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Inventive use of basic topological ideas (such as convergence, compactness,
continuity) leads to deeper understanding of Borel sets. At last we prove that
the probability of being nonempty is well-defined for every random Borel set.

3a Metric spaces, Polish spaces

The basic topological ideas we need.

3a1 Definition. (a) A metric space is a pair (X, ρ) of a set X and a metric ρ
onX, that is, a function ρ : X×X → [0,∞) such that ρ(x, y) = 0 ⇐⇒ x = y,
ρ(x, y) = ρ(y, x), ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X.

(b) Let ρ1, ρ2 be two metrics on X; ρ2 is stronger than ρ1 if
ρ2(xn, x)→ 0 =⇒ ρ1(xn, x)→ 0 for all x, x1, x2, · · · ∈ X;1 further, ρ1, ρ2
are equivalent, if ρ1(xn, x)→ 0 ⇐⇒ ρ2(xn, x)→ 0 for all x, x1, x2, · · · ∈ X.

(c) A metrizable space2 is a pair (X,R) where X is a set and R is an
equivalence class of metrics on X (metrizable topology ; metrics of R are
called compatible).

3a2 Core exercise. If ρ is a metric on X then ρ1 : (x, y) 7→ min(1, ρ(x, y))
is a metric equivalent to ρ.

Prove it.

1However, a Cauchy sequence in (X, ρ2) need not be Cauchy in (X, ρ1).
2Equivalently, and usually, a metrizable space is defined as a special case of a topological

space; but here we do not need the notion of general (not just metrizable) topological space.
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The relation xn → x (“convergence”) is well-defined (as ρ(xn, x)→ 0, of
course) both in a metric space and in a metrizable space. Closed sets, open
sets and continuous maps are defined as usual. If ρ2 is stronger than ρ1 then
every set closed in (X, ρ1) is closed in (X, ρ2); the same holds for open sets.
The identity map x 7→ x is continuous from (X, ρ2) to (X, ρ1) if and only if
ρ2 is stronger than ρ1.

A subspace of a metric space (X, ρ) is a metric space of the form (Y, ρ|Y×Y )
where Y ⊂ X. Clearly, a subspace of a metrizable space is a well-defined
metrizable space. For y, yn ∈ Y the conditions “yn → y in Y ” and “yn → y
in X” are equivalent.

The product of two metrizable spaces1 (X1, ρ1) and (X2, ρ2) is the metriz-
able space (X1×X2, ρ) where ρ

(
(x1, x2), (y1, y2)

)
= ρ1(x1, y1) + ρ2(x2, y2) or,

equivalently, max
(
ρ1(x1, y1), ρ2(x2, y2)

)
. For y = (y1, y2), xn = (xn,1, xn,2) ∈

X1 ×X2 the relation xn → y holds if and only if xn,1 → y1 and xn,2 → y2.

3a3 Example. (a) R is a metric space with its usual metric (x, y) 7→ |x−y|,
and a metrizable space with its usual convergence;

(b) Rd is a metrizable space (being R×· · ·×R), with its usual (coordinate-
wise) convergence;

(c) every subset of Rd is a metrizable space;
(d) the measure algebra A/ µ∼ of a probability space is a metric space with

the metric (A,B) 7→ µ(A4B) (recall 2a6); its convergence is the “topological
convergence”, one of the two modes of convergence treated in 2d13–2d14.

A Cauchy sequence (xn)n in a metric space (X, ρ) is defined as usual:
supk ρ(xn, xn+k)→ 0 as n→∞.

3a4 Core exercise. Prove that the metric ρ1 introduced in 3a2 has the
same Cauchy sequences as ρ.

3a5 Definition. (a) A metrizable space (as well as its metrizable topology)
is compact if every sequence has a convergent subsequence.

(b) A metrizable space (as well as its metrizable topology) is separable if
some sequence is dense.

(c) A metric space (as well as its metric) is complete if every Cauchy
sequence is convergent.

(d) A metrizable space (as well as its metrizable topology) is Polish2 if it
is separable, and in some compatible metric it is complete.

1Again, sometimes we work with equivalence classes implicitly, via their elements (“rep-
resentatives”).

2Sierpinski, Kuratowski, Tarski, . . .
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However, “Polish metric space” is ambiguous; for some authors it is “sepa-
rable complete metric space”, while others mean completeness in some equiv-
alent metric.

3a6 Core exercise. A metrizable space is separable if and only if there
exists a countable base, that is, a sequence (Un)n of open sets such that
U = ∪n:Un⊂UUn for every open set U .

Prove it.

3a7 Core exercise. A subspace of a separable space is separable.
Prove it.

3a8 Core exercise. (a) A compact space is separable.
(b) A compact space is complete in every compatible metric.

Prove it.

Thus, a compact space is Polish.
The space [0, 1] is compact; (0, 1) is not compact, and not complete, but

still Polish (being homeomorphic to R).

3a9 Core exercise. (a) The product of two compact spaces is compact.
(b) The product of two Polish spaces is Polish.

Prove it.

3a10 Core exercise. In the measure algebra A/ µ∼ (recall 3a3(d)),
(a) dist(A1, A1 ∪ A2 ∪ . . . ) ≤ dist(A1, A2) + dist(A2, A3) + . . . ;
(b) dist(A1, A1 ∩ A2 ∩ . . . ) ≤ dist(A1, A2) + dist(A2, A3) + . . . ;
(c) if

∑
n dist(An, An+1) < ∞ then lim infnAn

µ∼ lim supnAn, that is,
dist
(
∪n ∩k An+k, ∩n ∪k An+k

)
= 0;

(d) A/ µ∼ is a complete metric space;
(e) A/ µ∼ is (topologically) closed in 2X/

µ∼.
Prove it.

3a11 Core exercise. The measure algebra over (0, 1) with Lebesgue mea-
sure is not compact.

Prove it.

3b Why do we need Polish spaces

A wonder: “large” spaces will be instrumental in understanding Borel sets in
“small” spaces.
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3b1 Definition. Let (X,A) be a measurable space. A subset of X is uni-
versally measurable if it is µ-measurable for every probability measure µ on
(X,A).

Note that the universally measurable sets are a σ-algebra ∩µAµ ⊃ A.

Warning. Every measurable set is universally measurable, but an uni-
versally measurable set is generally not measurable! This terminological
anomaly appears because the word ”measurable” is used differently in two
contexts, of measurable spaces and of measure spaces.

3b2 Core exercise. Prove that the following two claims are equivalent:
(a) all standard Borel spaces satisfy 2d20(a,b);
(b) for every Borel set S ⊂ {0, 1}∞ × {0, 1}∞, its first projection {x :

∃y (x, y) ∈ S} is universally measurable in {0, 1}∞;
(c) the same for R× R instead of {0, 1}∞ × {0, 1}∞.

Dramatic is the history of 3b2(c)! Lebesgue claimed in 1905 a lemma:
the projection of a Borel set is a Borel set, with such proof: the projec-
tion of a rectangle is an interval; the projection of the union (of arbitrary
sequence of sets) is the union of projections; and the projection of the in-
tersection is the intersection of projections. In 1917, Souslin1 found an error
in Lebesgue’s proof: the projection of the intersection need not be the in-
tersection of projections. Moreover, Souslin constructed a counterexample
to Lebesgue’s lemma, thus starting the theory of the so-called analytic sets.
Lusin2 proved in a note of 1917, just after Souslin’s, that the projection of a
Borel set is Lebesgue measurable. In 1930, in the preface to a book by Lusin,
Lebesgue expressed his joy that he was inspired to commit such a fruitful
error. . .

We want to prove universal measurability of the projection of a Borel set.
Could topology help? The projection of a compact set is compact; but a
Borel set need not be compact, of course. Here is a daring idea: the topology
being auxiliary, we may replace it. Let us adapt the topology to the given
Borel set!

The new topology should be stronger than the original one, then the
projection map will remain continuous. And the given Borel set should turn
into something more special; maybe closed? or even compact?

First of all, “compact” is too good, since then its projection must be
compact; but clearly, its projection can be (at least) an arbitrary Borel set.

1Mikhail Ya. Souslin (=Suslin), 1894–1919, Russia; a research student of Lusin.
2Nikolai N. Lusin (=Luzin), 1883–1950, Russia.
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Maybe, a σ-compact set, that is, a countable union of compact sets?1 No,
this is still too good, since the projection need not be an Fσ set.

Maybe, closed? No; every set is closed in the discrete topology (ρ(x, y) =
1 whenever x 6= y). However, the discrete topology is not separable. Maybe
a closed set in a separable space? No; every subset Z of (say) [0, 1] is closed
(and open) in the separable metric

ρ(x, y) =

{
|x− y| for x, y ∈ Z or x, y /∈ Z,
1 for x ∈ Z, y /∈ Z or x /∈ Z, y ∈ Z.

The right choice appears to be, a Polish topology. And then, the set may
be closed, or open, or even both closed and open.

3c Adapting Polish topology

Being a helper, topology will be adapted to a given Borel set.

The Cantor set {0, 1}∞ is our first example of a Polish (and even com-
pact) space with an infinite algebra of clopen (that is, closed and open) sets.
Stronger topologies on {0, 1}∞ will give more examples, not compact (and
even not σ-compact) but still Polish.

For every metrizable space (X,R) all clopen sets are an algebra (think,
why); we denote it by Clopen(X,R). If R2 is stronger than R1 then
Clopen(X,R1) ⊂ Clopen(X,R2).

3c1 Lemma. Let (X,R0) be a Polish space, E = Clopen(X,R0), andG ∈ Eσ.
Then there exists a Polish topology R on X, stronger than R0, such that
G ∈ Clopen(X,R).

For the proof we take E1, E2, · · · ∈ E such that En ↑ G, define N : X →
{0, 1, 2, . . . } by N(x) = min{n : x ∈ En} for x ∈ G and N(x) = 0 for
x ∈ X \ G, choose a complete metric ρ0 ∈ R0 such that ∀x, y ρ0(x, y) ≤ 1,
and define

ρ(x, y) =

{
ρ0(x, y) if N(x) = N(y),

1 otherwise.

Exercise 3c2 completes the proof.

1Note that Rd is σ-compact. Do not confuse “σ-compact” with “locally compact”. A
dense countable subset of Rd is σ-compact but not locally compact, nor Polish (use Baire
category). And here is an example of a σ-compact, but not locally compact, Polish space:
{λek : λ ∈ R, k = 1, 2, . . . } where ek are orthonormal vectors of a Hilbert space.
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3c2 Core exercise. (a) ρ is a metric on X, and ρ0(·, ·) ≤ ρ(·, ·) ≤ 1;
(b) ρ(xn, x)→ 0 if and only if ρ0(xn, x)→ 0 and N(xn)→ N(x);
(c) (X, ρ) is separable;
(d) a sequence (xn)n is Cauchy in (X, ρ) if and only if it is Cauchy in

(X, ρ0) and N(xn) converges; (not to ∞ !)
(e) (X, ρ) is complete;
(f) G is clopen in (X, ρ).

Prove it.

By 3c1 and 1b7, an open (or closed) subset of the Cantor set can be made
clopen. Can we do the same for Gδ (or Fσ) sets by repeating the process?
Yes, but not just now; before serving a Gδ set we need to serve countably
many open sets with a single Polish topology.

3c3 Lemma. Let R1, R2 be metrizable topologies on X. Then there exists
a metrizable topology R on X such that xn → x in (X,R) if and only if
xn → x both in (X,R1) and in (X,R2).

3c4 Core exercise. Let ρ1 ∈ R1 and ρ2 ∈ R2; define ρ by ρ(x, y) =
max

(
ρ1(x, y), ρ2(x, y)

)
, and R by ρ ∈ R; prove that R satisfies 3c3.

Clearly, R is the weakest among all metrizable topologies that are stronger
than R1, and R2; we denote it

R = R1 ∨R2 .

3c5 Core exercise. Let R = R1 ∨ R2. If R1, R2 are separable then R is
separable.

Prove it.

3c6 Lemma. Let R = R1∨R2 and in addition, R1 and R2 be stronger than
some metrizable topology R0. If R1, R2 are Polish then R is Polish.

Proof. Separability is ensured by 3c5. We choose complete ρ1 ∈ R1, ρ2 ∈ R2,
define ρ by ρ(x, y) = max

(
ρ1(x, y), ρ2(x, y)

)
and prove its completeness.

Let (xn)n be Cauchy in (X, ρ). Then it is Cauchy, and therefore conver-
gent, both in (X, ρ1) and in (X, ρ2). We have ρ1(xn, x)→ 0 and ρ2(xn, y)→ 0.
It remains to prove that x = y, which follows from the fact that xn → x in
(X,R0) and xn → y in (X,R0).

3c7 Lemma. Let R1, R2, . . . be metrizable topologies on X. Then there
exists a metrizable topology R on X such that xn → x in (X,R) if and only
if xn → x in (X,Ri) for all i.
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Proof. We choose ρi ∈ Ri such that ρi(·, ·) ≤ 1, define ρ by

ρ(x, y) = sup
i

1

i
ρi(x, y)

(clearly ρ is a metric stronger than each ρi) and R by ρ ∈ R.1 If ρi(xn, x)→ 0
for all i,2 then

lim sup
n

ρ(xn, x) ≤ lim sup
n

max
(
ρ1(xn, x), . . . , ρi(xn, x); 1

i

)
≤ 1

i

for all i, therefore ρ(xn, x)→ 0.

Once again, R is the weakest among all metrizable topologies that are
stronger than each Ri; we denote it

R = R1 ∨R2 ∨ . . .

3c8 Lemma. Let R = R1 ∨ R2 ∨ . . . . If all Ri are separable then R is
separable.

Proof. By 3c5, R1 ∨ · · · ∨Ri is separable for each i. A sequence (xn)n dense
in (X,R1 ∨ · · · ∨ Ri) satisfies infn ρ(x, xn) ≤ 1/i for all x ∈ X (here ρ is
constructed as in the proof of 3c7). The union of dense (at most) countable
sets for i = 1, 2, . . . is dense in (X,R).

3c9 Core exercise. Let R = R1 ∨ R2 ∨ . . . and in addition, each Ri be
stronger than some metrizable topology R0. If each Ri is Polish then R is
Polish.

Prove it.

3c10 Core exercise. Let (X,R0) be a Polish space, E = Clopen(X,R0),
and G1, G2, · · · ∈ Eσ. Then there exists a Polish topology R on X, stronger
than R0, such that G1, G2, · · · ∈ Clopen(X,R).

Prove it.

Combining 3c10 and 3c1 we can get A ∈ Clopen(X,R) for A ∈ Eσδ, and
much more!

3c11 Proposition. Let (X,R0) be a Polish space, E = Clopen(X,R0), and
A ∈ σ(E). Then there exists a Polish topology R on X, stronger than R0,
such that A ∈ Clopen(X,R).

1Strangely enough, R depends symmetrically on Ri, which cannot be said about ρ and
ρi. But we really need some coefficient tending to 0; otherwise we get a metric much
stronger than needed.

2Not uniformly in i, in general.



Tel Aviv University, 2012 Measurability and continuity 54

Proof. We consider the set

A =
⋃
R

Clopen(X,R)

of all such A ⊂ X. Clearly, E ⊂ A. It is sufficient to prove that A is a
σ-algebra.

Clearly, ∼A ⊂ A. We’ll prove that Aσ ⊂ A. Let A ∈ Aσ, that is,
A = A1 ∪ A2 ∪ . . . , An ∈ A. We take Polish topologies Rn on X, stronger
than R0, such that An ∈ Clopen(X,Rn). By 3c9, R∞ = R1 ∨ R2 ∨ . . . is
a Polish topology. The algebra E∞ = Clopen(X,R∞) contains all An, thus,
A ∈ (E∞)σ. By 3c1, A ∈ Clopen(X,R) for some Polish topology R stronger
than R∞.

3c12 Theorem. For every Borel subset B of the Cantor set X there exists
a Polish topology R on X, stronger than the usual topology on X, such that
B is clopen in (X,R).

Proof. For the algebra E = Clopen(X,R0) (where R0 is the usual topology),
σ(E) is the whole Borel σ-algebra on X; use Prop. 3c11.

All that is pretty useless for a connected X, but the following is useful.

3c13 Extra exercise. Let (X,R0) be a Polish space, and G ⊂ X an open
set. Then there exists a Polish topology R on X, stronger than R0, such that
G ∈ Clopen(X,R).

Prove it.

3c14 Definition. The Borel σ-algebra on a metrizable space is the σ-algebra
generated by all open sets. A Borel set is a set that belongs to the Borel
σ-algebra.

(Compare it with 1c1.)

3c15 Extra exercise. For every Borel subset B of a Polish space (X,R0)
there exists a Polish topology R on X, stronger than the usual topology on
X, such that B is clopen in (X,R).

Prove it.

3d Measurability implies continuity

No, this title is not a mistake! True, a measurable function need not be
continuous in a given topology; but we adapt topology to the function.
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3d1 Proposition. Let ϕ : {0, 1}∞ → Y be a Borel map from the Cantor
set to a separable metrizable space Y . Then there exists a Polish topology
R on {0, 1}∞, stronger than its usual topology, such that ϕ is continuous on
({0, 1}∞, R).

3d2 Lemma. For arbitrary Borel subsets B1, B2, . . . of the Cantor set X
there exists a Polish topology R on X, stronger than the usual topology on
X, such that B1, B2, · · · ∈ Clopen(X,R).

Proof. Combine 3c12 and 3c9.

Proof of Prop. 3d1. We choose a countable base (Un)n of Y and note that
the sets ϕ−1(Un) are Borel measurable. Lemma 3d2 gives us R such that all
these sets are clopen, therefore open, in (X,R).

Note that 3d1 turns into 3c12 for a two-element space Y , and into a
special case of 3d2 for a countable Y with the discrete topology.

3e Analytic sets

The next class of sets after the Borel σ-algebra.

3e1 Definition. A subset of a Polish space is analytic if it is the image of
some Polish space under some continuous map.

3e2 Proposition. Every Borel subset of the Cantor set is analytic.

Proof. Follows from Theorem 3c12, since a closed subset of a Polish space is
itself a Polish space.

The same holds for the space {0, 1}∞×{0, 1}∞, since it is homeomorphic
to the Cantor set.

Clearly, a continuous image of an analytic set is analytic. By 3e2, a con-
tinuous image of a Borel subset of {0, 1}∞ (or {0, 1}∞×{0, 1}∞) is analytic.
In particular, we get the following.

3e3 Proposition. For every Borel set S ⊂ {0, 1}∞ × {0, 1}∞, its first pro-
jection {x : ∃y (x, y) ∈ S} is analytic.

Thus, in order to prove 3b2(b) it is sufficient to prove that every analytic
subset of the Cantor set is universally measurable.
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3f Analytic sets are universally measurable

The space is “large”, but its relevant part is “small”.

3f1 Core exercise. Let (X,R) be a metrizable space and B its Borel
σ-algebra.

(a) the measurable space (X,B) is separated;
(b) if (X,R) is separable then (X,B) is countably generated, and there-

fore, a Borel space.
Prove it.1

Let µ be a probability measure on a separable metrizable space X (en-
dowed with its Borel σ-algebra, of course). Recall the σ-algebra Sandwich(K)
(see 2a15–2a16) where K is the set of all compact subsets of X. Does this
σ-algebra contain open sets? In Rd every open set is σ-compact (that is,
belongs to Kσ), but generally it is not.2 And nevertheless. . .

3f2 Proposition. If X is Polish then Sandwich(K) contains all open sets,
and therefore, all Borel sets.

3f3 Core exercise. If X is σ-compact then
(a) every closed set is σ-compact,
(b) every open set is σ-compact.

Prove it.

Thus, 3f2 is reduced to 3f4 below.

3f4 Proposition (Ulam’s tightness theorem). For every probability measure
on a Polish space there exists a σ-compact set of full measure.

A wonder: every probability measure on a “large” space sits on a “small”
(but maybe dense) set.

Proposition 3f4 fails for non-finite measures.

3f5 Core exercise. If a separable metric space X is not σ-compact then
there exists a measure µ on X such that µ(K) = 0 for all compact K ⊂ X,
but µ(X) =∞.

Prove it.

Proposition 3f4 fails also for non-Polish spaces.

1In fact, if (X,R) is Polish then (X,B) is a standard Borel space.
2In a separable Hilbert space, a nonempty open set cannot be σ-compact by the Baire

category theorem.
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3f6 Extra exercise. Let a metrizable space X be homeomorphic to a set
Y ⊂ R that is not Lebesgue measurable. Then

(a) there exists a probability measure on X with no σ-compact set of full
measure; and moreover,

(b) there exists a probability measure on X such that every compact set
is of measure zero.

Prove it.

Given a set A in a metric space X and a number r ≥ 0, we denote by
A+r the closed r-neighborhood of A:

A+r =
{
x ∈ X : inf

a∈A
ρ(x, a) ≤ r

}
.

3f7 Core exercise. Let X be a separable metric space, and µ a probability
measure on X. Then for every r, ε > 0 there exists a finite set J ⊂ X such
that µ

(
J+r
)
≥ 1− ε.

Prove it.

3f8 Core exercise. Let X be a complete separable metric space, Jn ⊂ X
finite sets, and rn > 0, rn → 0. Then the set⋂

n

(Jn)+rn

is compact.
Prove it.

Proof of Prop. 3f4. Given ε > 0, we choose εn > 0 such that
∑

n εn ≤ ε,
and rn > 0 such that rn → 0. First, we take a finite set J1 ⊂ X such
that the closed set F1 = (J1)+r1 satisfies µ(F1) ≥ 1 − ε1. Second, we take
a finite set J2 ⊂ F1 such that the closed set F2 = F1 ∩ (J2)+r2 satisfies
µ(F2) ≥ µ(F1)− ε2 ≥ 1− ε1− ε2. And so on. The set K = ∩nFn is compact,
and µ(K) = limn µ(Fn) ≥ 1−

∑
n εn ≥ 1− ε.

Thus, 3f2 is proved. It follows that (in a Polish space)1

(3f9) sup{µ(K) : K ⊂ A, K is compact } =

sup{µ(F ) : F ⊂ A, F is closed } = µ(A) = inf{µ(G) : G ⊃ A, G is open }

for every Borel set A ⊂ X.
In a separable metrizable (rather than Polish) space, (3f9) fails by 3f6.
Well, this was a rather easy task. Now we enter a similar but somewhat

more complicated way in order to prove that analytic sets are universally
measurable.

1“Inner regularity” and “outer regularity”.
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3f10 Definition. An outer measure1 on a set X is a map µ∗ : 2X → [0,+∞]
such that

(a) µ∗(∅) = 0,
(b) µ∗(A) ≤ µ∗(B) whenever A ⊂ B ⊂ X (“monotonicity”);
(c) µ∗(A1 ∪ A2 ∪ . . . ) ≤ µ∗(A1) + µ∗(A2) + . . . for all A1, A2, · · · ⊂ X

(“countable subadditivity”).
An outer measure µ∗ is upward σ-continuous, if
(d) An ↑ A implies µ∗(An) ↑ µ∗(A) for all A,A1, A2, · · · ⊂ X.

We really need only µ∗ : 2X → [0, 1].
Every probability measure µ leads to the corresponding outer measure

µ∗, see 2a3(a) and 2a5. But in general an outer measure does not correspond
to any measure (even if X is finite).2

3f11 Core exercise. (a) If an outer measure corresponds to some probability
measure then it is upward σ-continuous. Prove it.

(b) In general, an outer measure need not be upward σ-continuous. Give
a counterexample.

3f12 Core exercise. Let ν∗ be an outer measure on a set Y , and ϕ : X → Y .
Then the formula

µ∗(A) = ν∗
(
ϕ(A)

)
defines an outer measure µ∗ on X. If ν∗ is upward σ-continuous then µ∗ is
upward σ-continuous.

Prove it.

Even if ν∗ is a measure, µ∗ is generally not. (Try a projection. . . )

We turn to Polish spaces X, Y , a continuous map ϕ : X → Y and a
probability measure ν on Y . We want to prove that the analytic set ϕ(X) ⊂
Y is ν-measurable, that is, ν∗

(
ϕ(X)

)
= ν∗

(
ϕ(X)

)
. We consider the outer

measure µ∗ on X corresponding to ν∗ as in 3f12. Upward σ-continuity is
ensured for ν∗ by 3f11(a) and for µ∗ by 3f12.

3f13 Core exercise. ν∗
(
ϕ(X)

)
≥ sup{µ∗(K) : K ⊂ X, K is compact }.

Prove it.

In order to prove that ν∗
(
ϕ(X)

)
= ν∗

(
ϕ(X)

)
it is sufficient to prove that

(3f14) sup{µ∗(K) : K ⊂ X, K is compact } = µ∗(X) ,

1Called also “abstract outer measure” and “exterior measure”.
2Try a two-element X = {a, b}; if µ∗ corresponds to some µ then either µ∗({a}) +

µ∗({b}) = µ∗(X) or µ∗({a}) = µ∗({b}) = µ∗(X).
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which looks similarly to 3f4. However, upward σ-continuity fails to ensure
(3f14).1

3f15 Definition. An outer measure µ∗ on a metrizable space X is outer
regular if µ∗(A) = inf{µ∗(G) : G ⊃ A, G is open } for all A ⊂ X.

3f16 Core exercise. Let X, Y be metrizable spaces, ν∗ an outer measure
on Y , ϕ : X → Y a continuous map, and µ∗ the corresponding outer measure
on X (as in 3f12). If ν∗ is outer regular then µ∗ is outer regular.

Prove it.

3f17 Core exercise. If µ is a probability measure on a Polish space then
µ∗ is outer regular.

Prove it.

3f18 Extra exercise. Does 3f17 hold on a separable metrizable (rather than
Polish) space?

In our situation, outer regularity is ensured for ν∗ by 3f17 and for µ∗ by
3f16. And now we may forget about Y .

3f19 Proposition. Let µ∗ be an outer regular, upward σ-continuous outer
measure on a Polish space X, µ∗(X) <∞. Then (3f14) holds.

3f20 Core exercise. Let X be a separable metric space, and µ∗ an upward
σ-continuous outer measure on X, µ∗(X) <∞. Then for every r, ε > 0 there
exists a finite set J ⊂ X such that µ∗

(
J+r
)
≥ µ∗(X)− ε.

Prove it.

The proof of Prop. 3f19 is similar to the proof of Prop. 3f4. Assume
µ∗(X) = 1. Given ε > 0, we take εn, rn and construct finite Jn, closed Fn
and compact K as before; still, µ∗(Fn) ≥ 1−ε for all n. However, the relation
µ∗(K) = limn µ

∗(Fn) is problematic.
Using the outer regularity we take an open set G ⊃ K such that µ∗(G) ≤

µ∗(K)+ε. Now, if there exists n such that Fn ⊂ G then µ∗(K)+ε ≥ µ∗(G) ≥
µ∗(Fn) ≥ 1 − ε, that is, µ∗(K) ≥ 1 − 2ε. However, existence of such n is
problematic.2

We modify the construction, ensuring J1 ⊂ J2 ⊂ . . . (this is evidently
possible). Now Jn ⊂ Fm for all m,n (think, why), therefore Jn ⊂ K for all
n. Thus, Fn ⊂ K+rn . Exercise 3f21 completes the proof of Prop. 3f19.

1A counterexample: an outer measure that vanishes on all σ-compact sets and their
subsets, and is equal to 1 on all other sets.

2Generally, if Fn ↓ K ⊂ G where G is open, K is compact and Fn are closed, the
relation Fn ⊂ G may fail for all n. Example: K = [0, 1], Fn = [0, 1]∪ [n,∞), G = (−1, 2).
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3f21 Core exercise. If K is compact and G ⊃ K is open then K+r ⊂ G
for some r > 0.

Prove it.

We conclude (see 3f19 and 3f13).

3f22 Theorem. Analytic sets in Polish spaces are universally measurable.

And finally (see 3e3, 3b2 and 2d20). . .

3f23 Theorem. For every probability space (X,A, µ), every standard Borel
space (Y,B) and every random measurable subset S of Y , defined on (X,A, µ),
the set {x ∈ X : S(x) 6= ∅} is µ-measurable.

3f24 Core exercise. In the conditions of Theorem 3f23, the set

{x ∈ X : S(x) ∩B 6= ∅}

is µ-measurable for every B ∈ B.
Prove it.
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Hints to exercises

3a2: min(1, a+ b) ≤ min(1, a) + min(1, b).

3a6: “only if”: use 1
m

-neighborhood of xn.

3a7: use 3a6; or alternatively, take yn ∈ Y such that ρ(yn, xn) ≤ 2 infy∈Y ρ(y, xn).

3a8: (a) if a space is not separable then inf{ρ(xm, xn) : m 6= n} > 0 for some
(xn)n.

3a9: (a) subsequence of subsequence.

3a10: (a) A1 ∪ A2 ∪ · · · = A1 ∪ (A2 \ A1) ∪ (A3 \ A2) ∪ . . . ;
(b) use (a);
(c) apply (a), (b) to the tail;
(d) use (c);
(e) use (d).

3a11: use binary digits.

3b2: (a,b) recall 2d20(b) and defs (2b9, 2d3+2d18);
(c) use 2b8.

3c2: (c) use 3a7.

3c5: if (Un)n is a countable base of R1 and (Vn)n — of R2 then (Um ∩ Vn)m,n
is a countable base of R.
Or alternatively, take a sequence (xn)n dense in (X,R1) and a sequence
(yn)n dense in (X,R2); then, for each pair (m,n), choose zm,n ∈ X such that
max

(
ρ(zm,n, xm), ρ(zm,n, yn)

)
≤ 2 supz∈X max

(
ρ(z, xm), ρ(z, yn)

)
.

3c9: similar to 3c6.

3c10: use 3c1 and 3c9.

3f3: (b) use (a).

3f5: try µ with only two values, 0 and ∞.

3f7: the union of finite sets Jn can be dense.

3f8: given (xn)n, first, choose a subsequence situated inside {a1}+r1 for some
a1 ∈ J1.
3f11: (a) µ∗(An) = µ(Bn), Bn ⊃ An; An ↑ A; then µ(Bn \Bn+1) = 0.
(b) let µ∗(A) depend only on the cardinality of A.

3f12: ϕ(A1 ∪ A2 ∪ . . . ) = ϕ(A1) ∪ ϕ(A2) ∪ . . .
3f13: ϕ(K) is measurable.

3f16: ϕ−1(G) is open.

3f17: use (3f9).

3f20: similar to 3f7.
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3f21: otherwise xn ∈ K, yn /∈ G, ρ(xn, yn) → 0; choose a convergent se-
quence.

3f24: use 3f23.
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