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11a Exponential concentration in general

11a1 Definition. 1 (a) A sequence (xn)n of real numbers is exponentially
decaying, if

∃δ > 0, C <∞ ∀n |xn| ≤ Ce−δn .

(b) A sequence (Xn)n of random variables Xn : Ωn → R is exponentially
concentrated at zero, if for every ε > 0 the sequence of numbers P

(
|Xn| > ε

)
is exponentially decaying.

(c) A sequence (Xn)n of random variables Xn : Ωn → R is exponentially
concentrated, if there exist xn ∈ R such that (Xn − xn)n is exponentially
concentrated at zero.

Notation:

(Xn)n ∈ ExpConZero ; (Xn)n ∈ ExpCon .

Only the distributions of these Xn matter. For a sequence (µn)n of prob-
ability measures on R we define the relations (µn)n ∈ ExpConZero and
(µn)n ∈ ExpCon evidently, getting (Xn)n ∈ ExpConZero ⇐⇒ (µn)n ∈
ExpConZero where µn is the distribution of Xn; and the same for ExpCon.
However, the language of random variables is more appropriate in many cases
below.

11a2 Exercise. (a) All exponentially decaying sequences of real numbers
are a linear space.

(b) ExpConZero is a linear space (for given (Ωn)n).

1Not a standard definition.



Tel Aviv University, 2010 Gaussian measures : proofs and more 2

(c) Let (Xn)n ∈ ExpConZero and xn ∈ R. Then (Xn−xn)n ∈ ExpConZero
if and only if xn → 0.
Prove it.

Thus, the condition (Xn − xn)n ∈ ExpConZero determines (xn)n up to
o(1).

Recall that a number x is called a median of a random variable X if

P
(
X < x

)
≤ 1

2
≤ P

(
X ≤ x

)
.

All medians of X are in general a compact nonempty interval (often a single
point). Also, x is a median of X if and only if (−x) is a median of (−X).

11a3 Exercise. The following three conditions are equivalent for every se-
quence of random variables Xn:

(a) (Xn)n ∈ ExpCon;
(b) there exist medians xn of Xn such that (Xn − xn)n ∈ ExpConZero;
(c) all medians xn of Xn satisfy (Xn − xn)n ∈ ExpConZero.

Prove it.

In this sense,

(Xn)n ∈ ExpCon if and only if
(
Xn −Me(Xn)

)
n ∈ ExpConZero .

The median interval of Xn is of length o(1) whenever (Xn)n ∈ ExpCon.
Medians cannot be replaced with expectations. . .

11a4 Exercise. (a) ExpCon is a linear space (for given (Ωn)n).
(b) Let (Xn)n, (Yn)n ∈ ExpCon, then Me(Xn+Yn) = Me(Xn)+Me(Yn)+

o(1).
Formulate it accurately, and prove.

11a5 Exercise. (“Sandwich”) Let random variables Yn : Ωn → R be such
that for every r > 0 there exist Xn, Zn : Ωn → R satisfying

(Xn)n, (Zn)n ∈ ExpCon ,

∀n (Xn ≤ Yn ≤ Zn a.s. ) ,

∀n Me(Zn)−Me(Xn) ≤ r .

Then (Yn)n ∈ ExpCon.
Prove it.
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Gaussian concentration usually ensures E |Xn| < ∞ (integrability) and
Me(Xn) − EXn → 0. Thus, we define ExpConInt (for given Ωn) as the set
of all sequences (Xn)n where Xn : Ωn → R are integrable, and

(Xn − EXn)n ∈ ExpConZero .

This is a linear space.

11a6 Lemma. Let random variables Yn : Ωn → R be such that for every
ε > 0 there exist Xn, Zn : Ωn → R satisfying

(Xn)n, (Zn)n ∈ ExpConInt ,

∀n (Xn ≤ Yn ≤ Zn a.s. ) ,

∀n EZn − EXn ≤ ε .

Then (Yn)n ∈ ExpConInt.

It can be proved similarly to 11a5. However, we need a quantitative
version.

First, we note that the relation (Xn)n ∈ ExpConInt may be reformulated
as follows: there exist families (δε)ε and (Cε)ε of numbers δε > 0, Cε < ∞
given for ε > 0 such that for all n,

∀ε > 0 P
(
|Xn − EXn| > ε

)
≤ Cεe

−δεn .

Second, in order to get P
(
|Yn − EYn| > ε

)
≤ Cεe

−δεn in the conclusion of
“Sandwich”, we require P

(
|Xn − EXn| > ε

)
≤ Cr,εe

−δr,εn (and the same for
Zn) in the assumption; here r is the parameter denoted by r in 11a5.

The lemma below constructs δε and Cε for given δr,ε and Cr,ε. The for-
mulas are simple, but will not be used; rather, their existence will be used.

11a7 Lemma. (“Sandwich”) Let positive numbers δr,ε and Cr,ε be given for
all positive r and ε. Let random variables Yn : Ωn → R be such that for
every r > 0 there exist Xn, Zn : Ωn → R satisfying

∀n, ε P
(
|Xn − EXn| > ε

)
≤ Cr,εe

−δr,εn ,

∀n, ε P
(
|Zn − EZn| > ε

)
≤ Cr,εe

−δr,εn ,

∀n (Xn ≤ Yn ≤ Zn a.s. ) ,

∀n EZn − EXn ≤ r .

Then
∀n, ε P

(
|Yn − EYn| > ε

)
≤ Cεe

−δεn

where δε = δε/2,ε/2 and Cε = 2Cε/2,ε/2.
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11a8 Exercise. Prove Lemma 11a7.

11a9 Lemma. (“Approximation”) Let integrable random variables Xn :
Ωn → R be such that for every ε > 0 there exist Yn : Ωn → R satisfying

(Yn)n ∈ ExpConInt ,

the sequence of numbers P
(
|Xn − Yn| > ε

)
is exponentially decaying ,

∀n |EXn − EYn| ≤ ε .

Then (Xn)n ∈ ExpConInt.

11a10 Exercise. Prove Lemma 11a9.

Here is a quantitative version. The assumption (Yn)n ∈ ExpConInt is
weakened (to a single ε. . . ). The same δε, Cε are used in two assumptions,
which is not a problem (just take the minimum of two δε and the sum of two
Cε).

11a11 Lemma. (“Approximation”) Let positive numbers δε and Cε be given
for all positive ε. Let random variables Xn : Ωn → R be such that for every
ε > 0 there exist Yn : Ωn → R satisfying

∀n P
(
|Yn − EYn| > ε

)
≤ Cεe

−δεn ,

∀n P
(
|Xn − Yn| > ε

)
≤ Cεe

−δεn ,

∀n |EXn − EYn| ≤ ε .

Then
∀n, ε P

(
|Xn − EXn| > ε

)
≤ 2Cε/3e

−δε/3n .

11a12 Exercise. Prove Lemma 11a11.

11b Exponential concentration over Gaussian measures

If a function ξ : Rd → R is Lip(σ) for a given σ > 0 then Theorem 1a2 gives
ξ[γd] = f [γ1] for an increasing f : R → R, f ∈ Lip(σ). Let us denote by
GaussLip(σ) the set of all such random variables. Clearly, f(0) is the only
median of ξ, and1

P
(
|ξ −Me(ξ)| > ε

)
= P

(
|f(ζ)− f(0)| > ε

)
≤

≤ P
(
|ζ| > ε/σ

)
≤ C exp

(
− ε2

2σ2

)
1ζ ∼ γ1 as before.
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for some absolute constant C.1 Also, |Me(ξ)− E ξ| = |f(0)−
∫
f dγ1| ≤ Cσ

for another absolute constant C.2 It follows easily that

(11b1) P
(
|ξ − E ξ| > ε

)
≤ C exp

(
− c ε

2

2σ2

)
for some absolute constants c, C;3 4 and, of course,

(11b2) E |ξ − E ξ| ≤ Cσ

for some absolute constant C.

11c Using assumption An

We consider the Gaussian random function X(·) introduced in Sect. 2a as
a linear function of the independent N(0, 1) random variables X1, . . . , X2n

(via a1, . . . , aN and λ1, . . . , λN) under the assumption An (also introduced in
Sect. 2a). Here is a non-probabilistic property of the linear operator R2n →
L2[0, 1].5

11c1 Proposition. ∫ 1

0

X2(t) dt ≤ C

n
(X2

1 + · · ·+X2
2N)

for some absolute constant C.

11c2 Remark. Assumption An requires also assumption A, namely
∑

k a
2
k =

1, but we do not need it here; we use only the assumption

∀λ ∈ [0,∞)
∑

k:λk∈[λ,λ+1]

a2k ≤
1

n
.

Given f ∈ L2[0, 1], we consider the random variable

〈f,X〉 =

∫ 1

0

f(t)X(t) dt ;

this is a linear combination of X1, . . . , X2n, thus 〈f,X〉 ∼ N(0,Var〈f,X〉).
1C = supt>0 et

2/2 ·2
∫∞
t

(2π)−1/2e−u
2/2 du = 2 supt>0(2π)−1/2

∫∞
0

exp(− s
2

2 −ts) ds = 1.
2C = (2π)−1/2

∫∞
0
te−t

2/2 dt = 1/
√

2π.
3Here and henceforth, constants c and C (possibly with indices) are positive. They

may be different in different formulas.
4In fact, c = 1 and C = 2. Moreover, P

(
ξ − E ξ > ε

)
≤ 2P

(
σζ > ε

)
(Cirel’son,

Ibragimov, Sudakov 1976), thus, P
(
ξ − E ξ > ε

)
≤ exp

(
− ε2

2σ2

)
.

5But under assumption A only, the operator need not be of small norm; just try N = 1.
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11c3 Exercise. Deduce 11c1 from the following claim (to be proved soon):

Var〈f,X〉 ≤ C

n
‖f‖2 .

11c4 Exercise. Prove that

Var〈f,X〉 =
N∑
k=1

a2k|g(λk)|2 ,

where g(λ) =
∫ 1

0
eiλtf(t) dt.

It is well-known that ‖g‖22 = 2π‖f‖22. Thus, the claim in 11c3 boils down
to1 ∑

a2k|g(λk)|2 ≤ C‖g‖2 sup
λ

∑
k:λk∈[λ,λ+1]

a2k ,

which may be rewritten as

(11c5)

∫
|g|2 dµ ≤ C

(∫
|g|2 dm

)
sup
λ
µ
(
[λ, λ+ 1]

)
where µ =

∑
k a

2
kδλk (a discrete measure), and m is the Lebesgue measure.

The idea is, roughly, that g cannot be nearly concentrated on a short
interval, because f is concentrated on an interval of length 1. The proof,
given below, uses Fourier transform (ϕ 7→ ϕ̂) and convolution (∗). If you are
familiar with these, keep reading. Otherwise feel free to skip the rest of 11c.

11c6 Lemma. There exist even real-valued functions ϕ ∈ L∞[−0.5, 0.5] ⊂
L1(R) and ψ ∈ L1(R) such that ϕ̂(x)ψ̂(x) = 1 for all t ∈ [−1, 1].

Proof. We take ϕ(t) = const on [−0.5, 0.5] (and 0 outside), ϕ̂(t) = 1
t

sin t
2
,

note that ϕ̂(·) does not vanish on [−1, 1], 1/ϕ̂(·) is smooth on [−1, 1] and
therefore can be extended to a smooth compactly supported function ψ̂(·);
its Fourier transform is integrable, since it decays fast enough.

Proof of the proposition. The function |g(·)|2 is the Fourier transform of a
function supported on [−1, 1] and therefore invariant under multiplication
by ϕ̂ψ̂. It means that |g|2 = |g|2 ∗ ϕ ∗ ψ. Thus,∫

|g|2 dµ = 〈|g|2 ∗ ψ, µ ∗ ϕ〉 ≤ ‖|g|2 ∗ ψ‖1‖µ ∗ ϕ‖∞ ;

‖|g|2 ∗ ψ‖1 ≤ ‖|g|2‖1‖ψ‖1 = ‖g‖22‖ψ‖1 ≤ C‖g‖22 ;

‖µ ∗ ϕ‖∞ ≤ ‖ϕ‖∞ sup
λ
µ
(
[λ− 0.5, λ+ 0.5]

)
≤ C sup

λ
µ
(
[λ, λ+ 1]

)
,

which gives (11c5).

1Do not forget that C may be different in different formulas.
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11d Proving Theorem 2a2

If ξ : L2[0, 1]→ R is Lip(1) then ξ(X), treated as a function ofX1, . . . , X2N , is
a Lip(C/

√
n) function R2N → R (by 11c1). Thus, ξ(X) ∈ GaussLip(C/

√
n).

By (11b1),1

(11d1) P
(
|ξ − E ξ| > ε

)
≤ C exp(−cε2n)

for some absolute constants c, C. In this sense, abusing the language, we
write (under assumption An)

ξ ∈ ExpConInt(n)

whenever ξ is Lip(1) on L2[0, 1], or Lip(C) for some C not depending on n.
Usually, a stronger condition will be satisfied: ξ is Lip(C) on L1[0, 1].

11d2 Exercise. Prove Lemma 2a1.

11d3 Exercise. Let ϕ : R→ R be Lip(1). Then the function ξ : L1[0, 1]→
R,

ξ(x) =

∫ 1

0

ϕ(x(t)) dt ,

is well-defined and Lip(1).
Prove it.

Thus, for such ϕ the random variable

ξ =

∫ 1

0

ϕ(X(t)) dt

satisfies
ξ ∈ GaussLip(C/

√
n) ; ξ ∈ ExpConInt(n)

with absolute constants (as in (11d1)).
Now let ϕ be as in Theorem 2a2 (continuous a.e., of linear growth). We

introduce for every k

ϕ−k (x) = inf
y

(
ϕ(y) + k|y − x|

)
, ϕ+

k (x) = sup
y

(
ϕ(y)− k|y − x|

)
.

11d4 Exercise. (a) ϕ−k , ϕ
+
k are Lip(k) functions R → R for all k large

enough;2

(b) ϕ−k ↑ ϕ and ϕ+
k ↓ ϕ almost everywhere;

1I often write just ξ instead of ξ(X).
2Do you understand why not just “for all k”?
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(c) there exists Cϕ such that for all k large enough and all x

−Cϕ(1 + |x|) ≤ ϕ−k (x) ≤ ϕ+
k (x) ≤ Cϕ(1 + |x|) .

Prove it.

It follows (using Fubini and the dominated convergence theorem) that

E ξ−k ↑ E ξ and E ξ+k ↓ E ξ a.s., where ξ±k =
∫ 1

0
ϕ±k (X(t)) dt. We have a

“sandwich”; and so, Theorem 2a2 follows by 11a7. (The upper bound 2e−cε,ϕn

is not stronger than Cε,ϕe−cε,ϕn since cε,ϕ can be made smaller.)

11e Proving Theorem 2a3

The function T was defined in Sect. 2a on C[0, 1], but the same definition
works on L1[0, 1] and evidently gives a Lip(1) function T : L1[0, 1]→ [0,∞).
It follows that T (X) ∈ ExpConInt(n). However, Theorem 2a3 states that
T (X) ∈ ExpConZero(n). Thus, it is sufficient to prove that ET (X) ≤ εn →
0.

We modify T as follows:

Tk(f) = inf
g
‖ψk(f(·))− ψk(g(·))‖1 ,

where g is as before (distributed γ1), and ψk(x) = mid(−k, x, k), that is, −k
for x ∈ (−∞,−k]; x for x ∈ [−k, k]; and k for x ∈ [k,∞). We have

E |Tk(X(·))− T (X(·))| ≤ E ‖ψk(X(·))−X(·)‖1 + ‖ψk(g(·))− g(·)‖1 =

= 2

∫
|ψk(x)− x| γ1(dx)→ 0

as k →∞. It remains to prove that ETk(X) ≤ εk,n → 0 as n→∞.

11e1 Exercise. For every f ∈ L1[0, 1] and every Lip(1) function ϕ : R→ R,∣∣∣ ∫ 1

0

ϕ(f(t)) dt−
∫
ϕ dγ1

∣∣∣ ≤ T (f) .

Prove it.

It is well-known that1

sup
ϕ

∣∣∣ ∫ 1

0

ϕ(f(t)) dt−
∫
ϕ dγ1

∣∣∣ = T (f) ,

where the supremum is taken over all Lip(1) functions R → R. (I use this
fact without proof.) Clearly we may demand ϕ(0) = 0.

1Kantorovich-Rubinstein theorem. This T (f) is nothing but the transportation dis-
tance between γ1 and the distribution of f . This fact is evident when f is a step function.
It extends to the whole L1[0, 1] by continuity.
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11e2 Exercise. For every k and ε there exists a finite set of Lip(1) functions
ϕ1, . . . , ϕN : [−k, k] → R such that ϕ1(0) = 0, . . . , ϕN(0) = 0, and every
Lip(1) function ϕ : [−k, k] → R such that ϕ(0) = 0 is ε-close to some ϕi
uniformly on [−k, k].

Prove it.

11e3 Exercise. Prove that

Tk(f) ≤ 2ε+ max
i=1,...,N

∣∣∣ ∫ 1

0

ϕi(ψk(f(t))) dt−
∫
ϕi(ψk(·)) dγ1

∣∣∣ .
The function ϕi(ψk(·)) is Lip(1), thus the random variable ξi,k =∫ 1

0
ϕi(ψk(X(t))) dt belongs to GaussLip(C/

√
n). By (11b2), E |ξi,k−E ξi,k| ≤

C/
√
n. Thus,

ETk(X) ≤ 2ε+ E max
i=1,...,N

|ξi,k − E ξi,k| ≤ 2ε+Nk,ε ·
C√
n
,

which can be made small enough by choosing ε first and n afterwards. That
is, ETk(X) ≤ εk,n → 0 as n→∞, which completes the proof.1

11f Dimension two, and higher

Returning to the definition of X(·) given in Sect. 2a via a1, . . . , aN and
λ1, . . . , λN , we replace the numbers a1, . . . , aN > 0 with vectors a1, . . . , aN ∈
R2, thus getting X : R→ R2; we endow R2 with the Euclidean norm x 7→ |x|.
Further, all occurrences of a2k (in assumptions A and An, and everywhere)
turn into |ak|2, and all occurrences of X2(t) (in Prop. 11c1, and everywhere)
into |X(t)|2. We also replace the requirement 0 < λ1 < · · · < λN < ∞ with
a weaker requirement 0 < λ1 ≤ · · · ≤ λN < ∞, thus allowing a single fre-
quency to cover more than one dimension.2 The distribution of the process
X fails to determine uniquely the vectors ak, but still determines the measure∑

k |ak|2δλk , since

E 〈X(0), X(t)〉 =
N∑
k=1

|ak|2 cosλkt .

1In fact, P
(
T (X) ≥ ε

)
≤ exp

(
−c((ε − αn)+)2n

)
for some absolute constant c and

some αn → 0 (depending on n only). It is like the large deviations principle with the rate
function I(ε) ≥ cε2.

2Think, what does it change in the one-dimensional case.
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Still, 11c3 and 11c4 hold, but f ∈ L2[0, 1] turns into f ∈ L2([0, 1] → R2),
and 11c4 becomes

Var〈f,X〉 =
N∑
k=1

|〈ak, g(λk)〉|2 ≤
N∑
k=1

|ak|2|g(λk)|2 .

Nothing changes in the rest of Sect. 11c (it is about the measure µ =∑
k |ak|2δλk).1

Thus, 11c1 gives us a linear operator R2N → L2([0, 1] → R2) of norm
≤ C/

√
n. If ξ : L2([0, 1]→ R2)→ R is Lip(1) then ξ(X) ∈ GaussLip(C/

√
n).

The function ϕ : R → R in 2a1, 2a2, 11d3, 11d4 (as well as ϕ±k in 11d4)
turns into ϕ : R2 → R; γ1 in 2a1 turns into γ2. And of course, L1[0, 1] in
11d3 turns into L1([0, 1]→ R2).

Theorem 2a2 is thus generalized.
About Theorem 2a3. The definition of T (f) is generalized evidently (γ1

turns into γ2); now T is a Lip(1) function L1([0, 1] → R2) → [0,∞). The
functions ψk : R2 → R2 may be defined by ψk(x) = x if |x| ≤ k, otherwise
ψk(x) = kx/|x|. The Kantorovich-Rubinstein theorem holds for all metric
spaces, in particular R2. Exercise 11e2 generalizes for a disk of R2 (and in
fact for every precompact metric space). Exercise 11e3 and the rest of the
proof remain valid.2

Theorem 2a3 is thus generalized.
All said about R2 holds equally well for Rd, d = 3, 4, . . .

11g Hints to exercises

11d2: Fubini.

Index

approximation lemma, 4

exponentially
concentrated, 1

at zero, 1
decaying, 1

median, 2

sandwich lemma, 2, 3

ExpCon, 1

ExpConInt, 3
ExpConInt(n), 7
ExpConZero, 1
GaussLip, 4
Lip(σ), 4
Me, 2
µ, 6
T , 8
Tk, 8
X(·), 5
X1, . . . , X2n, 5

1And so, the absolute constant C in 11c1 remains intact.
2Still, P

(
T (X) ≥ ε

)
≤ exp

(
−c((ε − αn)+)2n

)
for the same absolute constant c as in

dimension one, and another (worse) sequence αn → 0.
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