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Almost Sure Recurrence of the Simple Random Walk

Path

Itai Benjamini Ori Gurel-Gurevich

Abstract

It is shown that the simple random walk path on a bounded degree graph, consisting

of all vertices visited and edges crossed by the walk, is almost surely a recurrent subgraph.

1 Introduction

Given a graph G = (V, E) with finite degrees, a simple random walk (SRW) on G is a Markov

chain on the set of vertices with transition probabilities

Prob(wt = u|wt−1 = v) = 1/dv,

provided {u, v} ∈ E, were dv is the number of edges meeting at v.

G is called recurrent iff a.s. SRW visits any fixed vertex infinitely often.

Let G be a graph with bounded degrees. Let PATH be the random subgraph of G, consists

of all vertices visited and edges crossed by a simple random walk on G, that is, the random

walk path.

Theorem 1.1. PATH is a.s. recurrent.

• For a recurrent G, the theorem is trivial, since any subgraph of a recurrent graph is

recurrent (see [3]).

• The theorem is already known for the Euclidean lattices, since a.s. the SRW paths

on three dimensional Euclidean lattice has infinitely many cutpoints, were the past of

the path is disjoint from it’s future, see [5, 6]. And then recurrence follows by the

Nash-Williams criterion [8]. Lyons and Peres (unpublished) constructed an example of

a transient walk without cutpoints.
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• Morris [7] proved that the components of the Wired Spanning Forest are a.s. recurrent.

A result of similar spirit to the theorem but with a different proof. For another a.s.

recurrence theorem (for distributional limits of finite planar graphs) see [2].

• Exercise: show that if G is transient and with a uniform bound on the degrees, then a.s.

the SRW do not visit all the vertices of G.

• The proof uses the electrical networks interpretation of recurrence. For the connection

between SRW and electrical network see [3]. For further reading on recurrence see [10]

and the on-line lecture notes [9].

• One can think of Brownian analogue of the theorem. That is a.s. parabolicity of the

Wiener sausage, with reflected boundary conditions. It is of interest to formulate similar

conjectures and theorems for other generators and other random walks and processes.

For background on recurrence in the Riemannian context see e.g. [4].

For example, consider the range of a branching random walk on a graph G, denoted by

R(BRW ). Then we conjecture that almost surely R(BRW ) is recurrent for BRW with

the same branching law. And a similar conjecture should hold for tree indexed random

walks. See [1] for definitions and background.

• Is it possible to drop the bounded degree assumption?

Question 1.2. Given a graph G, denote by PATH(n) the path created by the first n steps

of the SRW on G. and by R(n) the maximal electric resistance between pairs of vertices

on PATH(n), ( when PATH(n) viewed as electrical network were each edge is a one ohm

conductor).

By the theorem, on any bounded degree graph R(n) a.s. increases to infinity (note of course

that R(n) increase to infinity do not imply the theorem e.g. balls in the binary tree). Is there

a uniform lower bound over all bounded degree graph for the rate at which it grows, that is: Is

there a function f ,

lim
n

f(n) = ∞

So that for any infinite graph of bounded degree. a.s.

lim sup
n

R(n)

f(n)
> 0?

In particular one can speculate that f(n) = C log2 n might work? Were the log2 n is a

lower bound coming from considering R(n) when G is Z
2, which might be critical.
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The proof of the theorem is in the coming two sections. In the next section we consider

line graphs with unbounded degrees.

2 Proof of a special case

First, we shall prove the theorem for a very special case. Quite surprisingly, the general case

will not be very different. Focusing on this special case will help illustrate the main ideas of

the proof.

A graph G is a line graph if VG = N and EG includes only edges connecting successive

vertices. Let ei denote the number of edges connecting i and i + 1. We place no restriction

on en.

Theorem 2.1. If G is a line graph then PATH on G is a.s. recurrent.

Proof. As always, the only interesting case is if G is transient, which is equivalent to
∑∞

i=0 ei
−1 <

∞. Let v(n) be the probability that a simple random walk starting at n visits 0. Clearly v is

a strictly decreasing function, v(0) = 1 and limn→∞v(n) = 0. More precisely:

v(n) =

∑∞

i=n ei
−1

∑∞

i=0 ei
−1

v is harmonic everywhere except at 0.It follows that the process v(st) is ”almost” a mar-

tingale, i.e. it is a martingale as long as st does not reach 0.

Let sn be the number of times the random walk crossed an edge connecting n and n + 1,

in either direction. Let s′n be the number of edges connecting n and n + 1 which belong

to PATH , i.e. those edges that the random walk has crossed. The resistance of PATH

is therefore
∑∞

i=0 s′i
−1. Obviously, sn ≥ s′n’ so

∑∞

i=0 si
−1 <

∑∞

i=0 s′i
−1. We will show that∑∞

i=0 si
−1 = ∞ almost surely, and therefore PATH is almost surely recurrent.

Lemma 2.2. Prob(
∑∞

i=0 si
−1 = ∞) is 0 or 1.

Proof. Let {Xj
i }

∞
i,j=0 be independent random variables, defined by Prob(Xj

i = 1) = ei/(ei−1 +

ei) and Prob(Xj
i = −1) = ei−1/(ei−1 + ei). Use these variables to construct a simple random

walk on G in the obvious manner: wt+1 = wt+X t
wt

. Now, sk is dependant (in the probabilistic

sense) only on Xj
i for i ≥ k, since every time the walk is in {0, 1, .., k−1} it will almost surely

reach k at some time. Therefore, a change to the values of finitely many of the Xj
i s will change

only the finitely many sis and so cannot effect the infiniteness of
∑∞

i=0 si
−1. By Kolomogorov’s

zero-one law we get that Prob(
∑∞

i=0 si
−1 = ∞) is 0 or 1.
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It remains to show that PATH is not almost surely transient. First we shall handle the

easy case, where the walk is quickly transient.

Lemma 2.3. If for infinitely many n, v(n)/2 > v(n + 1) then almost surely
∑∞

i=0 si
−1 = ∞.

Proof. Let {ni}
∞
i=0 be such an infinite series. Consider pi = Prob(sni

= 1), the probability that

the random walk crosses an edge from ni to ni + 1 only once. Let τi = min(t|wt = ni + 1) be

the first time the random walk reaches ni+1. Let σi = min(t|t > τi∩wt = ni) be the first time

after taui the walk reaches ni or ∞ if it never happens. Since v is harmonic on {ni, ni + 1..}

we get that {v(wt)}
σi

t=τi
is a bounded martingale. Adopting the convention v(∞) = 0, we get

v(ni + 1) = E(v(τi)) = E(v(σi)) = 0 · Prob(σi = ∞) + v(ni) · Prob(σi < ∞)

Since v(ni + 1)/v(n) < 1/2, the probability of ever reaching ni after having reached ni + 1

is less than 1/2. This means that Prob(sni
= 1) is at least 1/2. By Fatou’s lemma, the

probability of sni
= 1 occurring infinitely often is at least 1/2 and so must be 1 according to

the proof of the previous lemma. In particular,
∑∞

i=0 si
−1 = ∞ almost surely.

Lemma 2.3 shows that if G is quickly transient (in a rather weak sense) then PATH almost

surely has infinitely many cut-edges and so must be recurrent.

If the premise of lemma 2.3 is not satisfied then there must exist a sequence of vertices,

{ni}
∞
i=0, such that n0 = 0 and v(ni)/2 > v(ni+1) > v(ni)/4.

Denote by PATHi the part of PATH between ni and ni+1. Let ri =
∑ni+1−1

j=ni
sj

−1 be the

resistance of PATHi.

Let

qi =
∑

ni≤wt,wt+1≤ni+1

(v(wt+1) − v(wt))
2

i.e. sum of v(wt+1) − v(wt))
2 where the sum is taken over the part of the random walk

between ni and ni+1.

Let τi = min(t|wt = ni) be the first time the random walk reaches ni. Let σi = min(t|t >

ti∩wt = ni−1) be the first time after ti the random walk reaches ni−1 or ∞ if it never happens.

Let

q′i =
∑

τi≤t<σi

(v(wt+1) − v(wt))
2

i.e. sum of v(wt+1) − v(wt))
2 where the sum is taken over the part of the random walk

between times τi and σi.
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Lemma 2.4.

E(q′i) < 16v2(ni)

Proof. For prefixed i, let at be equal to v(wt+1) − v(wt) if t < σi or 0 if t ≥ σi. By definition

v(ni) +
∑∞

t=τi
at = v(wσi

). Take a look at V ar(v(wσi
)). On the one hand we have

V ar(v(wσi
)) ≤ E(v2(wσi

)) ≤ v2(ni−1) < 16v2(ni)

On the other hand

V ar(v(wσi
)) =

∞∑

t=τi

V ar(at) + 2

∞∑

t=τi

∞∑

t′=t+1

Cov(at, at′)

By harmonicity of v, E(at|w0, w1, .., wt) = 0. Therefore Cov(at, at′) = 0 for all t 6= t′.

V ar(at) = E((v(wt+1) − v(wt))
2). Put together, we get

E(
∑

τi≤t<σi

(v(wt+1) − v(wt))
2 =

∞∑

t=τi

V ar(at) = V ar(v(wσi
)) < 16v2(ni)

Now we use the connection between q and q′ to prove the following lemma.

Lemma 2.5.

Prob(qi < 64v2(ni)) >
1

4

Proof. Using harmonicity of v we get that Prob(σi < ∞) = v(ni)/v(ni−1) < 1/2. From

lemma 2.4 we know that E(q′i) < 16v2(ni). q′i is nonnegative, so by Markov’s inequality

Prob(q′i < 64v2(ni)) > 3/4. This implies

Prob(σi = ∞∩ q′i < 64v2(ni)) > 1/4

But if σi is ∞ then q′i = qi so

Prob(qi < 64v2(ni)) > 1/4

And finally we prove the relation between qi and Ri, the resistance of PATHi.

Lemma 2.6. If qi < Cv2(ni) then Ri > 1
4C
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Proof. Recall that sj is the number of times the walk crossed an edge between j and j + 1.

By definition

qi =

ni+1−1∑

j=ni

sj(v(j) − v(j + 1))2

and

Ri =

ni+1−1∑

j=ni

s−1
j

Using Lagrange multipliers method, we try to minimize the value of Ri, under the con-

straint given by the value of qi. We get

∂

∂sj

(Ri + λqi) = −s−2
j + λ(v(j) − v(j + 1))2 = 0

Which means that the minimum is achieved when

sj = λ− 1

2 (v(j) − v(j + 1))−1

substituting sj in the definition of qi we get

qi = λ− 1

2

ni+1−1∑

j=ni

(v(j) − v(j + 1)) = λ− 1

2 (v(ni) − v(ni+1))

which implies

λ = (
v(ni) − v(ni+1)

qi

)2

Turning back to Ri we get

Ri =

ni+1−1∑

j=ni

s−1
j = λ

1

2

ni+1−1∑

j=ni

(v(j) − v(j + 1)) =
(v(ni) − v(ni+1))

2

qi

>
(v(ni) − v(ni+1))

2

Cv2(ni)
>

v2(ni)

4Cv2(ni)
=

1

4C
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Now our work is nearly done. Combining lemma 2.5 and 2.6 we get that for all i

P rob(Ri >
1

256
) >

1

4

Using Fatou’s lemma again, we get

Prob(Ri >
1

256
infinitely often) >

1

4

From lemma 2.2 we know that the probability of PATH being recurrent is either 0 or 1.

We just showed that it cannot be zero and therefore it must be 1.

3 Proof of Theorem 1.1

Although the proof of theorem 2.1 seems tailored to the case of line graphs, only minor

modifications are needed to adapt it to the general case.

Proof. First, we need to define v. Pick a vertex g0 ∈ G. Let v(g) be the probability that a

simple random walk starting at g visits g0. For the general case it is not possible to give a

simple, closed formula for v, but it is easy to see that the relevant properties of v still hold: v

is harmonic except at g0 and limt→∞ v(wt) = 0 almost surely for w a simple random walk.

Now we shall examine the four lemmas of the special case and prove the corresponding

lemmas for the general case.

Lemma 2.2 proves a 0-1 law on the resistance of PATH . While the conclusion of the

lemma remain true for the general case (we shall prove the resistance to be a.s. infinite), the

methods used in the proof are no longer valid. Indeed, it is not true that the resistance of

some part of PATH , far away from g0 is a.s. independent of the ”decisions” of the random

walk made near g0. Instead of lemma 2.2 we have the following (rather trivial) lemma.

Lemma 3.1. If

Prob(PATH is transient) > 0

then for every C < 1 there exist a finite sequence of adjacent edges w0, .., wt0 such that

Prob(PATH is transient | (w0, .., wt0) = (w0, .., wt0)) > C

Proof. This is standard in measure theory. It follows easily from the regularity of the random

walk measure.
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Notice that all the arguments of the special case, as well as the arguments we will use in

the general case, can be carried out when the random walk is conditioned to begin with a

fixed sequence.

Next, we have lemma 2.3 which handles the simple case where the walk is quickly transient.

In the general case, this case cannot happen, since we required the graph be of bounded degree.

Lemma 3.2. If the degrees of vertices of G are bounded by d, then for g and h adjacent

vertices we have

v(h) ≤ dv(g)

Proof. This follows immediately from harmonicity of v.

Let Ci = {g ∈ G | d−2i−1/d ≤ v(g) ≤ d−2i} be the set of all vertices whose v values lies

between d−2i−1 and d−2i. From lemma 3.2 we know that every Ci is a cutset in the sense that

it separates Ci−1 from Ci+1. It is not necessarily a cutset in the usual sense, of a set separating

g0 from infinity, nor do these sets need be finite. Indeed, there can be an infinite number of

vertices for which v takes value above d−2i. However, since v(wt) tends to 0 almost surely, the

sets Ci are cutset, in the usual sense, in PATH almost surely.

Let PATHi be all the edges in PATH between Ci and Ci+1. More precisely,

PATHi = {(g, h) ∈ PATH | d−2i−2 < v(g) < d−2i−1 ∩ d−2i−2 < v(g) < d−2i−1}

As before, let

qi =
∑

(wt,wt+1)∈PATHi

(v(wt+1) − v(wt))
2

i.e. sum of v(wt+1) − v(wt))
2 where the sum is taken over the part of the random walk

between Ci and Ci+1.

Let τi = min(t|wt = ni) be the first time the random walk reaches Ci. Let σi = min(t|t >

ti∩wt = ni−1) be the first time after ti the random walk reaches Ci−1 or ∞ if it never happens.

Let

q′i =
∑

τi≤t<σi

(v(wt+1) − v(wt))
2

i.e. sum of v(wt+1) − v(wt))
2 where the sum is taken over the part of the random walk

between times τi and σi.
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Lemma 3.3.

E(q′i) < d4d−4i

Proof. The proof is identical to that of lemma 2.4. This time we get

V ar(v(wσi
)) ≤ (d−2i+2)2 = d−2i+4

and

V ar(v(wσi
)) = V ar(v(wτi

)) +
∞∑

t=τi

V ar(v(wt+1) − v(wt))

Since the covariances are, as before, all 0.

Lemma 3.4.

Prob(qi < 4d4d−4i) ≥
1

4

Proof. The proof is (again) identical to the proof of 2.5. Here we have

Prob(σi < ∞) ≤
supg∈Ci

v(g)

infg∈Ci−1
v(g)

≤
1

d
≤

1

2

and

Prob(q′i < 4d4d−4i) ≥
3

4

Next, we define Ri as the resistance of PATHi when Ci and Ci+1 are both contracted,

each to a single vertex, denoted ci and ci+1. The contracted PATHi will be denoted PATH ′
i.

Lemma 3.5. If qi < Cd−4i then Ri > 1
4Cd2

Proof. The proof is actually simpler than 2.6. Let v′(g), defined for g ∈ PATHi be equal to

d−2i−1 for g ∈ Ci, to d−2i−2 for g ∈ Ci+1 and otherwise equal to v(g). By standard abuse of

notation we shall refer to v′ as defined on PATH ′
i too.

Let

q′′i =
∑

(wt,wt+1)∈PATHi

(v′(wt+1) − v′(wt))
2
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Obviously, q′′i ≤ qi. Now we use Thompson’s Principle (see [3] , page 49) on PATH ′
i with

the function v′. q′′i is the ”energy dissipation” of v′ on PATH ′
i. By Thompson’s Principle the

real energy dissipation is lower. Recall that v′(ci) = d−2i−1 and v′(ci+1) = d−2i−2.

Put together, we have

(d−2i−1 − d−2i−2)2

Ri

≤ q′′i ≤ qi < Cd−4i

Which yields

Ri >
(d−2i−1 − d−2i−2)2

Cd−4i
≥

1

4Cd2

Combining lemma 3.4 and 3.5 we get that for all i

P rob(Ri >
1

16d6
) >

1

4

Using Fatou’s lemma (again) we get

Prob(Ri >
1

16d6
infinitely often) >

1

4

By Rayleighs Monotonicity Law (see [3] , page 51) we know that the resistance of PATH is

greater than that of the concatenation of PATH ′
i, which is

∑∞

i=1 Ri. Therefore, the probability

of PATH being recurrent is greater than 1
4
.

As noted earlier, all the arguments we used can be carried out when the random walk is

conditioned to begin with a fixed sequence. Using lemma 3.1, we conclude that the probability

of PATH not being recurrent must be 0.

Remark: a close inspection of the proof reveals that the theorem is also true for a finite

union of paths of independent simple random walks. The only difference is that lemma 3.4

applies to each SRW separately, to yield a probability of 1
4k (k being the number of SRWs)

for the resistance of the union to be at least 1
16kd6 .
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