
1 The Critical Probability for Bond Percola-

tion on Z2 is 1
2

The main theorem we are going to prove in this section is that the critical

value for bond percolation on Z2 is 1
2
. This is known as the Harris-Kesten

Theorem, after Harris, who proved that pc ≥ 1
2

in 1960, and Kesten, who

proved that pc ≤ 1
2

in 1980.

The critical value of 1
2

was conjectured well before being proven (at least

since 1960), as a result of the symmetries between the lattice and it’s dual.

(we will show this in the next section) but the result does not follow easily

(as far as we know) from this symmetry.

We will begin by using the duality to show that at p = 1
2
, the crossing

probability of a square is 1
2
. We shall than prove our main tool, a useful

lemma by Russo, and Seymor and Welsh, which will give us a lower bound

on the crossing probabilities of rectangles. Harris’s theorem will quickly

follow, and after a bit more work, Kesten’s theorem as well. We might even

see more than 1 way to finish the proof, each having it’s own merits.

Remark. The proof brought here is a combination of the proofs in Durret’s

book and the paper of Bollobas and Ryorden. The self duality is folklore , but

a good place to look is the B-R paper, the RSW proof is an adaptation of the

version in B-R paper, and the harris and 1st Kesten proofs are taken from

Durrets book, while the second proof is from the B-R paper. Grimmett also

has a proof of the HK theorem that takes another approach, using results on

the sub-critical case.

I apologize for not having the nice drawings in here, though they are very

helpful for the proofs. I’ll try to draw/scan something soon (volunteers?)
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1.1 Using self duality

For a rectangle R in Z2, let H(R) denote the event of an open horizontal

crossing of R, and V (R) the event of an open vertical crossing of R.

Claim. Let R be an (n + 1) × n square. Then P 1
2
(H(R)) = 1

2
. (And in

particular P 1
2
([n]× [n]) ≥ 1

2
).

Proof. Use duality. The dual of R, denoted R∗ is an n × (n + 1) rectan-

gle,(**Missing Drawing**) and a closed vertical crossing of R∗ exists iff an

open horizontal crossing of R does not (for a full rigorous proof see [?] or [?]).

But by symmetry these events have the same probability, so each happens

with probability 1
2
.

Remark. More generally, for any rectangle R = [k] × [l], the dual is the

rectangle R∗ = [k − 1] × [l + 1], and for any p, we have by the same proof,

that

Pp(H(R)) + P1−pV (R∗) = 1

1.2 RSW Technology

The main tool we will use is a Lemma (or series of lemma’s) by Russo, and

Seymor and Welsh, from 1978, which bounds below the crossing probability

of ρn× n rectangles in terms of the crossing probability of an n× n square.

All along, we will denote by τp(n) the probability of existence of an open

crossing of the n × n square under Pp, and by τp(ρn, n) the probability of

existence of an open crossing of the ρn× n rectangle.

We will get the results in 3 steps:

Step 1 - a clever symmetry argument:

Lemma. Let L be a 2n×2n square, and let R1 be the lower left n×n square

in L. Let F denote the event that there exist a vertical open crossing P1 of
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R1, and an open path H1 connecting the right side of L with P1 (see drawing).

Then Pp(F ) ≥ τp(n)τP (2n)

2
.

Proof. Let Es denote the event that s is the leftmost vertical crossing of

R1. Note that if a vertical crossing exists, than so does a leftmost one. Note

also that the event Es is independent on all bonds to the right of s. (It

depends only on the edges of s and those to the left of s).

Let R2 denote the upper left n× n square of L.

For a given leftmost vertical crossing s, let s2 denote the reflection of s

onto R2. Then s∪s2 is a vertical path in L (the edges of s2 are not necessarily

open). Let A1
s be the event that there exists an open path in L connecting

the right side of L and s, using only bonds to the right of s ∪ s2, and let A2
s

be the event that there exists an open path connecting the right side of L

and s2,using only bonds to the right of s ∪ s2. Then:

1. By symmetry and independence, P(A1
s | Es) = P(A2

s | Es).

2. Since s ∪ s2 is a vertical path in L, H(L) ⊂ A1
s ∪ A2

s.

Combining the above we get

P(A1 | Es) ≥ P(H(L))/2

And since F ⊃
⋃

s(Es ∩ A1
s) we have

P(F ) ≥
∑

s

(Es ∩ A1
s) =

∑
s

P(Es)P(A1
s | Es)

≥
∑

s

P(Es)P(H(L))/2 =
1

2
P(V (R1))P(H(L)) =

1

2
τp(n)τp(2n)

step 2: Crossing an [3n/2, n] rectangle.

Lemma.
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step 3: crossing general constant-relation rectangles:

The square root trick:

Claim. If A1 and A2 are 2 increasing events satisfying P(A1) = P(A2). And

let A = A1 ∪ A2 then

P(A1) ≥ 1−
√

1− P(A)

Proof.

(1− P(A1))
2 = 1− 2P(A1)− P2(A1) =

1− P(A1)− P(A2)− P(A1)P(A2) ≥

1− P(A1)− P(A2)− P (A1 ∩ A2) = 1− P (A)

This bound has the advantage over the trivial P(A1) ≥ P(A)/2 since it’s

close to 1 when P (A) is close to 1.

Lemmas revised:

lemma 1 , revised, has the following form:

P(F ) ≥ τp(2n)(1−
√

1− τp(n))

and the other bounds change accordingly.

1.3 Harris Theorem

We will show something stronger:

Theorem. θ(1
2
) = 0. i.e. There is no infinite giant component at p = 1

2
.

Proof.

Lemma. (RSW) There is a constant δ > 0 such that for any L > 0, the

probability that an open circuit around 0 exists inside the annulus of radii L

to 3L is bounded below by δ
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Proof. Divide the annulus into 4 3L×L rectangles (2 horizontal, 2 vertical)

in the obvious way. By RSW, each is crossed in the long direction with

probability ≥ δ0 for some constant δ0. (since τ 1
2
(n) ≥ 1

2
)). By FKG, the

probability of all these crossings existing together is more then the product

of these probabilities, and if they all exist, then the union of these crossings

includes a circuit around 0. q.e.d.

Look at the dual lattice L∗. Take Ln = 4n , and let An be the annulus

of radii Ln to 3Ln. Then by the above lemma, each contains a closed circuit

around the origin with probability ≥ δ. Since An do not intersect, these

events are independent, and therefore with probability 1 such a closed circuit

exists. But such a circuit insures 0 is not in an infinite component, so θ(1
2
) =

0

1.4 Kesten’s theorem, the old fashioned way

We have 3 steps:

Step 1: - If p > 1
2

then τp(n) → 1) as n →∞.

Step 2: If τp(n) ≥ 1− ε0 then for any integer k > 1, τp(3
ρn, n) ≥ 1− e−k

Step 3: Show θ(p) > 0

Step 1:

Proof. We will show that if τp(n) < 1 − ε then H([n] × [n]) has a high

expected number of pivotal edges, and then we can use Russo’s formula. To

find enough pivotal edges we work as follows:

Let L be a n× n square. Let s be the lowest left-right crossing of L. Let

v1 be the leftmost closed vertical path in the dual of L connecting the upper

boundary of L∗ with s. (Exists with probability ≥ ε since the edges above s

are independent of s and below, and since P(H(L)) ≤ 1− ε.)

Let w be the edge in which v1 intersects s. then w is pivotal for H(L).

Now lets draw log3 n disjoint square annuli in L,of constant proportions
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between their inner and outer radii. In each there is a closed path in L∗

connecting s and v1 with probability ≥ f(ε) > 0. The edge of s which such

a path crosses must be pivotal. So E(N(H(L))) ≥ f(ε) log3 n and we are

done.

Step 2: Exercise.

τp(4n, 2n) ≥
Step 3:Take a 3n×n horizontal rectangle containing 0. Put on it a 32n×3n

vertical rectangle, etc.. Each such rectangle is crossed with probability ≥ 1−
e−k, and they are positively correlated, so with probability≥

∏
k≥1(1−e−k) >

0. But if all such crossings exist, then their union is an infinite path, so an

infinite component exists.

1.5 Bollobas-Ryordens proof of kestens theorem

1.6 Another proof of uniqueness of the infinite com-

ponent in Z2
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