
1 Percolation (on Z2 and Zd)- part 1

The process of percolation was introduced by Broadbent and Hammersley in

1957, as a model for flow through porus rock:

1.1 Definitions and basic facts

Definition. (bond) Percolation on a graph G is a random subgraph Hp

of G attained by keeping each edge of G with probability p, independently of

all other edges. Sometimes we will call the edges in Hp open, while the edges

in G

Hp will be called closed.

The random subgraph (Hp)percolates (or the event of percolation is

said to occur) if it contains an infinite connected cluster.

Doing the same process to the vertices of G is called site percolation

A lot of applications in Physics, disease spreading, networks or a simpli-

fication or tool for studying more complex systems (ising model etc..)

From now on we will concentrate on Zd, and even Z2 unless otherwise

stated.

The basic question we will want to answer is when does percolation occur.

i.e. when is there an infinite cluster.

Claim. The following is true for Zd (and actually for any connected graph

G):

1. Percolation is a 0− 1 event.

2. Percolation occurs with probability 1 iff θ(p) > 0.

3. θ(p) is an increasing function of p, and the probability for percolation

is increasing in p.
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4. There exists a critical probability pc (depending on the graph), 0 ≤ pc ≤
1 s.t. for any p < pc no percolation occurs (a.s.) and for any p > pc

percolation occurs (a.s.).

Proof. 1. Percolation is a tail event (i.e. changing a finite number of

edges (from open to close or vice versa) does not change whether or

not percolation occurs), and by Kolmogorov’s 0-1 law, any tail event

has probability 0 or 1.

2. The probability of percolation is at least θ(p), so if θ(p) > 0 then by

the previous clause percolation occurs with probability 1. If θ(p) = 0

then by the probability of percolation is bounded by a countable union

of 0 probability events and is therefore 0.

3. Couple using uniform variables.

4. At p = 0 no percolation occurs, at p = 1 percolation does occur. define

pc = infpP(percolation > 0). The rest follows from monotonicity.

Remark: We will show that in Z2, no percolation occurs at pc. This is

not always the case (example?)

Examples: d-regular trees. (No percolation at pc = 1
d−1

)

Next we will prove that pc is non trivial (i.e. 0 < pc < 1)

Lemma. 1
3
≤ pc(Z

2) ≤ 2
3

Proof. 1. pc > 1
3
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Let C(x) denote the connected component of vertex x. Then if percola-

tion occurs, then with probability ≥ θ(p) there is an open self avoiding

path of length n from the origin.

The number of self avoiding paths of length n from 0 is at most 4 ∗ 3n,

and each such path is open with probability pn. Therefore the expected

number of self avoiding open paths of length n from 0 is ≤ 4∗3npn and

this converges to 0 if p < 1
3
, ensuring θ(p) = 0. Therefore pc ≥ 1

3

2. pc < 2
3
:

Dual lattice L2∗: Dual of a planar graph, explicit description. Edge

open iff croses an open edge. Closed if crosses a closed edge of L2. It

is easy to see that L2 ≈ L2∗ (isomorphism).

If the connected component of 0 is finite, then there exists a closed

circuit in the dual lattice around 0. In a similar manner, the union of

the connected components of all vertices in the box [−n, n]x[−n, n] is

finite iff there exists a circuit of closed edges in the dual lattice circling

[−n, n]x[−n, n].

Each such a path is of length ≥ n, and there are at most m ∗ 3m

such circuits of length m. Each circuit of length m is closed with

probability (1− p)m, so the expected number of closed circuits around

[−n, n]× [−n, n] in the dual lattice is ≤
∑

m = n∞m ∗ (3(1− p))m and

this converges to 0 as n →∞ for any p ≥ 2
3
. So there is an n for which

there are no closed circuits around [−n, n]× [−n, n] in the dual lattice

with positive probability. And by translation invariance θ(p) > 0 for

any p > 2
3
.

Remark: pc(Z
d) ≤ pC(Z2) (and actually, a strict inequality holds) The

proof of the lower bound can be adapted easily to give a lower bound on
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pc(Z
d). so 0 < pc(Z

d) < pc(Z
2) for d ≥ 2.

Exercise: Show that pc(Z
4) < pc(Z

2).

exercise: Build a graph with pc = 0. (pc = 1 is easy).

exercise*: Build a graph that has percolation at pc. Hint - use galton-watson

trees as building blocks.

remark: Conjecture: Any vertex-transitive graph with pc < 1 does not

percolate at pc. Known for Z2 and Zd for d ≥ 19 open for Z3.

1.2 Bond and Site percolation

Theorem. For any bounded degree graph G we have pc(bond) ≤ pc(site).

Proof. We define a coupling between bond and site percolation (for a given

p) such that the Cbond(0) ⊃ Csite(0) for each instance of the coupling.

Coupling: Exploration process.

1.3 Uniqueness of the infinite component in Zd

We will show the proof of Burton and Keanes (1989)

Proof. Stage 1: Show that for any 0 < p < 1 the number of infinite compo-

nents is constant (a.s.).

proof: Np(w) is translation invariant, and any translation invariant function

on Ωp(Zd) is a.s. constant.

Stage 2: Assume Np(x) ≡ c a.s. then c ∈ 0, 1,∞.

Proof: If there are two or more infinite clusters, then there is a finite

box B(n) s.t. with positive probability q B(n) intersects 2 or more infinite

clusters. Then, changing the configuration of edges inside B(n) can connect

two components, and happens with positive bounded below probability, so

the number of connected components is not constant, contradicting (1).

Stage 3: We assumed p > pc so Np ≥ 1, so it remains to show Np 6= ∞.
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Assume Np ≡ infty. We define the notion of a trifurcation point: (draw-

ing:)

(a): Let Tx denote the event that x is a trifurcation point then P (Tx) > 0

proof: Again take big enough box. It intersects 3 infinite components. with

positive probability. Changing the configuration inside can insure 0 is a

trifurcation point.

(b):Let B(n) denote the d-dimensional box of length n. Then the ex-

pected number of trifurcation points inside B(n) is nd ∗ P (Tx) i.e. grows

proportional to nd.

(c): We will show that the number of trifurcation points in B(n) cannot

exceed |∂B(n)| ≤ dnd−1 (Boundary) contradicting (b).

(d): It is enough to show that for any infinite component K intersect-

ing B(n), the number of trifurcation points on B(n) ∩ K is bounded by

|∂B(n) capK|.
(e) Compatible partitions, compatible family of partitions

lemma: If P is a compatible family of partitions of Y then |P | ≤ |Y | − 2.

proof: induction on Y . clear for |Y | = 3 for |Y | = n + 1 divide

(f): (Drawing) : The trifurcation points of K ∩ B(n) induce a family of

compatible partitions of K ∩ ∂B(n).

Conclusion - contradiction. → Np ≡ 1 a.s.

remark: In trees there are an infinite number of connected components.

1.4 Useful tools and inequalities

Let Ω = {0, 1} Ld

denote the space of all possible edge configurations on Ld.

i.e. in the configuration w ∈ Ω the edge e ∈  Ld is open iff w(e) = 1, and

closed iff w(e) = 0.

We denote by Ωp the space endowed with the product measure where
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each edge e is open with probability p, independently of all other edges. (We

could also consider other product measures, where each edge is open with a

different probability pe etc..)

We impose a partial order on Ω by setting ω ≤ ω′ ⇐⇒ ω(e) ≤ ω′(e) ∀e ∈
 Ld. (i.e. every edge open in w is open in w′ as well).

An event A is called (monotone) increasing if IA(w) ≤ IA(w′) when-

ever w ≤ w′. (Where IA is the indicator function of A) We call A decreasing

if it’s complement Ā is increasing.

More generally, a random variable N on Ω is called increasing if N(w) ≤
N(w′) whenever w ≤ w′. (and N is called decreasing if −N is increasing)

Examples: The existence of an open path from x to y is an increasing

event. The number of such open paths is an increasing function.

Claim. If N is an increasing function on Ω, A an increasing event, and

p1 ≤ p2 then

1. Ep1(N) ≤ Ep2(N). Assuming these mean values exist.

2. Pp1(A) ≤ Pp2(A)

Proof. standard coupling using uniform variables.

FKG(Harris lemma) The following useful theorem, proved in various

forms by harris (1960) and others (FKG), deals with the positive correla-

tion between monotone increasing events.

Theorem. 1. Let X, Y be two increasing (or decreasing) random vari-

ables on Ωp such that Ep(X2) < ∞ and Ep(Y 2) < ∞ then

Ep(XY ) ≥ Ep(X)Ep(Y )
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2. If A and B are increasing (or decreasing) events, then

Pp(XY ) ≥ Ep(X)Ep(Y )

Proof. We will only prove (a) for random variables which depend only on

a finite number of edges. Suppose X and Y depend only on the states of

e1, .., en. We proceed by induction on n.

Step 1: Suppose n = 1. Then X and Y depend only on w(e1), which is 1

with probability p and 0 with probability 1− p.

Step 2: Assume the result holds for all n < k, and assume X and Y

depend only on w(e1), ..., w(ek). then

Ep(XY ) = Ep,w(e1),...,w(ek−1)(Ep,w(ek)(XY | w(e1), ..., w(ek−1))) ≥

≥ Ep,w(e1),...,w(ek−1)(Ep,w(ek)(X | w(e1), ..., w(ek−1))Ep,w(ek)(Y | w(e1), ..., w(ek−1)))

Since given w(e1), ..., w(ek−1) X and Y are increasing in the single random

variable w(ek).

Now Ep,w(ek)(X | w(e1), ..., w(ek−1)) is an increasing function of the states of

e1, ..., ek−1, (and same for Y ), so by the induction hypothesis

Ep(XY ) ≥ Ep,w(e1),...,w(ek−1)(Ep,w(ek)(X | w(e1), ..., w(ek−1)))

×Ep,w(e1),...,w(ek−1)(Ep,w(ek)(Y | w(e1), ..., w(ek−1))) =

= Ep(X)Ep(Y )

Proving the case when X and Y depend on infinitely many edges requires

approximating X and Y by variables depending only on a finite number

of edges, and using a convergance theorem for martingales with bounded

variance.

(b) follows from (a) by taking indicator functions.

remarks:
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1. Since the intersection of increasing events is an increasing event, we

can conclude

Pp(
k⋂

i=1

Ai) ≥
k∏

i=1

Pp(Ai)

for increasing events Ai.

2. The proof works for any product measure on any countable set (We

can use a different pe for each edge e ∈ G, and any countable graph G)

3. The theorem actually holds in a much wider setting.

4. VERY USEFUL

1.5 The BK inequality

The FKG inequality gave us positive correlation between increasing events.

Sometimes we will want an inequality in the opposite direction, giving us an

upper bound on the probability of two increasing events happening at once.

It turns out the correct approach is instead of looking at A∩B, to look at a

new event, the disjoint occurrence of A and B, denoted A◦B. In the case

of bonds percolation and paths, the disjoint occurrence of paths between

a and b, and between x and y just means the existence of two edge disjoint

paths one joining a and b and one joining x and y. The BK inequality will

then give P(A ◦B) ≤ P (A)P (B).

We will now formalize and extend this definition, and state and proof the

relevant inequality.

We restrict ourselves to a finite state space Ω = {0, 1}m.
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Definition. Given a configuration w ∈ Ω and a subset I ⊂ [m], we define

the cylinder [w]I by [w]I = {w′ ∈ Ω : w′(i) = w(i) ∀i ∈ I}.

Definition. Given events A, B ⊂ Ω we define the ”disjoint occurrence” of

A and B by

A ◦B = {w ∈ Ω : ∃I ⊂ [m], [w]I ⊂ A, [w]Ic ⊂ B}

Theorem (BK inequality, after Kesten and Van den Berg, 85). Let

m ∈ N, let Ω = {0, 1}m, endowed with the product measure Pp, then for any

increasing events A, B ⊂ Ω

Pp(A ◦B) ≤ Pp(A)Pp(B)

Proof. (We follows Dana Randall’s lecture notes) Let Ω2 = Ω×Ω , and endow

it with the probability measure P2 = Pp × Pp. For an element < x, y >∈ Ω2,

< x, y >=< x1, .., xm; y1, .., ym >, we define

< x, y >0=< x, y >=< x1, ..., xm; y1, ..., ym >

< x, y >1=< y1, x2, ..., xm; x1, y2, ..., ym >

< x, y >k=< y1, y2, .., yk, xk+1, .., xm; x1, x2, ..xk, yk+1, ..., ym > for any k ≤
m.

We define events A′, B′
k for 0 ≤ k ≤ m as follows:

< x, y >∈ A′ ⇐⇒ x ∈ A.

∀k ≤ m < x, y >∈ B′
k ⇐⇒ [< x, y >k][m] ∈ B. (i.e. iff < y1, ..., yk, xk+1, ..., xm >∈

B)

Then the events A′ ◦ B′
k are defined by < x, y >∈ A′ ◦ B′

k ⇐⇒ ∃I1, I2 ⊂
[m], I1 ∩ I2 ∩ {k + 1, ...,m} = ∅ such that

[< x, y >]I1 ∈ A′ (i.e. [x]I1 ⊂ A) and

[< x, y >]I2 ∈ B′
k (i.e. [< y1, .., yk, xk+1, ..xm >]I2 ∈ B).
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Remark. Note connection to edge splitting!!! If A is the event of a path

between u and v, and B the event of a path between α and β, then < x.y >∈
A′◦B′

k iff there exist disjoint paths connecting u to v and α to β after splitting

the first k edges.

We make 2 observations:

1. < x, y >∈ A′ ◦ B′
m ⇐⇒ x ∈ A and y ∈ B. But since x and y share no

bits together, we get that P2(A′ ◦B′
m) = Pp(A)Pp(B).

2. < x, y >∈ A′ ◦B′
0 ⇐⇒ x ∈ A ◦B,so P2(A′ ◦B′

0) = P(A ◦B).

So if we can show that P2(A′ ◦ B′
k−1) ≤ P2(A′ ◦ B′

k) for any 1 ≤ k ≤ m,

we would reach the desired inequality.

To prove this, we define ek to be the vector with 1 in the k’th place,

and 0 everywhere else, and define ⊕ to be bitwise xor (symmetric difference)

between configurations.

We will prove the inequality P2(A′ ◦B′
k−1) ≤ P2(A′ ◦B′

k) by constructing

a function Φ : (A′ ◦ B′
k−1) → (A′ ◦ B′

k), which will be 1 − 1 and measure

preserving (in Ω2, P2).

For < x, y >∈ (A′ ◦B′
k−1) we define Φ(< x, y >) according to one of two

cases:

Case 1: < x, y >∈ (A′ ◦ B′
k). In this case we simply define Φ(< x, y >

) =< x, y >. Note that if xk = 0, or xk = yk = 1 then this is the case.

Case 2: < x, y >/∈ (A′◦B′
k). This implies xk = 1, yk = 0. By the definition

of (A′ ◦B′
k−1) there exist I1, I2 ⊂ [m] such that I1∩I2∩{k, ..., m} = ∅ and [<

x, y >]I1 ⊂ A′ and [< x, y >]I2 ⊂ B′
k−1. Then k ∈ I2 (otherwise, exchanging

xk and yk would not change membership in B), and therefore k /∈ I1. So

< x⊕ ek, y ⊕ ek >∈ (A′ ◦B′
k). We define Φ(< x, y >) =< x⊕ ek, y ⊕ ek >.

It is easy to see that Φ is 1−1 and measure preserving, so we are done.
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Remark. The inequality actually holds for any events, not just increasing.

Riemer proved this in 1996. In that formulation it also generalizes the FKG

inequality for product measures.

1.6 Russo’s Formula

Given an increasing event A, how does it’s probability change when we change

p? We already know Pp(A) is non-decreasing in p. One way to approach the

problem, is to think what happens when we change p by a small amount.

For this it is best to use the standard uniform variable coupling, that allows

us to couple percolation with various probabilities. (put a uniform (0, 1) r.v.

Ue on each e ∈ G, and for given p call the edge open if Ue ≤ p).

We give an ”informal” idea: Given a configuration of the uniform underlying

space, when we change p by a very small amount δ, (and the space state

is finite), with high probability we will add at most 1 edge. This edge will

change the event of A happening only if the edge added is essential for A.

Thus we will get

Pp+δ(A)− Pp(A) ≈ δ
∑

e

Pp(e is ”essential” for A)

Dividing by δ and taking the limit will give

∂

∂p
Pp(A) =

∑
e

Pp(e is ”essential” for A)

We will next formalize and prove this statement.

Definition. An edge e is called pivotal for an event A and a configuration

w ∈ Ω if IA(w) 6= IA(w′) where w′(f) = w(f)∀f 6= e and w′(e) = 1 − w(e).

i.e. If changing w(e) changes the event of A happening.

Note that if A is an increasing event, and e is pivotal for (A, w) then A

does not occur when e is closed, and does occur when e is open. (and the

rest of the edges remain unchanged)
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Theorem (Russo’s Formula). Let A be an increasing event defined in

terms of the states of only finitely many edges of  Ld,then

∂

∂p
Pp(A) = Ep(N(A))(=

∑
e

Pp(e is pivotal for A))

where N(A) is the number of edges which are pivotal for A.

Proof. Let M = {ei}m
i=1 be the (finite) set of edges on which A depends, and

let {Ue}e∈M be i.i.d. uniform variables. For a given set of probabilities ρ =

{ρ(e)}e∈M we construct a configuration wρ ∈ Ω = {0, 1}M by letting w(e) = 1

if Ue ≤ ρ(e), and wρ(e) = 0 otherwise. Writing Pρ for the probability measure

on Ω where the state of the edge e is open with probability ρ(e), we have

Pρ(A) = P(w ∈ A)

as usual. Now we will change the probabilities on one edge at a time:

Choose an edge f ∈ M and define ρ′ by ρ′(e) = ρ(e) for e 6= f and ρ′(f) = p′.

thus ρ and ρ′ differ only on one edge at most. Now if ρ(f) ≤ ρ(f) then

Pρ′(A)− Pρ(A) = P(wρ /∈ A, wρ′ ∈ A) =

= (ρ′(f)− ρ(f))Pρ(f is pivotal for A)

Dividing by ρ′(f)− ρ(f) and taking the limit as ρ′(f)− ρ(f) → 0 gives

∂

∂ρ(f)
Pρ(A) = Pρ(f is pivotal for A)

Changing the probability of each edge ei from p to p + δ one at a time,

and taking a limit gives(using the chain rule) :

∂

∂p
Pp(A) =

m∑
i=1

∂

∂p(ei)
Pρ(A)|ρ≡p =

=
m∑

i=1

Pp(ei is pivotal for A) = Ep(N(A))
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Corollary. If A is increasing and depends only on m edges, then for any

0 < p1 ≤ p2

Pp2(A) ≤ (
p2

p1

)mPp1(A)
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