MATH 200 - SEC 201 - 2010W

Assignment no. 3

Due: 9am, Mar 9, 2011

1. Let z = f(x,y) where x = rcosf and y = rsinf. Show that
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Solution:

Using the chain rule (first time out of many) we get
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Write g(r,0) = &2 = f,(rcosf,rsinf) cosf + f,(rcosf,rsinf)siné.
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To find 22 we must apply the product rule for derivatives to f,rsin¢ and f,rcost
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All together now
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That wasn’t too bad after all, was it?



2. Show that the function

satisfies the heat equation:

Solution:
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3. Let
F(z,y) = xarctan(z?® — y).
(a) Assume g is differentiable such that F'(z,g(x)) =0 and ¢(1) = 1. Find ¢'(1).

(b) Find a unit vector u, such that directional derivative of I at the point (1,1) in the
direction u is 0.

Solution:
(a) By the implicit differentiation formula, if y = g(z) we get
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(b) We have VF(1,1) = (2,—1) so we need some vector solving v - (2, —1) = 0. A
possible solution is v = (1,2), but this is not a unit vector, so to get a unit vector we
take u = o = (1/4/5,2/4/5). The other possible solution is (—1/v/5, —2//5)



4. Let F(z,y,z) = 2>+ y* + 2%
(a) Write the gradient VF.
(b) Write the equation of a plane passing through (¢, yo, 20) and orthogonal to V F'(xq, yo, 20)-

(c) Find (g, yo, 20) which belong to the level surface F'(xq, o, 20) = 1 for which the
plane from (b) passes through the points (1,1,1) and (1, —2,4).

Solution:

(a) VF(x,y,2) = (2x,2y,2z).

(b) VF(z0,Y0, 20) - ({x,y,2) = (xo, Y0, 20)) = 0
Equivalently, 2zo(x — o) + 2y0(y — yo) + 220(z — 20) = 0.

(c) We need to solve the system of equations:
25(}0(1 - 560) + 2y0(1 — yo) + 220(1 — ZQ) =0

2;60(1 — 270) + 2y0<—2 — yo) + 220(4 — Zo) =0
o+ Yy a0 =1
Subtracting the second from the third we get 6yy — 629 = 0, so 2y = yp.
The third equation is now z + 2y2 = 1, so zg = +4/1 — 2¢2.
Putting this back in the first equation yields

+24/1 — 292 — 2(1 — 2¢2) + dyo(1 — yo) = 0
£4/1— 22 =1 — 2y,

Squaring

1—2y5 =1 — 4yo + 4y

So either yo = 0 and we get zo = 0 and xy = 1, or yo = 2/3 and we get 2o = 2/3 and
xq is either +1/3 or —1/3 and we can rule out xy = +1/3 by the first equation.

Notice that this is (once more) the same question you were asked to solve in the first
2 assignments.



