-

lowed by a generalization for arbitrary signal sets. In section 4 we present a

different class of games to which our proof also applies. In section 5 we show

that the positiveness requirement is indispensable by giving an appropriate

counterexample.

2 Definitions and the main Theorem

A cumulative game with complete information is given by:

• Two finite sets A1 and A2 of actions.

Define Hn = (A1 × A2)n to be the set of all histories of length n, and

H = ∪∞n=0Hn to be the set of all finite histories.

• A daily payoff function f : H → R.

Let H̃ = (A1 × A2)ℵ0 be the set of all infinite histories. The daily payoff

function induces a payoff function ρ : H̃ → R by ρ(h) =
∑∞

n=0 f(hn), where

hn is the length n prefix of h. In the sequel we will only study the case in

which f is nonnegative, so that ρ is well defined (though it may be infinite).

The game is played in stages as follows. The initial history is h0 = ∅.
At each stage n ≥ 0 both players choose simultaneously and independently

actions a ∈ A and b ∈ B, and each player is informed of the other’s choice.

The new game history is hn+1 = hn _< a, b >, i.e., the concatenation of

< a, b > to the current history. The infinite history of the game, h, is the

concatenation of all pairs of actions chosen throughout the game. The payoff

is ρ(h), the goal of the Maximizer is to maximize the expectation of ρ(h),

and that of the Minimizer is to minimize it.

If all the values of f are nonnegative, we call the game nonnegative.

A complete information Pursuit-Evasion Game is a nonnegative cumulative

game.

As cumulative games are a proper superset of recursive games (see Everett

(1957)), Pursuit-Evasion Games are a proper superset of nonnegative recur-

sive games.
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As is standard in game theory, the term “complete information” is used

to denote a game with complete knowledge of the history of the game, and

not the lack of simultaneous actions (which is termed “perfect information”).

A cumulative game with incomplete information is given by:

• Two finite sets A1 and A2 of actions.

Define Hn and H as before.

• A daily payoff function f : H → R.

• Two measure spaces S1 and S2 of signals.

• ∀h ∈ H two probability distributions p1
h ∈ ∆(S1) and p2

h ∈ ∆(S2).

Define H̃ and ρ as before. In particular, the signals are not a parameter

of the payoff function.

An incomplete-information cumulative game is played like a complete

information cumulative game, except that the players are not informed of

each other’s actions. Instead, a signal pair < s1, s2 >∈ S1 × S2 is randomly

chosen with distribution p1
h×p2

h, h being the current history of the game, with

player i observing si. An incomplete-information Pursuit-Evasion Game is

an incomplete-information nonnegative cumulative game.

Define H i
n to be (Ai × Si)n. This is the set of private histories of length

n of player i. Similarly, define H i = ∪∞n=0H
i
n, the set of all private finite

histories, and H̃ i = (Ai × Si)ℵ0 the set of all private infinite histories.

In a complete-information cumulative game a behavioral strategy for

player i is a function σi : H → ∆(Ai). In an incomplete-information cumula-

tive game a (behavioral) strategy for player i is a function σi : H i → ∆(Ai).

Recall that by Kuhn’s Theorem (Kuhn (1953)) the set of all behavioral strate-

gies coincides with the set of all mixed strategies, which are probability dis-

tributions over pure strategies.

Denote the space of all behavioral strategies for player i by Ωi. A profile

is a pair of strategies, one for each player. A profile < σ1, σ2 >, together

with {pi
h}, induces, in the obvious manner, a probability measure µσ1,σ2 over

H̃ equipped with the product σ-algebra.

The value of a strategy σ1 for the Maximizer is val(σ1) = infσ2∈Ω2 Eµσ1,σ2 (ρ(h)).
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The value of a strategy σ2 for the Minimizer is val(σ2) = supσ1∈Ω1 Eµσ1,σ2 (ρ(h)).

When several games are discussed we will explicitly denote the value in

game G by valG.

The lower value of the game is val(G) = supσ1∈Ω1 val(σ1).

The upper value of the game is val(G) = infσ2∈Ω2 val(σ2).

If val(G) = val(G), the common value is the value of the game val(G) =

val(G) = val(G). Observe that val(G) and val(G) always exist, and that

val(G) ≤ val(G) always holds.

A strategy σi of player i is ε-optimal if |val(σi)− val(G)| < ε. A strategy

is optimal if it is 0-optimal.

A cumulative game is bounded if its payoff function ρ is bounded, i.e.

∃B ∈ R∀h ∈ H̃ −B < ρ(h) < B.

Let G =< A1, A2, f > be a cumulative game. Define fn to be equal to

f for all histories of length up to n and zero for all other histories. Define

Gn =< A1, A2, fn >. Thus, Gn is the restriction of G to the first n stages.

Let ρn be the payoff function induced by fn.

A game G is said to have a uniform value if it has a value and for each

ε > 0 there exist N and two strategies σ1, σ2 for the two players that are

ε-optimal for every game Gn with n > N .

The first main result is:

Theorem 1 Every bounded Pursuit-Evasion Game with incomplete-information

and finite signal sets has a uniform value. Furthermore, an optimal strategy

exists for the Minimizer.

Proof. Let G be a bounded Pursuit-Evasion Game with incomplete-

information . Let Gn be defined as above. Since A1, A2, S1, S2 are all finite,

there are only a finite number of private histories of length up to n. Gn is

equivalent to a finite-stage finite-action game, and therefore it has a value

vn. From the definition of Gn and since f is nonnegative

∀h ∈ H̃ ρn(h) ≤ ρn+1(h) ≤ ρ(h)

which implies that for all σ1 ∈ Ω1

valGn(σ1) ≤ valGn+1(σ
1) ≤ valG(σ1) (1)
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so that

val(Gn) ≤ val(Gn+1) ≤ val(G).

Therefore, vn is a nondecreasing bounded sequence and val(G) is at least

v = limn→∞ vn.

On the other hand, define Kn = {σ2 ∈ Ω2 | valGn(σ2) ≤ v}. Since

val(Gn) = vn ≤ v, Kn cannot be empty.

Kn is a compact set, since the function valGn(σ2) is continuous over Ω2,

which is compact, and Kn is the preimage of the closed set (−∞, v].

For all σ2 ∈ Ω2 valGn(σ2) ≤ valGn+1(σ
2), so that Kn ⊇ Kn+1. Since the

sets Kn are compact, their intersection is nonempty.

Let σ2 be a strategy for the Minimizer in ∩∞n=0Kn. Let σ1 be any strategy

for the Maximizer. From ρ(h) = limn→∞ ρn(h) and since ρ is bounded, we

get by the monotone convergence Theorem

Eµσ1,σ2 (ρ(h)) = lim
n→∞

Eµσ1,σ2 (ρn(h)).

Since σ2 belongs to Kn, Eµσ1,σ2 (ρn(h)) ≤ v and therefore Eµσ1,σ2 (ρ(h)) ≤ v.

Since σ1 is arbitrary val(σ2) ≤ v, so that val(G) ≤ v. Consequentially, v is

the value of G.

Notice that any σ2 ∈ ∩∞n=0Kn has valG(σ2) = v and is therefore an

optimal strategy for the Minimizer.

Given ε > 0 choose N such that vN > v−ε. Let σ1 be an optimal strategy

for the Maximizer in GN , and let σ2 ∈ ∩∞n=0Kn. By (1)

∀n > N vn − ε ≤ v − ε < vN = valGN
(σ1) ≤ valGn(σ1)

so that σ1 is ε-optimal in Gn. As σ2 ∈ Kn one has valGn(σ2) ≤ v < vn + ε so

that σ2 is ε-optimal in Gn.

These strategies are ε-optimal in all games Gn for n > N . Thus, the value

is uniform.

Remark: Most of the assumption on the game G are irrelevant for the

proof of the theorem and were given only for the simplicity of description.

1. The action sets Ai and the signal sets Si may depend respectively on

the private histories H i
n.
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2. The signals < s1, s2 > may be correlated, i.e. chosen from a common

distribution ph ∈ ∆(S1 × S2).

3. The game can be made stochastic simply by adding a third player, Na-

ture, with a known behavioral strategy. The action set for Nature can

be countable, since it could always be approximated by large enough

finite sets. The action sets for the Maximizer can be infinite as long as

the signals set S2 is still finite (so the number of pure strategies for the

Minimizer in Gn is still finite).

4. Since the bound on payoffs was only used to bound the values of Gn,

one can drop the boundedness assumption, as long as the sequence {vn}
is bounded. If they are unbounded then G has infinite uniform value in

the sense that the Maximizer can achieve as high a payoff as he desires.

3 Arbitrary signal sets

Obviously, the result still hold if we replace the signal set S by a sequence

of signal sets Sn, all of which are finite, such that the signals for histories

of length n belong to Sn. The signal sets, like the action sets can change

according to past actions, but since there are only finitely many possible

histories of length n, this is purely semantical.

What about signals chosen from an infinite set? If the set S is countable

than we can approximate it with finite sets Sn, chosen such that for any

history h of length n the chance we get a signal outside Sn is negligible.

We won’t go into details because the next argument applies for both the

countable and the uncountable cases.

A cumulative game G is ε-approximated by a game G′ if G′ has the same

strategy spaces as G and for any pair of strategies σ, τ

|ρG(σ, τ)− ρG′(σ, τ)| < ε.

Lemma 2 If G is a bounded Pursuit-Evasion Game with incomplete infor-

mation then G can be ε-approximated by a Pursuit Evasion Game with in-

complete information with the same action sets and payoffs which can be

simulated using a sequence of finite signal sets.
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Proof. Let G be such a game. Assume, w.l.o.g., that the payoff function ρ

is bounded by 1. Fix a positive ε. Let εn = ε/2n. Define pi
n =

∑
h∈Hn

pi
h/|Hn|,

the mean distribution of the signals at stage n. Every distribution pi
h of time

n is absolutely continuous with respect to pi
n. By Radon-Nykodim theorem,

a density function f i
h exists such that pi

h(E) =
∫

E
f i

hdpi
n. Clearly, f i

h is

essentially bounded by |Hn|.
Let S ′in be {0, εn, 2εn, 3εn, ..., b|Hn|/εncεn}|Hn|. For h ∈ Hn define f ′ih to

be f i
h rounded down to the nearest multiple of εn. Define F ′i

n : Si → S ′in by

F ′i
n (s) = {f ′ih (s)}h∈Hn . Let G′ be the same game as G except that the players

observe the signals F ′i
n (si) ∈ S ′in where si is the original signal with density

f i
h.

Given a signal s′i in S ′in one can project it back onto Si by choosing

from a uniform distribution (with respect to the measure pi
n) over the set

E(s′i) = F ′i
n
−1

(s′i). Let G′′ be the game G except that the signals are chosen

with the distribution just described. Denote their density function by f ′′ih .

This game can be simulated using only the signals in G′ and vice versa so

they are equivalent.

G and G′′ have exactly the same strategy spaces. The only difference is

a different distribution of the signals. But the way the signals in G′′ were

constructed it is obvious that the density function f ′′ih do not differ from f i
h

by more than εn for any history h of length n. Given a profile < σ1, σ2 >

denote the generated distributions on H̃ in G and G′′ by µ and µ′′. The

payoffs are ρG(σ1, σ2) =
∫

ρdµ and ρG′′(σ1, σ2) =
∫

ρdµ′′ . But the distance,

in total variation metric, between µ and µ′′ cannot be more than the sum

of distances between the distributions of signals at each stage, which is no

more than
∑∞

i=1 εi = ε. By definition of total variation metric, the difference

between
∫

ρdµ and
∫

ρdµ′′ cannot be more than ε.

Theorem 3 If G is as in lemma and have bounded nonnegative payoffs, it

has a uniform value.

Proof. Let G be such a game, and for any ε let Gε be an ε-approximation

of G produced by the lemma. Gε is equivalent to a game with finite signal

sets and therefore has a value according to Theorem 1, denoted vε. It is

immediate from the definition of ε-approximation that v, the lower value of
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G cannot be less than vε − ε, and likewise v is no more than vε + ε. v − v is

therefore less than 2ε. But ε was chosen arbitrarily, so that v = v.

Given ε > 0 let σ1 and σ2 be ε/2-optimal strategies in Gε/2 that are also

ε/2-optimal in any prefix of Gε/2 longer than N . Clearly, these strategies are

ε-optimal in any Gn with n > N . Thus, the value is uniform.

4 Leavable games

Leavable games are cumulative games in which one of the players, say the

Maximizer, but not his opponent is allowed to leave the game at any stage.

The obvious way to model this class of games would be to add a “stopping”

stage between any two original stages, where the Maximizer will choose to

either “stop” or “continue” the game. However, we would also like to force

the Maximizer to “stop” at some stage. Unfortunately, it is impossible to do

so and still remain within the realm of cumulative games, so we will have to

deal with it a bit differently.

Leavable games were introduced by Maitra and Sudderth (1992) as an

extension to similar concepts in the theory of gambling. They proved that a

leavable game with complete information and finite action sets has a value.

We will prove that the same is true for leavable games with incomplete in-

formation.

Let G be a cumulative game with incomplete information. A stop rule for

player i is a function s : H̃ i → N such that if s(h) = n and h′ coincides with

h in the first n coordinates, then s(h′) = n. A leavable game with incomplete

information L(G) is given by a cumulative game with incomplete information

G but is play differently, as follows. Instead of playing in stages, both players

choose their behavioral strategies simultaneously with the Maximizer also

choosing a stop rule s. The game is played according to these strategies and

the payoff is ρ(h1) =
∑s(h1)

i=0 f(hn) where h1 is the Maximizer’s private infinite

history.

Theorem 4 A bounded leavable game with incomplete information and finite

signal sets has a value and that value is uniform. Furthermore, an optimal

strategy exists for the Minimizer.
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Proof. The proof is essentially identical to the proof of Theorem 1. Ln is

Defined to be the game where the Maximizer is forced to choose a stop rule

≤ n. Ln is thus equivalent to Gn in the proof of Theorem 1.

The major point we should observe is that if A1 and S1 are finite, any

stop rule s : H̃1 → N is uniformly bounded: ∃B∀h ∈ H̃1 s(h) < B. This

implies that any pure strategy for the Maximizer in L actually belongs to

some Ln. Therefore, a strategy σ2 for the Minimizer with valLn(σ2) ≤ v for

all n, has valL(σ2) ≤ v.

5 Counterexamples

The question arises whether positiveness is an essential or just a technical

requirement. Both our proof and the alternative proof outlined need the

positiveness in an essential way, but still is it possible that every cumulative

game have a value?

The answer is Negative. We shall provide a simple counterexample of a

cumulative game (actually a stopping game, see Dynkin (1969)) with incom-

plete information without a value.

The game is as follows: at the outset of the game a bit (0 or 1) b is chosen

randomly with some probability p > 0 to be 1 and probability 1 − p to be

0. the Maximizer is informed of the value of b but not the Minimizer. Then

the following game is played. At each odd stage the Maximizer may opt to

“stop” the game and the payoff is -1 if b = 0 and 1 if b = 1. At each even

stage the Minimizer may opt to “stop” the game and the payoff is -1 if b = 0

and some A > 1
p

if b = 1.

The payoff before and after someone decides to “stop” the game is zero.

This is a very simple stopping game with only one “unknown” parameter,

yet, as we now argue, it has no value.

Claim 5 The upper value of this game is p

Proof. To see that val(G) ≤ p let the Minimizer’s strategy be to continue at

all stages. The Maximizer cannot gain more than p1 + (1− p)0 = p against

this strategy, so the upper value cannot be higher than p.
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On the other hand, let σ be a strategy for the Minimizer. It consists of

{σi}∞i=1 the probabilities of stopping at stage i and σ∞ = 1 −
∑∞

i=1 σi the

probability of never choosing “stop”.

Fix ε > 0 and let N be an odd integer such that
∑∞

i=N+1 σi < ε. Let τ be

the following strategy for the Maximizer: if b = 0 never stop, if b = 1 stop

at stage N . The payoff under < σ, τ > is:

p

N∑
i=1

σiA + p(
∞∑

i=N+1

σi + σ∞)1 + (1− p)
∞∑
i=1

σi(−1) + (1− p)σ∞0

= p(
∞∑
i=1

σi + σ∞) +
N∑

i=1

σi(pA− 1) +
∞∑

i=N+1

σi(p− 1) ≥ p− ε

where the last inequality holds since pA− 1 > 0 and
∑∞

i=N+1 σi < ε.

Therefore val(G) ≥ p.

Claim 6 The lower value of this game is p− 1−p
A

.

Proof. Let the Maximizer play the following strategy: If b = 1 stop at

time 1 with probability 1 − 1−p
Ap

and continue otherwise. If the Minimizer

never decides to stop the payoff will be p(1− 1−p
Ap

)1 + (1− p)0 = p− 1−p
A

. If

the Minimizer decides to stop at any stage, the payoff will be p(1− 1−p
Ap

)1 +

p1−p
Ap

A + (1− p)(−1) = p− 1−p
A

. Clearly any mix of these pure strategies will

also result in payoff of exactly p− 1−p
A

.

To see that the Maximizer cannot guarantee more assume to the contrary

that there exist a strategy σ for the Maximizer with val(σ) > p− 1−p
A

. This

strategy consists of the probabilities {σ0
i }∞i=1 of stopping at stage i if b = 0,

and {σ1
i }∞i=1 if b = 1.

By our assumption, the payoff against any strategy for the Minimizer

should be more than p− 1−p
A

. Let the Minimizer always choose to continue.

The expected payoff in that case is

p(
∞∑
i=1

σ1
i )1 + (1− p)(

∞∑
i=1

σ0
i )(−1) > p− 1− p

A
,

which implies
∞∑
i=1

σ1
i > 1− 1− p

Ap
.

12



Let N be sufficiently large such that
∑N

i=1 σ1
i > 1 − 1−p

Ap
. Consider the

following strategy for the Minimizer: continue until stage N and then stop.

The payoff will be

p(
N∑

i=1

σ1
i )1 + p(1−

N∑
i=1

σ1
i )A + (1− p)(−1)

= p + p(1−
N∑

i=1

σ1
i )(A− 1) + (1− p)(−1)

< p + p
1− p

Ap
(A− 1) + p− 1 = p− 1− p

A
,

a contradiction.
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