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2a A very important notion

You should be puzzled: what about the name of the notion? The answer is
that this notion was introduced several times, under different names:

∗ “tilted measure” (in the theory of large deviations);1

∗ “canonical ensemble” (in statistical physics);

∗ “exponential family” (in statistics);

∗ “Esscher transform” (mostly, in financial mathematics and actuarial
science).

Here is the simplest nontrivial example. Consider n independent copies
X1, . . . , Xn of a random variable X that takes three values −1, 0,+1 with
equal probabilities (1/3). The frequencies ν−1 = 1

n
· #{k : Xk = −1},

ν0 = 1
n
·#{k : Xk = 0}, ν+1 = 1

n
·#{k : Xk = +1} are random; together they

are the so-called empirical distribution (ν−1, ν0, ν+1); and the sample mean
1
n
(X1 + · · ·+Xn) = ν+1 − ν−1 is also random.

For large n the event E = { 1
n
(X1+· · ·+Xn) ≥ 3

7
} is of exponentially small

probability, and nevertheless, let us consider the conditional distribution of
(ν−1, ν0, ν+1) given E. We’ll see that, given E,

(ν−1, ν0, ν+1)→
(1

7
,
2

7
,
4

7

)
as n→∞

in probability; that is, for every ε > 0,

P
(
|ν−1 − 1

7
| ≤ ε, |ν0 − 2

7
| ≤ ε, |ν+1 − 4

7
| ≤ ε

)
→ 1 as n→∞ .

A wonder, isn’t it?
As you may guess, more generally, for arbitrary a ∈ (1,∞) the condition

Ea = { 1
n
(X1 + · · ·+Xn) ≥ a2−1

a2+a+1
} 2 leads in the limit to

(ν−1, ν0, ν+1) =
( 1

a2 + a+ 1
,

a

a2 + a+ 1
,

a2

a2 + a+ 1

)
,

1Also, “Cramér-transform” (Hollander, p. 7).
2Thus, E = E2.
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that is, to

1

n
(X1 + · · ·+Xn) = ν+1 − ν−1 =

a2 − 1

a2 + a+ 1
and

ν+1

ν0

=
ν0

ν−1

.

It is easy to realize that any violation of the equality ν+1 − ν−1 = a2−1
a2+a+1

leads to an event 1
n
(X1 + · · ·+Xn) ≥ a2−1

a2+a+1
+ ε of probability exponentially

smaller than that of Ea. It is less evident that any violation of the equality
ν+1

ν0
= ν0

ν−1
leads also to exponentially smaller probability. But it does, as

we’ll see.

This fact illustrates a key principle in large deviation theory:

Any large deviation is done in the least unlikely
of all the unlikely ways!

(Quoted from: Hollander, p. 10.)

For a ∈ (0, 1) the same holds under the condition 1
n
(X1 + · · · + Xn) ≤

a2−1
a2+a+1

(= − b2−1
b2+b+1

for b = 1/a ∈ (0,∞)).
It is hardly possible to observe in practice the convergence (ν−1, ν0, ν+1)→(

1
7
, 2

7
, 4

7

)
, since for large n it is not feasible to see condition E satisfied even

once in a long run.
Now consider a large system of n so-called spin-1 particles, described

by the configuration space {−1, 0, 1}n. The average spin 1
n
(X1 + · · · + Xn)

has practically no chance to reach 3/7 spontaneously, but can be forced by
an external magnetic field. If a measurement shows that the average spin is
(close to) 3/7, then1 a physicist knows that (ν−1, ν0, ν+1) is (close to)

(
1
7
, 2

7
, 4

7

)
;

and in particular, 1
n
(X2

1 + · · ·+X2
n) is (close to) 5/7.

The transition from the distribution (1
3
, 1

3
, 1

3
) on the three-point set {−1, 0, 1}

to the distribution
(

1
a2+a+1

, a
a2+a+1

, a2

a2+a+1

)
on the same set is a simple exam-

ple of tilting (called also2 twisting, or exponential change of measure, etc).

2a1 Definition. (a) Let µ be a probability measure on R. For every t ∈ R
such that

∫
etx µ(dx) = Mµ(t) <∞ we define the tilted measure µt by

dµt
dµ

(x) =
1

Mµ(t)
etx ;

that is, ∫
f(x)µt(dx) =

1

Mµ(t)

∫
f(x)etx µ(dx)

1Assuming thermal equilibrium in the external field.
2Bucklev, p. 13.
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for all bounded continuous functions f : R → R (and therefore also for all
bounded µ-measurable f). Also, the function Mµ : R → (0,∞], Mµ(t) =∫

etx µ(dx), is called the moment generating function (MGF) of µ; and its
logarithm Λµ : R → (−∞,+∞], Λµ(t) = lnMµ(t), is called the cumulant
generating function.1

(b) More generally, let µ be a probability measure on a measurable space.
For every measurable function2 u on this space, satisfying

∫
eu dµ = Mµ(u) <

∞, we define the tilted measure µu by

dµu
dµ

(·) =
1

Mµ(u)
eu(·) .

Also, M is called the moment generating functional, and Λ = lnM is called
the cumulant generating functional.

Note that the tilted measure is a probability measure.

2a2 Example (Standard normal distribution). µ(dx)
dx

= 1√
2π

e−x
2/2; Mµ(t) =

et
2/2 (check it); Λµ(t) = t2/2; µt is just µ shifted by t, that is,

∫
f(x− t)µt(dx) =∫

f(x)µ(dx) (check it).

2a3 Example (Fair coin). µ({−1}) = 1/2 = µ({+1}); Mµ(t) = cosh t;

µt({−1}) = e−t

et+e−t
, µt({+1}) = et

et+e−t
(unfair coin).

2a4 Example (Exponential distribution). µ(dx)
dx

= e−x for x > 0; Mµ(t) =
1

1−t for −∞ < t < 1, otherwise +∞ (check it); µt is homothetic to µ, that is,∫
f
(
(1− t)x

)
µt(dx) =

∫
f(x)µ(dx) for −∞ < t < 1 (check it).

2a5 Example (Discontinuous generating function). µ(dx)
dx

= 1
2

exp(−
√
x) for

x > 0; Mµ(t) ≤ 1 for −∞ < t ≤ 0, but Mµ(t) = +∞ for t > 0, even though∫
xk µ(dx) <∞ for all k.

2a6 Exercise.
(a) If Mµ(s) <∞ then ∀t Mµ(s)Mµs(t) = Mµ(s+ t);
(b) if both are finite then (µs)t = µs+t;
(c) if Mµ(u) <∞ then ∀v Mµ(u)Mµu(v) = Mµ(u+ v);
(d) if both are finite then (µu)v = µu+v.

Prove it.

1Or the logarithmic MGF; also denoted by Kµ.
2Real-valued.
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In statistical physics (as was noted in Sect. 1b) probabilities are propor-
tional to exp(−βH(·)), where H(·) is the energy, and β the inverse temper-
ature.1 Thus, if we add a function h(·) to the energy H(·) (which is a usual
description of an external field, or another influence) then probabilities are
multiplied by exp

(
−βh(·)

)
and a normalizing constant. It means that the

initial probability measure µ is replaced with the tilted measure µ−βh. Such a
measure is called “canonical ensemble” (or “Gibbs measure”) corresponding
to H and β (or H + h and β). A change of the temperature leads to tilting,
too.

Tilting on Rd is a slight generalization of 2a1(a) toward 2a1(b); x and
t run over Rd, and 〈t, x〉 replaces tx; M and Λ are defined on Rd (but still
real-valued, or +∞).

The general case 2a1(b) boils down to the tilting on Rd (sometimes even
to d = 1, that is, 2a1(a)) as follows. Given µ and u as in 2a1(b), we consider
the distribution of u under µ, that is, the pushforward probability measure
ν on R (denoted often u∗(µ) or µ ◦ u−1) defined by

ν([a, b]) = µ
(
u−1([a, b])

)
= µ

(
{ω : a ≤ u(ω) ≤ b}

)
for −∞ < a < b < +∞ ,

that is,2 ∫
f dν =

∫
(f ◦ u) dµ

for all bounded continuous functions f : R → R (and therefore also for all
ν-integrable f). Then the distribution of u under µu is

ν1 = u∗(µu)

since

Mν(1) =

∫
ex ν(dx) =

∫
eu dµ = Mµ(u) <∞ ;∫

f(x) ν1(dx) =
1

Mν(1)

∫
f(x)ex ν(dx) =

=
1

Mµ(u)

∫
(f ◦ u)eu dµ =

∫
(f ◦ u) dµu .

Likewise, given µ and u as above, and another measurable function v on
the same measurable space, we consider the joint distribution ν = (u, v)∗(µ)
of u and v under µ, that is,

ν([a, b]× [c, d]) = µ
(
{ω : a ≤ u(ω) ≤ b, c ≤ v(ω) ≤ b}

)
,

1See “Canonical ensemble” and “Gibbs measure” in Wikipedia.
2See “Pushforward measure” in Wikipedia.

http://en.wikipedia.org/wiki/Canonical_ensemble
http://en.wikipedia.org/wiki/Gibbs_measure
http://en.wikipedia.org/wiki/Pushforward_measure
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and get the joint distribution of u and v under µu,

ν(1,0) = (u, v)∗(µu) .

Also,
ν(s,t) = (u, v)∗(µsu+tv) whenever Mµ(su+ tv) <∞ .

Change of temperature is a special case. Let µ be the canonical ensemble for
H and β1; then the canonical ensemble for H and β2 is µ(β1−β2)H ; and if ν
is the joint distribution of H and u at β1 (that is, under µ), then ν(β1−β2,0)

is the joint distribution of H and u at β2 (that is, under µ(β1−β2)H). And
the distribution of u at β2 is the corresponding marginal distribution (one-
dimensional projection of the two-dimensional distribution).

Likewise, the change of the joint distribution of u1, . . . , uk when β1H1 is
replaced with β2H2 boils down to tilting in Rk+2.

In statistics, a natural exponential family on R consists of probability
measures, parametrized by θ ∈ R, with the density f(·|θ) of the form1

f(x|θ) = h(x) exp
(
θx− A(θ)

)
.

Clearly, f(·|θ) is the tilted f(·|0), and A(·) is (up to an additive constant)
the cumulant generating function.

Also the Esscher transform2 is another name of tilting.

2b Surprisingly useful generating functions

The generating functions Mµ and Λµ = lnMµ, defined in 2a1, are surpris-
ingly useful. So much useful that physicists often calculate in terms of these
functions only,3 without mentioning tilted measures!

First, let µ be a compactly supported probability measure on R. Then Λµ

is finite on the whole R, and for all t,

Mµ(t) =

∫
etx µ(dx) =

∫ ( ∞∑
k=0

1

k!
tkxk

)
µ(dx) =

∞∑
k=0

1

k!
tk
∫
xk µ(dx) ,

which justifies the name “moment generating function”.

1See “Exponential family” and “Natural exponential family” in Wikipedia.
2See “Esscher transform” in Wikipedia.
3Physicists call Mµ the partition function and denote it Zn(β); they also denote Λµ

by ϕ(β) and call either ϕ(β)/β or ϕ(β) the (canonical) free energy. (See page 30 in “The
large deviation approach to statistical mechanics” by H. Touchette, Physics Reports 2009,
478 1–69.)

http://en.wikipedia.org/wiki/Exponential_family
http://en.wikipedia.org/wiki/Natural_exponential_family
http://en.wikipedia.org/wiki/Esscher_transform
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In particular, for small t,

Λµ(t) = lnMµ(t) = ln
(

1 + tM ′
µ(0) +

1

2
t2M ′′

µ(0) +O(t3)
)

=

= tM ′
µ(0) +

1

2
t2M ′′

µ(0)− 1

2
t2
(
M ′

µ(0)
)

2 +O(t3) =

= t

∫
xµ(dx) +

1

2
t2
(∫

x2 µ(dx)−
(∫

xµ(dx)
)2
)

+O(t3) ,

that is, Λ′µ(0) is the expectation of µ, and Λ′′µ(0) is the variance of µ. In fact,

the derivatives Λ(m)(0) are the so-called cumulants of µ.
The equality

Λµ(t) + Λµt(s) = Λµ(t+ s)

follows from 2a6. Differentiating it in s at s = 0 we get

Λ(k)
µ (t) = Λ(k)

µt (0) ;

in particular, Λ′µ(t) and Λ′′µ(t) are the expectation and the variance of µt.
The variance cannot be negative, therefore Λµ is convex. Moreover, it is

strictly convex, unless µ is a single atom. Another proof of the convexity
uses Hölder’s inequality: for s, t ∈ R and α, β > 0 with α + β = 1,

Mµ(αs+ βt) =

∫
(esx)α(etx)β µ(dx) ≤

≤
(∫

esx µ(dx)

)α(∫
etx µ(dx)

)β
= Mα

µ (s)Mβ
µ (t) ;

take the logarithm.
In general, a probability measure µ on R need not be compactly sup-

ported. Rather, µk ↑ µ for some compactly supported subprobability mea-
sures µk. Accordingly, Λµk ↑ Λµ. Convexity of Λµk implies convexity of Λµ,
therefore, convexity of the set {t : Λµ(t) <∞}. This set is an interval, con-
taining 0, but not always of the form (a, b); it can be [a, b], [a, b), (a, b]; it
can be unbounded from below, from above, or both; and it can be {0}.

2b1 Exercise. Find examples (of µ) for all these possibilities.

Consider the interior

G = {t : Λµ(t) <∞}◦ = (a, b) , −∞ ≤ a ≤ 0 ≤ b ≤ +∞ .

Leaving aside the trivial case a = 0 = b, we get a convex Λµ : (a, b)→ R.
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2b2 Lemma. Λµ is real-analytic1 on (a, b).

Proof. It is sufficient to prove that Mµ is real-analytic.2 Let a < t − ε <
t < t+ε < b; we’ll prove that Mµ on [t−ε, t+ε] is the sum of a power series.
By 2a6(a), Mµt(±ε) <∞, and it is sufficient to prove that Mµt on [−ε, ε] is
the sum of a power series. Now we forget the original µ and rename µt into
µ. We need to prove that Mµ on [−ε, ε] is the sum of a power series, given
that Mµ(±ε) <∞. We have

∑̀
k=0

tkxk

k!
→ etx as `→∞ ,

∀`
∣∣∣∣ ∑̀
k=0

tkxk

k!

∣∣∣∣ ≤ e|tx| ≤ e−εx + eεx

for |t| ≤ ε. By the dominated convergence theorem,

Mµ(t) =

∫
etx µ(dx) = lim

`

∫ ∑̀
k=0

tkxk

k!
µ(dx) =

∞∑
k=0

tk

k!

∫
xk µ(dx) .

Given a measure µ on Rd we have for a ∈ Rd and t ∈ R

Mµ(ta) =

∫
e〈ta,x〉 µ(dx) =

∫
ety ν(dy) = Mν(t)

where ν is the distribution of 〈a, x〉 under µ. Assuming that Mµ is finite on
some neighborhood of 0 we see that3

d

dt

∣∣∣
t=0
Mµ(ta) = M ′

ν(0) =

∫
y ν(dy) =

∫
〈a, x〉µ(dx) .

Similarly,
dk

dtk

∣∣∣
t=0
Mµ(ta) =

∫
〈a, x〉k µ(dx) .

Lemma 2b2 gives

Mµ(a) =
∞∑
k=0

tk

k!

∫
〈a, x〉k µ(dx)

1That is, locally a sum of a power series.
2However, the radius of convergence for Λµ may be smaller because of zeros of Mµ on

the complex plane.
3This derivative is a linear function of a, but be careful: this fact itself does not ensure

that Mµ is differentiable at 0.
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for all a in a neighborhood of 0,1 which shows that Mµ (and therefore also
Λµ) is real-analytic near 0.

By 2a6, Mµ(a + b) = Mµ(a)Mµa(b) for a, b ∈ Rd such that Mµ(a) < ∞.
Thus, all said about Mµ and Λµ around 0 applies also to Mµ(a + ·)/Mµ(a)
and Λµ(a + ·) − Λµ(a). The functions Mµ and Λµ are real-analytic on the
interior G of the set {a : Mµ(a) <∞}. For all a ∈ G and b ∈ Rd,

d

dt

∣∣∣
t=0

Λµ(a+ tb) =

∫
〈b, x〉µa(dx) ,

d2

dt2

∣∣∣
t=0

Λµ(a+ bt) =

∫
〈b, x〉2 µ(dx)−

(∫
〈b, x〉µ(dx)

)2

,

the expectation and the variance of 〈b, ·〉 under µa. It follows that Λµ is con-
vex on G, and moreover, strictly convex, unless µ sits on some affine subspace
of dimension d − 1 (or less). On the other hand, by Hölder’s inequality, Λµ

is convex on the whole Rd, thus, the set {a : Λµ(a) < ∞} is convex, and its
interior G is also convex.

2c Independent summands

For two independent random variables X and Y , the distribution µX+Y of
the sum X + Y is the convolution µX ∗ µY of their distributions;

(2c1)

∫
f(z) (µX ∗ µY )(dz) =

∫∫
f(x+ y)µX(dx)µY (dy) .

Taking f(z) = etz we have f(x+ y) = f(x)f(y), thus,

(2c2) MX+Y (t) = MX(t)MY (t) , ΛX+Y (t) = ΛX(t) + ΛY (t) .

In terms of convolution,

(2c3) Mµ∗ν(t) = Mµ(t)Mν(t) ; Λµ∗ν(t) = Λµ(t) + Λν(t) .

(However, this does not apply to M(u),Λ(u).) Here is the tilted convolution:

(2c4) (µ ∗ ν)t = µt ∗ νt wheneverMµ(t),Mν(t) <∞ ,

since∫
f d(µ ∗ ν)t =

1

Mµ∗ν(t)

∫
f(z)etz (µ ∗ ν)(dz) =

1In fact, in every ball (centered at 0) on which Mµ <∞; recall the proof of 2b2.
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=
1

Mµ(t)Mν(t)

∫∫
f(x+ y)et(x+y) µ(dx)ν(dy) =

=

∫∫
f(x+ y)µt(dx)νt(dy) =

∫
f d(µt ∗ νt)

for all bounded continuous f .
We turn to the sum of independent, identically distributed (i.i.d.) random

variables; its distribution is

µ∗n = µ ∗ · · · ∗ µ︸ ︷︷ ︸
n

.

By (2c4),

(2c5) (µ∗n)t = (µt)
∗n ,

thus we need not hesitate writing just µ∗nt .
The Legendre transform Λ∗µ of Λµ will be very useful:

Λ∗µ(x) = sup
t∈R

(
tx− Λµ(t)

)
∈ [0,∞] .

If x = Λ′µ(t) for some t ∈ G (that is, Λµ <∞ near t), then

Λ∗µ(x) = tx− Λµ(t)

by convexity of Λµ.

2c6 Example (Standard normal distribution, see 2a2). Λµ(t) = 1
2
t2; x =

Λ′µ(t) = t; Λ∗µ(x) = x · x− 1
2
x2 = 1

2
x2.

2c7 Example (Fair coin, see 2a3). Λµ(t) = ln cosh t; x = Λ′µ(t) = tanh t;

note that tanh2 t+ 1
cosh2 t

= 1, thus cosh t = 1√
1−x2 and Λµ(t) = −1

2
ln(1−x2).

Also, t = artanhx = 1
2

ln 1+x
1−x , thus

Λ∗µ(x) =
x

2
ln

1 + x

1− x
+

1

2
ln(1− x2) =

1

2
(1 + x) ln(1 + x) +

1

2
(1− x) ln(1− x)

for x ∈ [−1, 1] (otherwise, ∞); just the function γ of (1a1).

2c8 Example (Exponential distribution, see 2a4). Λµ(t) = − ln(1− t); x =
Λ′µ(t) = 1

1−t ; t = 1− 1
x
; Λ∗µ(x) =

(
1− 1

x

)
x− lnx = x− 1− lnx.
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2c9 Example (Discontinuous generating function, see 2a5). Λµ(t) ≤ 0 for
−∞ < t ≤ 0, but +∞ for t > 0. Nevertheless,

∫
xµ(dx) = 6 < ∞, and

Λ′µ(0−) = 6. In fact,

Mµ(t) =
1

−2t

(
1−

√
2π

−2t
Φ
(
− 1√
−2t

)
exp

( 1

−4t

))
for t < 0 .

t
−5

−2

6t

Λ

x
6

1

Λ∗

Λ∗(x) = ∞ for x ∈ (−∞, 0]; 0 < Λ∗(x) < ∞ for x ∈ (0, 6); and Λ∗(x) = 0
for x ∈ [6,∞). Thus, Λ∗ fails to be real-analytic near 6.

2c10 Example (Multiscale case). µ({−1}) = 1
2
e−a = µ({+1}), µ({−2}) =

1
2
e−3a = µ({+2}), µ({0}) = 1 − e−a − e−3a; Λµ(t) = 1 + e−a(−1 + cosh t) +

e−3a(−1 + cosh 2t).

t
−2a 2a

a Λ

a = 2

x
−1 1

a

Λ∗

t
−2a 2a

a Λ

a = 10

x
−1 1

a

Λ∗

t
−2a 2a

a Λ

a = 20

x
−1 1

a

Λ∗

For large a both functions are approximately piecewise linear. Note that the
variance (and higher moments) of µt is not at all monotone in t.

2c11 Lemma. Let t ∈ G, x = Λ′µ(t), and ε > 0; then µ∗nt
(
[nx−ε, nx+ε]

)
> 0

if and only if µ∗n
(
[nx− ε, nx+ ε]

)
> 0, and in this case∣∣∣∣ ln µ∗nt

(
[nx− ε, nx+ ε]

)
µ∗n
(
[nx− ε, nx+ ε]

) − nΛ∗µ(x)

∣∣∣∣ ≤ ε|t| .
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Proof. Follows from the inequality∣∣∣∣ ln dµ∗nt
dµ∗n

(y)− nΛ∗µ(x)

∣∣∣∣ ≤ ε|t| for all y ∈ [nx− ε, nx+ ε] ,

checked easily:

ln
dµ∗nt
dµ∗n

(y) = ty−Λµ∗n(t) = t(y− nx) + tnx− nΛµ(t) = t(y− nx) + nΛ∗µ(x) .

We see that lnµ∗n
(
[nx − ε, nx + ε]

)
is ε|t|-close to lnµ∗nt

(
[nx − ε, nx +

ε]
)
− nΛ∗µ(x). An upper bound follows immediately:

(2c12) lnµ∗n
(
[nx− ε, nx+ ε]

)
≤ −nΛ∗µ(x) + ε|t| .

A lower bound needs more effort. The measure µ∗nt has the expectation
nΛ′µ(t) = nx and the variance nΛ′′µ(t); by Chebyshev’s inequality,

µ∗nt
(
[nx− ε, nx+ ε]

)
≥ 1−

nΛ′′µ(t)

ε2
,

which leads to the lower bound

(2c13) lnµ∗n
(
[nx− ε, nx+ ε]

)
≥ −nΛ∗µ(x)− ε|t|+ ln

(
1−

nΛ′′µ(t)

ε2

)
.

2c14 Theorem. Let t ∈ G, x = Λ′µ(t), and εn > 0 satisfy

εn
n
→ 0 ,

εn√
n
→∞.

Then
1

n
lnµ∗n

(
[nx− εn, nx+ εn]

)
→ −Λ∗µ(x) as n→∞ .

Proof. The upper limit is at most −Λ∗µ(x) by (2c12). Taking into account

that
nΛ′′µ(t)

ε2n
→ 0 we see that the lower limit is at least −Λ∗µ(x) by (2c13).

Here is the same result in a slightly different language.

2c15 Theorem. Let t ∈ R, and X1, X2, . . . be i.i.d. random variables such
that lnE expλX1 = Λ(λ) <∞ for all λ close enough to t. Let εn > 0 satisfy

εn → 0 ,
√
n εn →∞ .

Denote x = Λ′(t). Then

P
(
x−εn ≤

X1 + · · ·+Xn

n
≤ x+εn

)
= exp

(
−n
(
tx−Λ(t)

)
+o(n)

)
as n→∞ .
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Now we turn to moderate deviations. Here we assume that 0 ∈ G, and
in addition, Λ′µ(0) = 0, Λ′′µ(0) = 1 (otherwise, use a linear transformation).

2c16 Theorem. Let xn → 0,
√
n|xn| → ∞, and εn > 0 satisfy

εn
n|xn|

→ 0 ,
εn√
n
→∞ .

Then

lnµ∗n
(
[nxn − εn, nxn + εn]

)
= −1

2
nx2

n

(
1 + o(1)

)
as n→∞ .

Proof. We take tn → 0 such that xn = Λ′µ(tn) and note that xn ∼ tn (that is,
their ratio converges to 1), Λµ(tn) ∼ 1

2
t2n, and Λ∗µ(xn) = tnxn−Λµ(tn) ∼ 1

2
x2
n.

By (2c12), ln(. . . ) ≤ −nΛ∗µ(xn) + εn|tn| = −n · 1
2
x2
n

(
1 + o(1)

)
+ εn|xn|

(
1 +

o(1)
)

= −1
2
nx2

n

(
1 + o(1)

)
, since εn|xn| � nx2

n.

By (2c13), taking into account that
nΛ′′µ(tn)

ε2n
∼ n

ε2n
→ 0, we get ln(. . . ) ≥

−nΛ∗µ(xn)−εn|tn|+o(1) = −1
2
nx2

n

(
1+o(1)

)
+o(1) = −1

2
nx2

n

(
1+o(1)

)
, since

nx2
n →∞.

And the same result in the slightly different language.

2c17 Theorem. Let X1, X2, . . . be i.i.d. random variables such that
lnE expλX1<∞ for all λ close enough to 0, and EX1 = 0, EX2

1 = 1.
Let xn ∈ R and εn > 0 satisfy

|xn| → ∞ , xn = o(
√
n) , εn → 0 , |xn|εn →∞ .

Then

P
(
xn(1− εn) ≤ X1 + · · ·+Xn√

n
≤ xn(1 + εn)

)
= exp

(
− 1

2
x2
n

(
1 + o(1)

))
as n→∞.

2c18 Exercise. Generalize these results (2c11, 2c14–2c17) to probability
measures on Rd; in the other language, to i.i.d. random vectors.

The condition “ εn√
n
→ ∞” in Theorem 2c14 may be replaced with εn√

n
≥

const with an appropriate absolute constant (think, why). The same applies
to “
√
nεn →∞” in 2c15, “ εn√

n
→∞” in 2c16, and “|xn|εn →∞” in 2c17.

Much better bounds are obtained via the Berry-Esseen bound for the
central limit theorem (CLT). By CLT, the distribution of X1+···+Xn√

n
converges
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weakly to the standard normal distribution (assuming EX1 = 0 and EX2
1 =

1). That is,

sup
−∞<a<b<+∞

∣∣µ∗n([√na,√nb])− (Φ(b)− Φ(a)
)∣∣→ 0 as n→∞ .

By the Berry-Esseen bound, this supremum never exceeds const·E |X1|3/
√
n,

the constant being absolute.1 Using the fact that
(
E |X1|3)1/3 ≤

(
EX4

1 )1/4

we get∣∣∣∣µ∗nt ([nx− ε, nx+ ε]
)
−
(

2Φ
( ε
√
nΛ′′µ(t)

)
− 1
)∣∣∣∣ ≤ const√

n
·
(

Λ
(4)
µ (t)(

Λ′′µ(t)
)

2
+ 3

)3/4

.

Thus, we may take ε that depends on Λ
(4)
µ (t) and Λ′′µ(t) but does not depend

on n, and get for µ∗nt
(
[nx− ε, nx + ε]

)
a lower bound of order 1/

√
n, which

leads to the lower bound

lnµ∗n
(
[nx− ε, nx+ ε]

)
≥ −nΛ∗µ(x)−O(|t|)− 1

2
lnn−O(1) .

The same Berry-Esseen bound gives µ∗nt
(
[nx−ε, nx+ε]

)
= O(1/

√
n), which

leads to the upper bound

lnµ∗n
(
[nx− ε, nx+ ε]

)
≤ −nΛ∗µ(x) +O(|t|)− 1

2
lnn+O(1) .

In both cases, LDP and MDP, t is bounded (in n); also Λ
(4)
µ (t) and Λ′′µ(t) are

bounded; thus,

µ∗n
(
[nx− ε, nx+ ε]

)
=

1√
n

exp
(
−nΛ∗µ(x) +O(1)

)
.

Here are sLD-counterparts of the LD-theorems 2c14, 2c15.

2c19 Theorem. Let t ∈ G and x = Λ′µ(t). Then for every ε > 0 large
enough,

µ∗n
(
[nx− ε, nx+ ε]

)
=

1√
n

exp
(
−nΛ∗µ(x) +O(1)

)
as n→∞ .

2c20 Theorem. Let t ∈ R, and X1, X2, . . . be i.i.d. random variables such
that lnE expλX1 = Λ(λ) <∞ for all λ close enough to t. Denote x = Λ′(t).
Then for every ε > 0 large enough,

P
(
x− ε

n
≤ X1 + · · ·+Xn

n
≤ x+

ε

n

)
=

1√
n

exp
(
− n

(
tx− Λ(t)

)
+O(1)

)
as n→∞.

1See “Berry-Esseen theorem” in Wikipedia.

http://en.wikipedia.org/wiki/Berry-Esseen_theorem
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Think, what happens for the fair coin case, if ε < 1/2.

It is possible to get an approximation up to equivalence (that is, o(1)
instead of O(1) under exp(. . . )), but not easily. To this end, first of all, one
has to separate lattice and non-lattice distributions, and not only in proofs
but also in formulations.

Now, what about sMD? Here we assume (as before) that 0 ∈ G, Λ′µ(0) =
0, Λ′′µ(0) = 1, and xn → 0,

√
n|xn| → ∞. We take (again) tn → 0 such that

xn = Λ′µ(tn); still, xn ∼ tn, Λµ(tn) ∼ 1
2
t2n, and Λ∗µ(xn) ∼ 1

2
x2
n. However, now

this relation does not satisfy us! Now we need Λ∗µ(xn) = 1
2
x2
n+O

(
1
n

)
in order

to get the normal approximation 1√
n

exp
(
−n

2
x2
n +O(1)

)
.

The function Λ∗µ is real-analytic near 0, which follows from the equality
Λ∗µ(Λ′µ(t)) = tΛ′µ(t)− Λµ(t), since Λµ is real-analytic near 0, Λ′µ(0) = 0, and
Λ′′µ(0) = 1 6= 0 (indeed, the inverse function to Λ′µ is real-analytic near 0).
For small x we have Λ∗µ(x) ∼ 1

2
x2, thus,

Λ∗µ(x) =
1

2
x2 − a0x

3 − a1x
4 − . . .

The numbers a0, a1, . . . are called the coefficients of the Cramer series.1 In
particular,2

a0 =
1

6
Λ(3)
µ (0) ; a1 =

1

24

(
Λ(4)
µ (0)− 3(Λ(3)

µ (0))2
)
.

If xn = O(n−1/3) then indeed Λ∗µ(xn) = 1
2
x2
n + O

(
1
n

)
, and we get sMD-

counterparts of Theorems 2c16, 2c17.

2c21 Theorem. Let xn = O(n−1/3). Then for every ε > 0 large enough,

µ∗n
(
[nxn − ε, nxn + ε]

)
=

1√
n

exp
(
−1

2
nx2

n +O(1)
)

as n→∞ .

2c22 Theorem. Let X1, X2, . . . be i.i.d. random variables such that
lnE expλX1<∞ for all λ close enough to 0, and EX1 = 0, EX2

1 = 1.
Let xn ∈ R satisfy

xn = O(n1/6) .

1Some authors define the Cramer series as a0 +a1x+ . . . (V.V. Petrov and J. Robinson
2008, “Large deviations for sums of independent non identically distributed random vari-
ables”, Communications in Statistics 37 2984–2990); others define it as a0x

3 + a1x
4 + . . .

(L.V. Rozovsky 1999, “On the Cramér series coefficients”, Theory Probab. Appl. 43
152–157).

2For a2, a3 and a formula for ak see Rozovsky 1999.
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Then for every ε > 0 large enough,

P
(
xn −

ε√
n
≤ X1 + · · ·+Xn√

n
≤ xn +

ε√
n

)
=

1√
n

exp
(
− 1

2
x2
n +O(1)

)
as n→∞.

If a0 = 0, that is, EX3
1 = 0 (in particular, for all symmetric distributions,

for example, the fair coin), then “n−1/3” in Theorem 2c21 may be replaced
with “n−1/4”, and “n1/6” in Theorem 2c22 with “n1/4”. In general, under
these conditions we get “−1

2
nx2

n + a0nx
3
n” instead of “−1

2
nx2

n” in Theorem
2c21, and “−1

2
x2
n + a0√

n
x3
n” instead of “−1

2
x2
n” in Theorem 2c22. The new

factor, being exp(O(n1/4)), matters for sMD but does not matter for MD.
That is, under n1/6 (in terms of 2c22) all distributions µ are served by

a single, normal approximation. Between n1/6 and n1/4 they are not; a one-
parameter family of approximations is needed. Likewise, between n1/4 and
n3/10, two parameters are needed (a0 and a1; or EX3

1 and EX4
1 ). And gen-

erally, k parameters work between nk/(2(k+2)) and n(k+1)/(2(k+3)). Somehow,
k = ∞ means n1/2, — the LD territory; and indeed, LD uses a function Λ∗µ
that depends on all µ (rather than several parameters of µ).

In contrast, in the framework of MD (rather than sMD) the normal ap-
proximation works in the whole domain o(n1/2); the dependence on µ appears
at once when O(n1/2) is reached.
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