
TAYLOR’S POLYNOMIALS IN 1 OR MORE VARIABLES

ORI GUREL-GUREVICH

1. SINGLE VARIABLE

Definition 1.1. The n-th order Taylor’s Polynomial of f around x0 is

Tn(x) =

f (x0)+ f ′(x0)(x−x0)+ f ′′(x0)
(x −x0)2

2
+ f ′′′(x0)

(x −x0)3

6
+·· ·+ f (n) (x −x0)n

n!
.

Example 1.2. T1(x) = f (x0) + f ′(x0)(x − x0) is the line tangent to f at

(x0, f (x0)).

Example 1.3. If f (x) = log(x) (where log is the natural logarithm - base

e) then f ′(x) = 1/x and f ′′(x) =−1/x2. The 2nd order Taylor Polynomial

around 1 is T2(x) = 0+ (x −1)− 1
2 (x −1)2.

This Tn has the property that its value and first n derivatives at the

point X0 coincide with the value of f and its first n derivatives at x0,

causing Tn to behave very similarly to f near x0. To see this, notice that

g (x) = (x−x0)k

k ! has the following properties:

g (`)(x) =


(x−x0)k−`

(k−`)! `< k

1 `= k

0 `> k

In particular,

g (`)(x0) =
{

1 `= k

0 ` 6= k

So, the k-th term in the definition of Tn(x) contribute exactly f (k) to the

k-th derivative of Tn at x0 and nothing to the other derivatives.

Plenty of other examples and explanations can be found in the book

(chapter 12.10 and 12.11).

Definition 1.4. The remainder or error of Tn is defined to be Rn(x) =
f (x)−Tn(x), so we can write f (x) = Tn(x)+Rn(x).
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We would like to know that this error is small, meaning that Tn is a

good approximation for f . For this we have Taylor’s inequality:

Theorem 1.5 (Taylor’s Inequality). If for any x such that |x − x0| ≤ d we

have f (n+1)(x) ≤ M than for any x such that |x −x0| ≤ d we have

|Rn(x)| ≤ M
|x −x0|n+1

(n +1)!
.

Example 1.6. If f (x) = log(x) as before, then f (3) = 2/x3. If we restrict

ourselves to |x−1| ≤ 1
2 than | f (3)| ≤ 16, since f (3) is decreasing so its maxi-

mum on [ 1
2 , 3

2 ] is achieved at 1
2 . Hence, the remainder R2(x) ≤ 16(x−1)3/6

for any 1
2 ≤ x ≤ 3

2 . This means that we can estimate log(1.1) by T2(1.1) =
(1.1−1)− 1

2 (1.1−1)2 = 0.1−0.005 = 0.095 and the error R2(1.1) = log(1.1)−
0.095 is at most 16(1.1−1)3/6 = 0.00266... In actuality, log(1.1) = 0.09531...

2. MULTIPLE VARIABLES

The 1st order Taylor’s Polynomial of f around (x0, y0) is

T1(x) = f (x0, y0)+ fx(x0, y0)(x −x0)+ fy (x0, y0)(y − y0) .

This is exactly the function describing the tangent plane at (x0, y0, f (x0, y0)).

In other words, z = T1(x) is the equation of this tangent plane.

The 2nd order Taylor’s Polynomial of f around (x0, y0) is

T2(x) = T1(x)+ fxx(x0, y0)

2
(x−x0)2+ fx y (x0, y0)(x−x0)(y−y0)+ fy y (x0, y0)

2
(y−y0)2 .

Recall that for "reasonable" functions Clairaut’s theorem apply and we

get that fx y = fy x explaining why only one of them appear in the formula

(for functions where fx y 6= fy x we will generally not be interested in T2

since it won’t be a good approximation).

In general, The n-th order Taylor’s Polynomial of f around (x0, y0) is

Tn(x, y) =
n∑

k=0

n−k∑
`=0

∂k∂` f

∂xk∂y`
(x0, y0)

(x −x0)k (y − y0)`

k !`!

For more than 2 variables the formula is similar. For example, in 3 vari-

ables, the terms would be of the form

∂k∂`∂m f

∂xk∂y`∂zm
(x0, y0, z0)

(x −x0)k (y − y0)`(z − z0)m

k !`!m!



TAYLOR’S POLYNOMIALS IN 1 OR MORE VARIABLES 3

and we would sum over all indices such that k +`+m ≤ n.

Example 2.1. Let f (x, y, z) = ex y z . Then calculating all derivatives up to

3rd order, we find that the only nonzero one at (0,0,0) is fx y z(0,0,0) = 1.

Therefore, T3(x, y, z) = 1+x y z.

We will focus mostly on the case 2nd order Taylor Polynomial of a 2

variables function.

3. LOCAL MINIMUM AND MAXIMUM

The next definitions and theorem work for any n and any number of

variables. For the 1 variable case interpret P0 as x0, for the 2 variables

case, interpret P0 as (x0, y0), etc.

Definition 3.1. A point P0 is a local maximum for f , if there is a small

disc around P0, such that the value of f at any point in that disc is at

most f (P0).

Definition 3.2. A point P0 is a strict local maximum for f , if there is a

small disc around P0, such that the value of f at any point in that disc is

strictly less than f (P0).

Definition 3.3. A point P0 is a local minimum for f , if there is a small

disc around P0, such that the value of f at any point in that disc is at least

f (P0).

Definition 3.4. A point P0 is a strict local minimum for f , if there is a

small disc around P0, such that the value of f at any point in that disc is

strictly more than f (P0).

A strict local maximum is a local maximum, and a strict local minimum

is a local minimum.

Example 3.5. The function f (x, y) = x2+y2 has a local minimum at (0,0).

It is a strict local minimum.

Example 3.6. The function g (x, y) = 1−x2 has a local maximum at (0,0),

but it is not a strict local maximum since all the points of the form (0, y)

also have f (0, y) = 1 = f (0,0), and there are points like this in every disc

around (0,0) no matter how small the disc is.
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The following theorem is what makes Taylor Polynomials useful in the

study of local minimum and maximum points.

Theorem 3.7. Suppose f has all n +1-th order derivatives around P0. If

Tn is the n-th order Taylor’s Polynomial of f around the point P0 and P0 is

a strict local maximum for Tn then it is also a strict local maximum for f .

If P0 is not a local maximum for Tn then it is also not a local maximum for

f . These two implications also hold for minimum instead of maximum.

Note the difference between the two implications. The first require P0

to be a strict local maximum, and the second require P0 to not be a local

maximum. The idea behind the theorem is this: for a point P near P0

the error Tn(P )− f (P0) is significantly smaller than |P −P0|n (the distance

between P and P0 to the n-th power). This means that the error is also

small compared to Tn(P )− f (P0) which is at least of order |P−P0|n (this is

where the strict max/min requirement comes into play). Hence the sign

of Tn(P )− f (P0) is the same as the sign of f (P )− f (P0) for P close enough

to P0. In particular, if P0 is a strict local minimum for Tn than Tn(P ) >
Tn(P0) = f (P0) for all P close enough to P0 and therefore f (P ) > f (P0) for

all these P ’s, i.e. P0 is a strict local minimum for f .

Let’s consider the implication in 1 variable. If f is a 1 variable func-

tion and the first n − 1 derivatives of f at x0 are all 0, and f (n)(x0) 6= 0

then the n-th order Taylor’s Polynomial of f around x0 is Tn(x) = f (x0)+
f (n)(x0) (x−x0)n

n! . It is straightforward to see that if n is even than Tn has

a strict local minimum or maximum, depending on whether f (n)(x0) is

positive or negative, and if n is odd than x0 is neither a local maximum

nor minimum for Tn . Combining with theorem 3.7 we get the following

generalization of the second derivative test for functions of 1 variable.

Theorem 3.8 (1-Variable Higher Derivative Test). Assume f (x) has an n+
1-th derivative at x0 and f (k)(x0) = 0 for all k < n and f (n)(x0) 6= 0. If n is

even and f (n)(x0) > 0 then x0 is a strict local minimum for f . If n is even

and f (n)(x0) < 0 then x0 is a strict local maximum for f . If n is odd then x0

is neither a maximum nor a minimum for f .

Example 3.9. Let f (x) = cos(x)+ x2

2 and consider x0 = 0. Then the first

nonzero derivative is f (4)(0) = 1. Hence, 0 is a strict local minimum of f .
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Before going to the 2 variables, second order case, we shall give a cou-

ple of example in more variables or higher order.

Example 3.10. Suppose that for some f (x, y, z), the 2nd order Taylor Poly-

nomial around (0,0,0) is T2(x, y, z) = 7+x2+4y2−z2. Then (0,0,0) is not a

local minimum nor maximum for T2 and therefore isn’t a local minimum

nor maximum for f as well. If we had T2(x, y, z) = 3−2x y , then still (0,0,0)

is not a local minimum nor maximum for T2 and so for f . If instead we

had T2(x, y, z) = 3−2x2 − y2 −4z2 then (0,0,0) is a strict local maximum

for T2 and hence for f .

Example 3.11. Suppose that for some f (x, y), the 3rd order Taylor Poly-

nomial around (1,2) is T3(x, y) = (x−1)2+2(x−1)2(y −2)+4(y −2)3, then

(1,2) is neither a local maximum nor minimum for T3 (Why? hint: check

what happens when x = 1) and so it isn’t for f .

Finally, some examples about the 2nd order, 2 variables case.

Example 3.12. Let f (x, y) = e−x2−y2
. Then the 2nd order Taylor Polyno-

mial around (0,0) is T2(x, y) = 1−x2−y2 which has a strict local maximum

at (0,0) and the 3rd order derivatives all exist. Therefore, f also has a strict

local maximum at (0,0).

Example 3.13. Let f (x, y) = cos(x2 − y). Then the 2nd order Taylor Poly-

nomial around (1,1) is

T2(x, y) = 1−2(x −1)2 +2(x −1)(y −1)− 1

2
(y −1)2

= 1−2((x −1)− 1

2
(y −1))2 .

This function has a local maximum at (1,1), but it is not strict since all

points on the line (x−1)− 1
2 (y−1) = 0 give the same value. Hence we can-

not conclude from this information alone that f has a maximum there.

However, it does have a local maximum since cos(12 −1) = 1 is the max-

imum value cos can attain. Indeed, we can see that (1,1) (and any point

on the parabola x2 − y = 0) is a local maximum for f , but it is not strict.

We see that the question we now face is given a polynomial, find whether

a given point is a local maximum or minimum and whether it is strict. We

will focus on the 2 variables, second order case. Without loss of general-

ity, we may assume that the point of interest is (0,0) and the polynomial
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is of the form T2(x, y) = Ax2 +B x y +C y2, for if we had a linear term ax

or by we would immediately know that (0,0) is neither a local maximum

nor minimum. Assuming A 6= 0 we may rewrite T2 as

T2(x, y) = A
(
x2 + B

A
x y + C

A
y2

)
= A

((
x + B

2A
y
)2 + (C

A
− B 2

4A2

)
y2

)
.

Hence, if C
A− B 2

4A2 > 0 (which is equivalent to 4AC−B 2 > 0 and A > 0 then

we have a strict local minimum, for in this case T2(x, y) is always non-

negative and the only way we have T2(x, y) = 0 is if both x + B
2A y = 0 and

y = 0, which only happens when (x, y) = (0,0). Similarly, if 4AC −B 2 > 0

and A < 0 then we have a strict local maximum. If 4AC −B 2 < 0 then

we have a saddle point, regardless of the value of A. In this case T2 has

the shape of a hyperbolic paraboloid. Finally, if 4AC −B 2 = 0 then we

either have that T2 is constant or it describes the shape of a cylinder of

a parabola (this cylinder is not necessarily in the direction of one of the

axes). If it is a constant, then we learn nothing about f . If it is a cylin-

der of an upward going parabola (A > 0, than (0,0) is a local minimum,

but not a strict one (see example 3.13). More importantly, (0,0) is not a

local maximum for T2 and hence not for f , so in this case, we did learn

something about the behaviour of f near (0,0).

For a Taylor Polynomial we have A = fxx(0,0)/2, B = fx y (0,0) and C =
fy y (0,0)/2, we get the following criteria:

Theorem 3.14 (2-Variables Second Derivative Test). Assume the second

partial derivatives of f exist and are continuous in a small disc around

(x0, y0) and that fx(x0, y0) = fy (x0, y0) = 0. Let

D = fxx(x0, y0) fy y (x0, y0)− ( fx y (x0, y0))2 .

If D > 0 and fxx(x0, y0) > 0 then (x0, y0) is a strict local minimum for f .

If D > 0 and fxx(x0, y0) < 0 then (x0, y0) is a strict local maximum for f .

If D < 0 then (x0, y0) is neither a local minimum nor maximum for f .

Examples in abundance can be found in the textbook.


