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Abstract

We pursue a systematic study of the following problem. Let f : {0, 1}n → {0, 1} be a
(usually monotone) boolean function whose behaviour is well understood when the input
bits are identically independently distributed. What can be said about the behaviour of the
function when the input bits are not completely independent, but only k-wise independent,
i.e. every subset of k bits is independent? more precisely, how high should k be so that
any k-wise independent distribution ”fools” the function, i.e. causes it to behave nearly the
same as when the bits are completely independent?

In this paper, we are mainly interested in asymptotic results about monotone functions
which exhibit sharp thresholds, i.e. there is a critical probability, pc, such that P (f = 1)
under the completely independent distribution with marginal p, makes a sharp transition,
from being close to 0 to being close to 1, in the vicinity of pc. For such (sequences of)
functions we define 2 notions of ”fooling”: K1 is the independence needed in order to force
the existence of the sharp threshold (which must then be at pc). K2 is the independence
needed to ”fool” the function at pc.

In order to answer these questions, we explore the extremal properties of k-wise indepen-
dent distributions and provide ways of constructing such distributions. These constructions
are connected to linear error correcting codes.

We also utilize duality theory and show that for the function f to behave (almost)
the same under all k-wise independent inputs is equivalent to the function f being well
approximated by a real polynomial in a certain fashion. This type of approximation is
stronger than approximation in L1.

We analyze several well known boolean functions (including AND, Majority, Tribes and
Percolation among others), some of which turn out to have surprising properties with respect
to these questions.

In some of our results we use tools from the theory of the classical moment problem,
seemingly for the first time in this subject, to shed light on these questions.
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1 Introduction

Let f : {0, 1}n → {0, 1} be a boolean function whose behaviour is well understood when the
input bits are independent and identically distributed, with probability p for each bit to be
1. As an example we may consider the majority function, Maj, whose output is the bit which
occurs more in the input (suppose that n is odd). When p = 1/2 we know that the output is
also distributed uniformly. When p < 1/2 the output tends to be 0. More precisely, if p < 1/2
is constant, the probability of Maj = 1 decays exponentially fast with n.

Suppose, however, that the input bits are not truly IID . For example, they might be the
result of a derandomization procedure. A reasonable, but weaker assumption would be that
the probability of each bit to be 1 is still p, and that they are k-wise independent, i.e. the
distribution of any k of the bits is independent.

Under this assumption, what can be said about the distribution of f? For fixed p, which k
(as a function of n) is enough to guarantee the same asymptotic behaviour? Majority turns out
to be relatively easy to analyze: k = 2 is enough to guarantee that for any fixed p < 1/2, the
probability of Maj = 1 tends to 0 (though only polynomially fast), while for p = 1/2, we have
P (Maj = 1) guaranteed to tend to 1/2 if and only if k = ω(1) (”Guarantee” here means that
Maj behaves as prescribed under any k-wise independent distribution). In fact, for p = 1/2 we
have more precise results, that |P (Maj = 1) − 1/2| ≤ O(1/

√
k) under any k-wise independent

distribution. As can been seen, the k needed to ”fool” majority at p 6= pc (which we denote
K1) is much smaller then the k needed to ”fool” majority at pc ( which we denote K2). This
phenomenon is shared by the other functions we explore, and we provide a partial explanation.
Other functions exhibit much more complex behaviour and the required analysis is accordingly
complex. We pursue a systematic study of the above question.

k-wise independent distributions are often used in computer science for derandomization of
algorithms. This was initiated by the papers [2], [13], [25], [31] and further developed in [10],
[36], [32], [41], [26], [27] and others (see [33] for a survey). For derandomization one checks that
the algorithm still behaves (about) the same on a particular k-wise independent input as in the
completely independent case. The question we ask is of the same flavor, for a given boolean
function f , we ask how much independence is required for it to behave about the same on all
k-wise independent inputs (including the completely independent one).

Typically, k-wise independent distributions are constructed by sampling a uniform point of
a small sample space, which is usually also a linear subspace ([24], [23], [34]). In this work,
like in the works of [26], [27], we do not impose this restriction and consider general k-wise
independent distributions. Still, our work is of interest even for the reader only interested in
the more restrictive model since, on the one hand, anything we show is impossible would still
be impossible in that model and on the other hand almost all of our constructions are of the
linear subspace type. Interestingly, in section 4.8 we give an example where the general and
more restrictive case give asymptotically different results, i.e., that the general distribution case
is richer, not just up to constants, in what can be achieved with it.

The tools we use include the duality of linear programming, in section 3.1, used to show an
equivalence between our question and the question of approximating the function f by a real
polynomial in a certain ”sandwich L1” approximation (stronger than ordinary L1 approxima-
tion). This connects our results to the subject of approximation of boolean functions, used for
example in learning theory (e.g. [29], [38], [5], [40]).

In section 3.2 we recall a theorem about weak convergence of distributions, later used to
give sharp bounds on K2 very easily. In section 3.3 we introduce a tool from the Theory of the
Classical Moment Problem (TCMP), seemingly for the first time in this context. In sections
4.8 and 4.9 we use it to prove bounds on the maximal and minimal probabilities of all bits to
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be 1 under a k-wise independent distribution, in a simple way. We then observe that if p = 1
q

for a prime-power q, then an upper bound on this maximal probability translates to a lower
bound on the size of a symmetric sample space for k-wise independent GF (q)-valued random
variables, we apply our upper bound to obtain new lower bounds for such sample spaces. For
the binary case q = 2 our bound equals the well-known bound of [2], [13].

In section 4 we explore K1 and K2 for various boolean functions, and also prove some
general theorems. In section 4.6 we present a novel construction of a distribution (of the linear
subspace type) designed to change the behaviour of a particular function. We use a variation
of the (u | u + v) construction of error-correcting codes [34] and we would like to emphasize
the technique used there. We think there is a shortage of ways to construct k-wise independent
distributions with specified properties and that this technique will be useful for changing the
behaviour of other functions as well.

The approach in this paper is a little different than that usually taken in pseudo-random
generators (see [39]). There one seeks a distribution under which all functions from a certain
complexity class behave the same as on fully independent bits. In contrast, we start with a
function f and wish to show that it behaves the same on all k-wise independent inputs. Still,
one may expect this to hold if the function f is ”simple enough”. Indeed, a conjecture of Linial
and Nisan [30] makes this precise when f is a function from the class AC0. In section 4.3 we
recall the precise conjecture and make some modest progress towards confirming it.

There are other notions of ”simple functions”. Another such notion is that the function be
noise stable [7], i.e., having most of its Fourier mass on constant level coefficients. In section 4.7
we show a connection between the Fourier spectrum and the behaviour on k-wise independent
inputs, but surprisingly show that a noise stable function can behave very differently on k-wise
independent inputs than on fully independent inputs even when k grows fast with n.

There is also a lot of interest in almost k-wise independent distributions ([37],[4],[3],[6],[42],[16]),
though our questions can equally be formulated for that case, in our work we concentrate only
on perfect k-wise independence, this is both because it seems the analysis is simpler for perfect
k-wise independence and they could serve as a starting point for further research and because
we think the perfect k-wise independent case is interesting on its own.

2 Basic definitions and properties

We begin with a definition

Definition 1 Let A(n, k, p) be the set of all k-wise independent distributions Q on n bits
(X1, . . . , Xn) with Q(Xi = 1) = p for all i.

Also denote by Pp the fully independent distribution on n bits, each with probability p to be 1.
In most of the sequel we will be concerned with understanding

max
Q∈A(n,k,p)

Q(f = 1) and min
Q∈A(n,k,p)

Q(f = 1) (1)

for a boolean function f : {0, 1}n → {0, 1} and given n, k and p. We first note that A(n, k, p) is
a convex set, since, if the distribution on a subset of k bits is independent with marginal p in
both Q1 and Q2 then it is so also in αQ1 + (1− α)Q2.

This implies that the extremal values in (1) are attained at extreme points of A(n, k, p),
hence if we could only find all these extreme points we could then find the values (1) for all f .
Unfortunately saying anything about these extreme points appears to be very difficult and so
in the sequel we will need to resort to special methods for each function f considered.
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For later reference, we identify the two extreme points of A(n, n − 1, 1
2). XOR0 is the

distribution on (X1, . . . , Xn) having {Xi}n−1
i=1 IID and Xn ≡

∑n−1
i=1 Xi mod 2, and XOR1 is the

same with Xn ≡ 1 +
∑n−1

i=1 Xi mod 2.
We next define precisely what we mean by ”k large enough so that f behaves on all k-wise

independent inputs the same as on the fully independent input”.

Definition 2 εf (k, p) = maxQ∈A(n,k,p) Q(f = 1)−minQ∈A(n,k,p) Q(f = 1)
kf (ε, p) is the minimal k such that εf (k, p) < ε.

We will be mostly interested in asymptotic (in n) results. Let fn : {0, 1}n → {0, 1} be a
sequence of monotone boolean functions. Assume that the functions have a sharp threshold,
i.e. there is a pc such that limn→∞ Pp(f = 1) is 0 if p < pc, 1 if p > pc.

For example, any sequence of balanced monotone transitive functions has a sharp threshold,
as is proved by Friedgut and Kalai [17].

Definition 3 K1 is the class of functions k(n), such that ε(k, p) → 0 for any p 6= pc.
K2 is the class of functions k(n), such that ε(k, pc) → 0.

In other words, K1-wise independence is enough to guarantee the existence of sharp threshold
(which is then necessarily at pc), while K2-wise independence is enough to guarantee that f
behaves as if the bits were completely independent, when p = pc.

Notice that while K1 and K2 are classes of functions, we occasionally abuse the formal
notation, and write, as above, K1-wise independence. Similarly, we write K1 > k(n) to indicate
that k(n) does not belong to K1, or K2 < ω(1) to indicate K2 ⊃ ω(1), etc.

It is not a-priori clear whether K1 ≤ K2 or vice versa (or neither). Consult the appendix
for a partial result. In all the examples we encountered K2 is at least ω(K1).

3 General tools

In this section we discuss some general tools for finding K1 and K2 as defined in the previous
section.

3.1 Duality - Approximation by polynomials

We note that the values (1) are the solution to a simple linear program. What is the dual of
this program? We observe

Proposition 4 For any f : {0, 1}n → {0, 1}, any k and any 0 < p < 1.

max
Q∈A(n,k,p)

Q(f = 1) = min
P∈P+

k (f)
EPpP (X1, . . . , Xn)

min
Q∈A(n,k,p)

Q(f = 1) = max
P∈P−

k (f)
EPpP (X1, . . . , Xn)

(2)

where P+
k (f) is the set of all real polynomials P : Rn → R of degree not more than k satisfying

P ≥ f on all points of the boolean cube. P−
k is defined analogously with P ≤ f .

The proof is simple using linear programming duality. We deduce that εf (k, p) < ε is equivalent
to having two polynomials P+ ≥ f and P− ≤ f of degree not more than k with EPp(P

+−P−) <
ε. We call this type of approximation of f a ”sandwich L1” approximation. In section 4.7 we
show that it is strictly stronger than L1 approximation (by real polynomials of degree not more
than k). Whether it is stronger than L2 approximation is one of our main open questions.
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3.2 Distributions determined by their moments

Definition 5 We say that a real random variable X has distribution determined by its mo-
ments if any random variable Y satisfying EXm = EY m for all integer m ≥ 1 has the same
distribution as X.

We shall often use the following principle

Proposition 6 Suppose a sequence of RV’s {Xn}n satisfies for all m, EXm
n → EXm for some

RV X whose distribution is determined by its moments. Then Xn → X in the weak sense.

For the proof, see [15], section 2.3 . We remark that a distribution is determined by its moments
whenever these do not grow too fast. The best criterion is called Carleman’s condition (see [15]).
But for our purposes it will mostly be enough to know that the Normal and Poisson distributions
are determined by their moments.

3.3 Bounds from the classical moment problem

Given a real sequence S := {sm}k
m=0, with k even and s0 = 1 , let

AS = {Q | Q a probability distribution on R, sm = EQ(Xm) for 0 ≤ m ≤ k} (3)

be all probability distributions with these first k moments (X is a random variable distributed
according to Q). In the theory of the classical moment problem [1], [28], based on S a certain
sequence of real functions ρm is defined and the following theorem is proved

Theorem 7 [1, 2.5.2 and 2.5.4] For any x and any Q1, Q2 ∈ AS

|Q1(X ≤ x)−Q2(X < x)| ≤ ρ k
2
(x) (4)

and in particular by taking Q1 = Q2 we get maxQ∈AS Q(X = x) ≤ ρ k
2
(x).

For brevity we do not give the general definitions of ρm here but differ them to the appendix. In
the case of interest for us sm := E(Xm) when X ∼ Bin(n, p) and then ρm(x) := (

∑m
j=0 P 2

j (x))−1

where {Pj}j are the (normalized) Krawtchouk polynomials (see [43]). These polynomials are
very well known and from them we easily deduce the following (see appendix for a proof)

ρm(n) =
pn

P(Bin(n, 1− p) ≤ m)
(5)

ρm(
n

2
) ≤ 2√

m
for p =

1
2
, even n and even m ≤ n

2
(6)

In many cases, the theory also has constructions achieving the bound of theorem 7. However,
these are not necessarily supported by the integers, which we require. It might be that they
can be suitably modified to give sharp results in our cases.

4 Boolean functions

In this section we investigate K1 and K2 for several boolean functions, and also present some
general theorems. We start with a simple, but already non-trivial example.
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4.1 Majority

Let Majn be the majority function on n bits (for odd n). Let Sn =
∑n

i=1 xi, where xi are
the input bits. Let Sn = (2Sn − n)/

√
n. The central limit theorem implies that under P1/2,

Sn → N(0, 1). Identifying K1 is easy

Theorem 8 K1(Maj) = 2.

Proof. Obviously, k = 1 is not in K1. However, for Q ∈ A(n, 2, p) we have EQ(Sn) = np and
VarQ(Sn) = np(1− p). If, WLOG, p < 1/2 then by Chebyshev’s inequality

Q(Sn > n/2) ≤ Q((Sn − np) > n(1/2− p)) ≤ np(1− p)
(n(1/2− p))2

= O(
1
n

) → 0

Identifying K2 is harder. The ideas of section 3.2 give the following

Proposition 9 K2(Maj) ≤ ω(1)

Proof. Consider the distribution of Sn under some Q ∈ A(n, k, 1/2). Obviously, EQ(Sl
n) =

EP1/2
(Sl

n) for any l ≤ k. The same holds for Sn as it is a linear function of Sn. Therefore,

EQn(Sn
l) → sl where sl = E(N(0, 1)l) is the l-th moment of a standard normal distribution.

The normal distribution is determined by its moments. Hence, if k(n) ∈ ω(1) and Qn ∈
A(n, k(n), 1/2) then Sn → N(0, 1) weakly by proposition 6. In particular, Qn(Majn = 1) =
Qn(Sn > 0) → 1/2.

In fact for Maj we can be much more specific.

Theorem 10 There exists a C > 0 such that for any even 2 ≤ k < n

C√
k log k

≤ max
Q∈A(n,k, 1

2
)
|Q(Majn = 1)− 1

2
| ≤ 2

√
2√
k

(7)

And when Q0 ∈ A(n, n− 1, 1
2) is the XOR0 distribution we have |Q0(Majn = 1)− 1

2 | ≥
1

3
√

n
.

The theorem implies that K2 = ω(1), but is much stronger in that it bounds εMaj(k, 1
2).

Proof. The claim about XOR0 is easy to verify directly. The lower bound comes from a
direct construction sketched in the appendix. The upper bound is actually known in the context
of error-correcting codes [34, Ch. 9, thm. 23] and it appears the proof there also works in our
case. But we point out that a very simple proof of it can be obtained just by applying theorem
7 and (6) to the distribution of Sn and this proof even improves a little on the constant.

4.2 Tribes

Let m be an integer and let n = m2m and let m(n) be its inverse function. Tribesn is the
following function: Let the input bits be divided into 2m sets of size m each, called tribes.
Let yi be the AND of the bits in the i-th tribe. Then Tribesn is the OR of the yi’s. Let
Sn =

∑
0≤i<2m yi. Then Tribesn = 0 iff Sn = 0. Under P 1

2
, Sn → Poisson(1). It is easily

checked that Tribes is a sequence of monotone functions with sharp threshold at pc = 1/2 and
P 1

2
(Tribesn = 1) → 1− 1/e.

Theorem 11 For some C > 0, Cm(n) ≤ K1(Tribes) ≤ 2m(n)
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Proof. The proof is similar to that of proposition 8. First, notice that for Q ∈ A(n, m(n), p) we
have Q(yi = 1) = pm. For p < 1/2, a union bound now yields Q(max0≤i<2m yi = 1) ≤ (2p)m →
0. If Q ∈ A(n, 2m(n), p) then the yis are pairwise independent. Using Chebyshev’s inequality
on Sn yields the desired result for p > 1/2.

For the lower bound we use equation 14 to produce a Q ∈ A(n, Cm(n), p) such that the
probability of all bits of any tribe are 1 is 0.

Theorem 12 K2(Tribes) ≤ ω(m(n)) = ω(log(n))

Proof. This is like the proof of 9. There is no need to normalize Sn as it tends to Poisson(1)
as is. Again, we only need to check that Poisson distribution satisfies Carleman’s condition.

A more refined results, like those for Maj can be reached using Theorem 7.

Theorem 13 εTribesn(km(n), 1/2) ≤ 2
(k/2)!

4.3 AC0 functions

AC0 is the class of functions computable by boolean circuits using Not gates, a polynomial
number of AND and OR gates (with unlimited fan-in) and of bounded depth. Tribes is a
notable example of an AC0 function of depth 2. Linial and Nisan ([30]) conjectured that any
boolean circuit of depth d and size s has K2 ⊃ ω(logd−1 s).

We prove a very special case of this conjecture. Let n = 22m and let the input bits be divided
into disjoint sets, Ai, consisting of m bits each. A function is paired if it is the OR of AND
gates, each operating on the bits in exactly 2 of the Ai’s. A paired function is, in particular, an
AC0 function of depth 2.

Theorem 14 If f is paired then K2(f) ≤ ω(log n)

proof sketch. Let S(f) be the number of satisfied AND gates in f . The crux of the proof
is to trim f by removing some of the AND gates to produce a function f ′, which is (a) very
close to f under any ω(log n)-wise independent distribution, and (b) S(f ′) under Pp tends to a
RV which is determined by its moments.

4.4 Majority of majorities

Let m be an odd integer and let n = m2. Maj2 is the following function: divide the input bits
into m disjoint sets of size m. Let yi be the majority of the i-th set, then Maj2 is the majority
of the yi’s.

Theorem 15 K1(Maj2) = 2

Proof. The proof of 8 yields Q(yi = 1) ≤ 1/(m(1− 2p)2) for any Q ∈ A(n, k, p), when p < 1/2.
Therefore EQ(

∑
i yi) ≤ 1/(1 − 2p)2. The yi’s are not pairwise independent, but Markov’s

inequality is enough: Q(Maj2n = 1) ≤ 2/(m(1− 2p)2) → 0.
Notice that this proof applies also to i-levels majority, Maji, defined similarly on mi bits.

Theorem 16
√

n ≤ K2 ≤ ω(
√

n)

Proof. To show that any function k ∈ ω(
√

n) belongs to K2(Maj2) notice that if Q ∈
A(n, k, 1/2) then the distribution generated on the yi’s belongs to A(n, k/m, 1/2). Since the
yi’s enter majority to produce the output, it is enough, by theorem 9 to have k/m = ω(1) in
order for the output to tend to 1/2.
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To show that k = m−1 is not in K2, let Q be the following distribution: Q is XOR0 on each
Ai and completely independent on different Ai’s. Obviously, Q ∈ A(n, m− 1, 1/2). By theorem
10, Q(yi = 1) ≥ 1/2 + 1/3

√
m (assume WLOG that (n + 1)/2 is even). Let Sn =

∑m−1
i=0 yi

and Sn = (2Sn − m)/
√

m. Since the yi’s are independent we have that Sn → N(a, 1) where
a = lim(2Q(yi = 1) − 1)

√
m ≥ 2/3. Obviously, Q(Maj2 = 1) = Q(Sn > 0) is bounded away

from 1/2.
The surprising fact here is the lower bound of

√
n. First it shows an example where K2

is much larger then ω(K1). Second, it demonstrates that L2 approximation does not imply
”Sandwich L1” approximation (see section 4.7).

4.5 Composition of functions

Maj2 is a simple example of composition of functions. What can we say about compositions in
general?

Let n = ml and let f = g(h1, .., hm) where the hi’s receive disjoint sets Ai of l bits each.
Assume that hi’s are balanced with respect to pc and that pc(g) = 1/2.

Theorem 17 For ε ≤ 1
2m , kf (4mε, pc) ≤

∑
i k

hi(ε, pc)

Proof. g(y1, .., ym) can be expressed as a sum of monomials of the form
∏

yi
∏

(1 − yj), each
involving all of the y’s. We take the upper and lower ”sandwich L1” approximating polynomials
of each hi (which have degree khi(ε, pc)) and plug the upper in place of any yi and one minus
the lower in place of any (1−yj). This produces a polynomial of degree k =

∑
i k

hi(ε, pc) which
bounds f from above. The error of each monomial, when the distribution is k-wise independent
is at most (1/2 + ε)m − 1/2m ≤ mε/2m−2 for ε ≤ 1

2m . Summing over the monomials we have
an error of no more then 4mε. The lower bound is similar.

This is a very general bound - we did not put any restriction on g, it can even be nonmono-
tone. For example, K2 for the XOR of two (or boundedly many) majorities is still ω(1).

For 0 < a < 1, define Maj2a to be the majority of na majorities of n1−a bits each. It is easy
to see that K2 ≤ ω(n1−a). Theorem 17 gives a bound of K2 ≤ ω(n3a). However, using finer
properties of the ”sandwich L1” approximating polynomials of Maj, we can do better.

Theorem 18 K2(Maj2a) = ω(nmin(a,1−a))

Proof. We use the approximating polynomials of the upper Maj function (the ”g”) instead of
the generic polynomial of theorem 17. These are not only of bounded degree, but also have
small coefficients. This implies that the resulting polynomial is of degree O(m) and produces
an error of O(na/2ε), where m is the degree of the approximating polynomial of the lower Maj
functions and ε is their error. Taking m = na gives ε = 1/

√
na = n−a/2, as required.

4.6 Percolation

Another very interesting example to consider is that of percolation. Briefly, percolation on
a graph G = (V,E) is a distribution on {0, 1}V , where we identify the bits with the states
{open, close}. We refer the reader to [20] for details of the theory of percolation. We denote
the set of all k-wise independent percolation with marginal probability p for every vertex to be
open by A(G, k, p). When G is infinite, we are interested in the probability of existence of an
infinite cluster of open vertices. This event is a boolean function on infinitely many bits.

Theorem 19 For G = Zd or G = Td (the d-ary tree), for any 0 < p < 1 and any k there exist
a Q ∈ A(G, k, p) such that there is an infinite open cluster Q-almost surely, and another such
Q with no infinite open cluster Q-almost surely.
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The positive part of this theorem follows from the following 2 theorems about finite versions
of percolation. Let f be the function indicating an open crossing of the n× n grid.

Theorem 20 2
√

log log n = (log n)1/
√

log log n ≤ K1(f) ≤ ω(log n)

For the tree case, we need to diverge slightly from the boolean valued setting. Let f be the
number of open paths from the root to the leaves of Td

n, the n-levels d-ary tree.

Theorem 21 For any p, for k = C log n, there is a Q ∈ A(Td
n, k, p) such that EQ(f) ≥ 2.

To this end, we present a way of combining k-wise independent distributions to ”amplify”
the amount of independence, inspired by the (u | u + v) lemma of error-correcting codes. Let
Zr be the cyclic group of size r. Let Ar(n, k) be the set of all k-wise independent distributions
on vectors (X1, . . . , Xn) ∈ Zn

r with each Xi uniform in Zr. Define Ar(G, k) similarly.

Lemma 22 Fix m ≥ 1. Let X := (X1, . . . , Xn) ∈ Ar(n, k). Let Xi := (Xi
j)

n
j=1 be m IID copies

of X. Let also Y := (Y1, . . . , Yn) ∈ Ar(n, 2k + 1) be a vector independent of all the X’s. Then
the vector with the following coordinates

X1
1 + Y1, X1

2 + Y2, . . . , X1
n + Yn,

X2
1 + Y1, X2

2 + Y2, . . . , X2
n + Yn,

...,
...,

...,
...,

Xm
1 + Y1, Xm

2 + Y2, . . . , Xm
n + Yn

(8)

is in Ar(mn, 2k + 1)

Consult the appendix for a proof of a more general result.
Proof. (Sketch, of theorem) We build distributions in Ar(Td

n, k) such that when we identify
0 with open and the rest with close, we get the desired percolation for p = 1/r.

The proof goes by induction. For k = 1 (i.e. no independence) a suitable distribution is just
taking Xi to be identical and n to be large enough.

Assume we have X ∈ Ar(Td
n, k) such that EX(f) ≥ 2. We will construct a suitable Z ∈

Ar(Td
m, 2k + 1) for m = n + n2k log d. Let Xi be independent copies of X and let Y ∈

Aq(n, 2k + 1)be such that probability of Y = 0 is maximal, which is roughly d−nk, because
there are about dn RVs in Y . Using lemma 22 we now assign the RVs in Xi +Y i to the vertices
of Td

m such that each is assigned to a subtree of depth n with root at a level divisible by n.
Thus, with probability d−nk we have Y = 0 and then the open paths form a Galton-Watson tree
with an expectation of 2m/n = 21+nk log d. Thus, the total expectation is d−nk21+nk log d = 2.

Notice that having an open path from the root to the leaves of Td
n is an AC0 function of

depth 2. This is an example of a rather complicated depth 2 function, very different then the
paired functions considered in section 4.3. Also, this function does not exhibit a sharp threshold,
thus the need for different terminology.

4.7 Fourier transform and K2

In this section we consider only the case p = 1
2 . The quantity EQ(f) may be represented using

the fourier transform as
∑

f̂(S)Q̂(S). When we consider f as having values of ±1 we have∑
f̂2(S) =

∑
f2(S) = 2n. Therefore f̂2(S)/2n is a probability measure on all subsets of the

bits, called the Fourier mass. Now, a distribution is k-wise independent if and only if all of its
Fourier coefficients of levels between 1 and k (inclusive) are 0. Therefore, if the fourier mass of f
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is supported by the first k levels, then EQ(f) = f̂(∅) = P 1
2
(f). One might conjecture that if most

of the Fourier mass is on the first k levels then EQ(f) would be small for all Q ∈ A(n, k, 1/2).
In [29] and [22], Linial, Mansour and Nisan with an improvement by H̊astad prove that

any AC0 function has its fourier mass concentrated on the first O(logd−1 s) levels (where s is
the size and d the depth). Had the above conjecture been true, we would have proved that
K2 = ω(logd−1 s) immediately for any such AC0 function (see section 4.3).

However, Maj2 provides a counterexample for this conjecture, as its K2 >
√

n while its
fourier mass is concentrated on the bounded levels, i.e, for any ε > 0 there exists C > 0 such
that all but ε of the mass is below level C. This is because Maj2 is a composition of noise stable
functions and is therefore noise stable itself (see [7]). Of course, Maj2 is not an AC0 function
so this conjecture might still be true in that domain.

4.8 Maximal probability that all bits are 1

In this section we investigate the maximal probability that all the bits are 1, i.e, the AND
function. At the end of the section two applications of our bounds are given.

Define M(n, k, p) := maxQ∈A(n,k,p) Q(All bits are 1) then

Theorem 23 For even k

M(n, k, p) ≤ pn

P(Bin(n, 1− p) ≤ k
2 )

(9)

Proof. Fix Q ∈ A(n, k, p), let S count the number of bits which are 1. Since S has the same
first k moments as a Bin(n, p) the result follows immediately from theorem 7 and (5) applied
to S.

Bound (9) is a powerful bound in that it seems to give good results for most ranges of the
parameters. Here are some corollaries

Corollary 24

M(n, k, p) ≤ 2
√

k

(
kp

2e(1− p)(n− k
2 )

) k
2

For any n, even k and p (10)

M(n, k, p) ≤ 10pn k even, n(1− p) ≤ k

2
(11)

We add that it is possible to get a result similar to (10) by letting S count the number of bits
which are 1, considering (S−pn)k and applying Chebyshev’s inequality. Still our approach with
theorem 7 has the following advantages. First, it is quite simple as the above proof of theorem
23 shows. Second, it gives (10) in all ranges of the parameters n, k and p, estimating E(S−pn)k

appears to become difficult when k also grows with n, or when np is small. Third, it seems to
give slightly better results, the approach with Chebyshev’s inequality apparently does not give
the factor 2 inside the brackets of (10).

We are also able to obtain exact results, for k = 2, 3. This is done by adapting the closed-
form expressions appearing in Boros and Prekopa [9] to our settings.

Proposition 25 Let M := b(n − 1)(1 − p)c and δ := {(n − 1)(1 − p)} (integer and fractional
parts respectively). And also N := b(n− 2)(1− p)c and ε := {(n− 2)(1− p)} then

M(n, 2, p) =
p

M + 2
+

δ2 − δ(1 + p) + p

(M + 1)(M + 2)
(12)

M(n, 3, p) =
p2

N + 2
+

p(ε2 − ε(1 + p) + p)
(N + 1)(N + 2)

= M(n− 1, 2, p)p (13)

9



For lower bounds on M(n, k, p) and an exact result for small p, see the appendix.
We present two applications of our bounds. First a definition, for q a prime-power and

k ≥ 2, a matrix B ∈ MR×n(GF (q)) is an OA(n,k,q), or an Orthogonal array of strength k with
q levels (see [34] and [23]) if a uniformly chosen row (X1, . . . , Xn) of it has k-wise independent
entries, each uniform in GF (q). If the rows of B form a linear subspace, then B is called a
linear orthogonal array and is referred to by its generator matrix A ∈ Mm,n whose rows are a
basis for the rows of B. We call A a GOA(n,k,q) for short.

1. The bound (9) can be used to give another proof of the Rao bound (see [23]) on the
minimal size of orthogonal arrays over GF (q). To see this, suppose B is an OA(n,k,q)
for k even, with R rows. We may assume B contains the all zeroes vector. Consider the
distribution Q ∈ A(n, k, 1

q ) obtained by sampling uniformly a row of B and mapping each
coordinate to a bit by 0 7→ 1, other elements to 0. We have Q(All ones vector) = 1

R , hence
by (9) we now get R ≥ qnP(Bin(n, 1− 1

q ) ≤ k
2 ) which is the Rao bound, or using the less

refined (10) we get R ≥
(

2e(q−1)(n− k
2
)

k

) k
2

/2
√

k.

We mention in this context that for q = 2, this lower bound is equal to the bound

m(n, k) :=
∑ k

2
i=0

(
n
i

)
which also appeared in [2] (in a more general setting) but we note

that for q = 2 we obtain a somewhat stronger result, the bound (9) is in fact an upper
bound for the size of any atom of the distribution (by xoring a constant vector), hence
for this case we improve slightly the known results by adding that the maximum atom of
the distribution is bounded by 1

m(n,k) , not just the size of the sample space.

2. Let A be a GOA(n,3,3) with m rows. Since the columns of A are 3-wise linearly indepen-
dent, a theorem of Meshulam [35] implies that n = O(3m

m ). Consider the distribution Q in
A(n, 3, 1

3) obtained by sampling a uniform linear combination of the rows of A and map-
ping to bits by, say, 0 7→ 1 and 1, 2 7→ 0. We have Q(All ones vector) ≤ 1

3m = O( 1
n log n). In

contrast, by equation (13) there exist Q′ ∈ A(n, 3, 1
3) with Q′(All ones vector) = Ω( 1

n). We
deduce that there is an asymptotic difference between what distributions obtained from
linear orthogonal arrays (by the above method) and general distributions can achieve.
This is interesting since most explicit constructions of k-wise independent distributions
seem to be based on sampling from linear orthogonal arrays.

4.9 Minimal probability that all bits are 1

Define m(n, k, p) := minQ∈A(n,k,p) Q(All bits are 1). m(n, k, p) can well be 0, in fact

Proposition 26 When k < n and p ≤ 1
2 we have m(n, k, p) = 0.

Since for p = 1
2 we can take the XOR0, or XOR1 distributions according to the parity of n. And

for lower p’s we can take the AND of this distribution with a fully independent distribution.
For p ≥ 1

2 , define nc(k, p) := min{n | m(n, k, p) = 0}. Our main result of the section are
two sided bounds on nc(k, p)

Theorem 27 For any p ≥ 1
2

nc(k, p) ≥

{
k

2(1−p) + 1 k even
k+1

2(1−p) k odd
(14)

10



and when 1− p = 1
q for a prime-power q and C > 0 is a large constant

nc(k, p) ≤ C
k

1− p
log(

1
1− p

) (15)

The upper bound is based on the Gilbert-Varshamov bound of error-correcting codes (see [34])
and one extra idea. The lower bound poses the main difficulty and for it we need a different
aspect of the TCMP. Fix k and p ≥ 1

2 and let Q ∈ A(nc(k, p), k, p) satisfy Q(All ones vector) =
0. Let, as usual, S count the number of 1’s. S is supported on [0, n − 1] and has the first k
moments of a Bin(n, p). Theorems in the TCMP show this is only possible if nc satisfies (14).
The actual verification is technical and involves calculating determinants. Consult the appendix
for more details.

As in the previous section, one can deduce from this a result about orthogonal arrays.
Suppose B is an OA(n,k,q) with the property that each row contains the symbol 0. If k is even,
then necessarily n ≥ 1 + kq

2 and if k is odd then n ≥ (k+1)q
2 .

5 Open questions

Below we list some of our main open questions:

1. Say anything non-trivial about the extremal points of A(n, k, p).

2. Is ”sandwich L1” approximation stronger then L2 approximation?

3. What is K2(Maj3)? What is K2(Maji)?

4. What is K2 for iterated majority of threes?
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6 Appendix

6.1 K1 and K2

It is not a-priori clear whether one of these classes contains the other. Assume that lim Ppc(f =
1) exists and denote it by α. We have the following simple result:

Claim 28 For any k ∈ K2(f), for p < pc we have lim εf (k, p) ≤ α and for p > pc we have
lim εf (k, p) ≤ 1− α

Proof. Obviously, both maxQ∈A(n,k,p) Q(f = 1) and minQ∈A(n,k,p) Q(f = 1) are increasing
functions of p. The claim now follows immediately from the fact that lim maxQ∈A(n,k,p) Q(f =
1) = lim minQ∈A(n,k,p) Q(f = 1) = α.

So, while we don’t know if for k ∈ K2, εf (k, p) → 0 we do know that it cannot be too large.

6.2 Percolation

Here is the more general result, of which lemma 22 is a corollary (put l = 1).

Lemma 29 (combining distributions) Fix integers l, m ≥ 1. Suppose for each 1 ≤ i ≤ m we
have random vectors Xi := (Xi

1, . . . , X
i
n) ∈ Ar(n, k) and Y i := (Y i

1 , . . . , Y i
n) ∈ Ar(n, lk + l + k).

Suppose that the X vectors are independent among themselves and independent from the Y
vectors, and that the Y vectors are l-wise independent among themselves. Then the vector with
the following coordinates

X1
1 + Y 1

1 , X1
2 + Y 1

2 , . . . , X1
n + Y 1

n ,
X2

1 + Y 2
1 , X2

2 + Y 2
2 , . . . , X2

n + Y 2
n ,

...,
...,

...,
...,

Xm
1 + Y m

1 , Xm
2 + Y m

2 , . . . , Xm
n + Y m

n

(16)

is in Ar(mn, lk + l + k)

Proof.
Call the resulting distribution Z, where Zi := (Zi

1, Z
i
2, . . . , Z

i
n) and Zi

j := Xi
j + Y i

j . Take a
set S of at most lk + l + k variables from the vector Z, we need to show they are independent
and uniformly distributed. Suppose that ai of them are from Zi for each 1 ≤ i ≤ m, WLOG
we can assume that for each i these are Zi

1, . . . , Z
i
ai . Consider only the i’s for which ai ≥ k + 1,

since |S| ≤ l(k + 1) + k we can have at most l such i’s, WLOG suppose these are a1, . . . , at

for t ≤ l. Now, fix some values ci
j ∈ Zr for 1 ≤ i ≤ m, 1 ≤ j ≤ ai, define events A := {Zi

j =
ci
j for all 1 ≤ i ≤ t and 1 ≤ j ≤ ai} and B := {Zi

j = ci
j for all t + 1 ≤ i ≤ m and 1 ≤ j ≤ ai}.

We need to show that P(A,B) = r−|S|. We start with

P(A) = E
(
P(A | (Xi)t

i=1)
)

=

= E(P(Y i
j = ci

j −Xi
j for 1 ≤ i ≤ t, 1 ≤ j ≤ ai | (Xi)t

i=1)) =

= E(r−
∑t

i=1 ai
) = r−

∑t
i=1 ai

(17)
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Where the next to last equality follows since the Y i
j are uniform and independent from the

X’s, since they are l-wise independent as vectors (and l ≥ t), since they are (lk + l + k)-wise
independent inside each vector and since ai

j ≤ |S| ≤ lk + l + k.

To finish the lemma we need to show that P(B | A) = r−
∑m

i=t+1 ai
. We will show something

stronger, that in fact P(B | (Xi)t
i=1, (Yi)m

i=1) = r−
∑m

i=t+1 ai
. Indeed

P(B | (Xi)t
i=1, (Yi)m

i=1) =

= P(Xi
j = ci

j − Y i
j for t + 1 ≤ i ≤ m, 1 ≤ j ≤ ai | (Xi)t

i=1, (Yi)m
i=1) =

= r−
∑m

i=t+1 ai

(18)

Where the last equality follows since the Xi
j for t + 1 ≤ i ≤ m are uniform, independent from

the Y ’s and from (Xi)t
i=1, since ai ≤ k for each t + 1 ≤ i ≤ m by the definition of t and since

(Xi
j)

n
j=1 are k-wise independent. This finishes the proof of the lemma.

6.3 The classical moment problem

Here is the general setup of the classical moment problem ([1], [28]) leading to the bounds of
theorem 7. It is followed by a definition of the Krawtchouk polynomials and a proof of (5) and
(6).

Consider a real sequence S := {sm}k
m=0, with s0 = 1 (this last condition is convenient for

us in order to use probabilistic notation, but it is not necessary for the results of the classical
moment problem). Define

AS = {Q | Q a probability distribution on R, sm = EQ(Xm) for 0 ≤ m ≤ k} (19)

to be all probability distributions with these first k moments (X is a random variable distributed
according to Q).

Definition 30 Given S = {sm}k
m=0 with s0 = 1 and k even, define the orthogonal polynomials

with respect to S, {Pm}k/2
m=0 as the unique polynomials with the following properties:

1. Pm is a polynomial of degree m with positive leading coefficient.

2. Defining formally a linear operator T from polynomials of degree k to reals by T (xi) := si

for 0 ≤ i ≤ k then T (Pl(x)Pm(x)) = δl,m.

Note that the second condition is the same as requiring EQ(Pl(X)Pm(X)) = δl,m for any Q ∈
AS .

We remark that these polynomials cannot be defined for degree larger than n if the sequence S
corresponds to the moments of an atomic distribution with only n atoms.

Define also the function ρn(x) := (
∑n

m=0 P 2
m(x))−1, then we have the following

Theorem 31 [1, 2.5.2 and 2.5.4] For any x and any Q1, Q2 ∈ AS

|Q1(X ≤ x)−Q2(X < x)| ≤ ρ k
2
(x) (20)

and in particular when Q1 = Q2

max
Q∈AS

Q(X = x) ≤ ρ k
2
(x) (21)

We remark that in many cases, the theory also has constructions which achieve these bounds, but
we could not use these since in the cases we needed we required the support of the distribution
to be on integer points. It is possible, however, that a modification of these constructions can
yield a distribution on integer points, this would be very useful to show the sharpness of the
bounds in the cases we use.
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6.3.1 Krawtchouk polynomials

In our work we utilize the orthogonal polynomials corresponding to the moments of the bino-
mial distribution (i.e., when sm = E(Xm) where X ∼ Bin(n, p)). These are the well-known
Krawtchouk polynomials (see [43]). For given n and p, the m’th polynomial (0 ≤ m ≤ n) is
given by

Pm(x) =
(

n
m

)− 1
2

(p(1− p))−
m
2

m∑
j=0

(−1)m−j

(
n− x
m− j

)(
x
j

)
pm−j(1− p)j (22)

where for real x and integer b ≥ 1,
(

x
b

)
:= x(x−1)···(x−b+1)

b! and
(

x
0

)
:= 1.

We note that

Pm(n) =
(

n
m

) 1
2
(

1− p

p

)m
2

(23)

Hence

ρm(n) =

 m∑
j=0

(
n
j

)(
1− p

p

)j
−1

=
pn

P(Bin(n, 1− p) ≤ m)
(24)

Furthermore, for p = 1
2

Pm(
n

2
) =

(
n
m

)− 1
2

m∑
j=0

(−1)m−j

(
n/2

m− j

)(
n/2
j

)
(25)

but, as is well known, since the sum is the coefficient of zm in the power series expansion of
f(z) := (1 + z)

n
2 (1− z)

n
2 and since f(z) = (1− z2)

n
2 we get by the binomial formula that

Pm(
n

2
) =


0 m odd(

n

m

)− 1
2

(−1)
m
2

(
n/2
m/2

)
m even

(26)

We then obtain

Lemma 32 For p = 1
2 , even n and even m ≤ n

2

ρm(
n

2
) ≤ 2√

m
(27)

Proof. Using (26) we have

ρm(
n

2
) =

 m
2∑

j=0

(
n
2j

)−1(
n/2
j

)2
−1

(28)

we recall the well-known inequality that for any integer a ≥ 0, a! =
√

2πa
(

a
e

)a
eλa where

1
12a+1 ≤ λa ≤ 1

12a . Using this we notice that(
a
b

)
=
√

a

2πb(a− b)
aa

(a− b)a−bbb
eλa−λa−b−λb (29)
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Hence after cancelation(
n
2j

)−1(
n/2
j

)2

=
√

n

π(n− 2j)j
e
2λn/2−2λj−2λ n

2−j+λn−2j+λ2j−λn (30)

so for n
2 , j, (n

2 − j) ≥ 1 we get(
n
2j

)−1(
n/2
j

)2

≥
√

n

π(n− 2j)j
e−

5
12 ≥

√
1
8j

(31)

Plugging back into (28) we get

ρm(
n

2
) ≤

1 +

m
2∑

j=1

√
1
8j

−1

≤
(

1 +
1√
2

(√
m

2
− 1
))−1

≤ 2√
m

(32)

6.4 Majority

We now continue and give a sketch of the proof of the lower bound for theorem 10.
Proof. (sketch of lower bound in theorem 10) Fix an odd n and a 2 ≤ k < n, we would like

to construct a distribution Q ∈ A(n, k, 1
2) such that when we define S to be the number of bits

which are 1 when sampling from Q then

|Q(S ≥ n + 1
2

)− 1
2
| ≥ C√

k log k
(33)

for some C > 0. We may assume that k < c n
log n for some small c > 0, otherwise the bound

follows trivially by taking the distribution XOR0 and using the bound that it satisfies (see
theorem 10. Let M := C

√
n

k log k be an integer, the idea of the proof is to construct Q in

such a way that with high probability S ≡ L mod M for some fixed integer 0 ≤ L < M , and
furthermore that on this event S behaves like a Bin(n, 1

2) random variable conditioned to be L
mod M . Such an S will satisfy (33) for the correct choice of L.

To do this, we consider a distribution Q̃ on (X1, . . . , Xk+1) ∈ Zk+1
M satisfying that all the Xi

are IID uniform in ZM except that Xk is chosen so that their sum is always L modulo M . This
distribution is of course k-wise independent. the required distribution Q is a distribution on n
bits (Y1, . . . , Yn), we create it from the distribution Q̃ by dividing the Y ’s into k + 1 disjoint
groups of bits, each Xi is responsible for the value of one of these groups of bits in the following
way, when observing the value of the X variable, we sample as uniformly as is possible a string
of bits for the Y variables in its group such that their sum modulo M equals the value of the
X variable.

The parameters have been chosen in such a way so that the probability that we do not
succeed even at one of the Y groups to have the correct sum modulo M is very small. Hence
the distribution Q thus constructed satisfies the required properties.

6.5 More bounds on the maximal probability that all bits are 1

In this section we detail more bounds on the maximial probability that all bits are 1. Recall
M(n, k, p) := maxQ∈A(n,k,p) Q(All bits are 1).

In the main text we have shown
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Theorem 33 For even k

M(n, k, p) ≤ pn

P(Bin(n, 1− p) ≤ k
2 )

(34)

In particular for even k

M(n, k, p) ≤ 2
√

k

(
kp

2e(1− p)(n− k
2 )

) k
2

(35)

and for even k and n(1− p) ≤ k
2

M(n, k, p) ≤ 10pn (36)

We now compliment these with lower bounds on M(n, k, p). Both lower bounds come from
well-known constructions of linear error-correcting codes. In both we assume p = 1

q for either
a prime, or a prime-power, q. To get the bounds we first construct the linear code over GF (q),
then pass to its dual code, well known to be an orthogonal array. Then sample a line of the
orthogonal array uniformly and map to bits using 0 7→ 1 and the rest of the elements mapping
to 0. We obtain

Theorem 34 Using the Gilbert-Varshamov bound, for p = 1
q with q a prime power

M(n, k, p) ≥ p

(
p(k − 1)

en

)k−1

(37)

and using BCH codes, when p = 1
q with q a prime (not a prime-power!), k ≡ 1(mod q) and

n + 1 is a power of q then

M(n, k, p) ≥ p

(
1

n + 1

)(k−1)(1−p)

(38)

We add that there is a gap in the exponent between these lower bounds and our upper bounds,
namely the upper bounds have exponent k

2 and the lower bounds have, at best, exponent
(k − 1)(1 − p). We do not know to close this gap but remark that it is also present in the
theory of error-correcting codes, for a paper discussing this gap for error-correcting codes and
the known results there see [14].

We end this section by remarking on one more exact result, for very small p’s

Proposition 35 When p ≤ 1
n−1

M(n, k, p) = pk (39)

This follows quite simply from a direct construction of the distribution. We start by putting
probability pk on the all ones vector, then all the rest of the probabilities of atoms are determined
by being k-wise independent with marginal p, we check that for this range of p’s all these other
probabilities are indeed positive. This is the same as the fact that the weight distribution of an
MDS code is determined, see [34].

6.6 More on the minimal probability that all bits are 1

We remark on the proof of theorem 27. The construction of the upper bound on nc(k, p) goes as
follows, we start with an orthogonal array with very good parameters over GF (q) (where now
q = 1

1−p) obtained using the Gilbert-Varshamov bound. We then choose a row uniformly and
map each of its coordinates to bits. The mapping is chosen so that in each coordinate exactly
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one element of GF (q) is mapped to 0, the rest to 1, but this element is chosen in a greedy
fashion to minimize the chance of not having a 0 anywhere. When n is large enough compared
to k this idea succeeds in giving a distribution with probability 0 for the all ones vector. This
gives the upper bound of the theorem.

As detailed in the main text, the lower bound follows from an existence theorem in the
theory of the TCMP, we give this theorem here for easy reference.

Let X ∼ Bin(n, p) and define si := E(Xi). Define the matrices

A(m) := (si+j)m
i,j=0

B(m) := (si+j+1)m
i,j=0

C(m) := (si+j)m
i,j=1

(40)

then the classical moment problem states (see [1],[28] or [11] which contains a survey)

Proposition 36 A random variable S with moment sequence {si} supported on [a, b] exists if
and only if

1. k is odd and bA(k−1
2 ) ≥ B(k−1

2 ) ≥ aA(k−1
2 ).

2. k is even, A(k
2 ) ≥ 0 and (a + b)B(k

2 − 1) ≥ abA(k
2 − 1) + C(k

2 ).

where as usual, A ≥ B means A−B ≥ 0 means that A−B is non-negative definite.
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