11 Random real zeroes: no derivatives

11a	Exponential concentration in general	1
11b	Exponential concentration over Gaussian measures	4
11c	Using assumption A_n	5
11d	Proving Theorem 2a2	7
11e	Proving Theorem 2a3	8
11f	Dimension two, and higher	9
11g	Hints to exercises	10

11a Exponential concentration in general

11a1 Definition. ¹ (a) A sequence $(x_n)_n$ of real numbers is *exponentially decaying*, if

$$\exists \delta > 0, \ C < \infty \ \forall n \ |x_n| \le C e^{-\delta n}$$
.

- (b) A sequence $(X_n)_n$ of random variables $X_n : \Omega_n \to \mathbb{R}$ is exponentially concentrated at zero, if for every $\varepsilon > 0$ the sequence of numbers $\mathbb{P}(|X_n| > \varepsilon)$ is exponentially decaying.
- (c) A sequence $(X_n)_n$ of random variables $X_n : \Omega_n \to \mathbb{R}$ is exponentially concentrated, if there exist $x_n \in \mathbb{R}$ such that $(X_n x_n)_n$ is exponentially concentrated at zero.

Notation:

$$(X_n)_n \in \operatorname{ExpConZero}; \quad (X_n)_n \in \operatorname{ExpCon}.$$

Only the distributions of these X_n matter. For a sequence $(\mu_n)_n$ of probability measures on \mathbb{R} we define the relations $(\mu_n)_n \in \operatorname{ExpConZero}$ and $(\mu_n)_n \in \operatorname{ExpConZero}$ evidently, getting $(X_n)_n \in \operatorname{ExpConZero}$ \iff $(\mu_n)_n \in \operatorname{ExpConZero}$ where μ_n is the distribution of X_n ; and the same for ExpCon. However, the language of random variables is more appropriate in many cases below.

11a2 Exercise. (a) All exponentially decaying sequences of real numbers are a linear space.

(b) ExpConZero is a linear space (for given $(\Omega_n)_n$).

¹Not a standard definition.

(c) Let $(X_n)_n \in \text{ExpConZero}$ and $x_n \in \mathbb{R}$. Then $(X_n - x_n)_n \in \text{ExpConZero}$ if and only if $x_n \to 0$. Prove it.

Thus, the condition $(X_n - x_n)_n \in \text{ExpConZero determines } (x_n)_n$ up to o(1).

Recall that a number x is called a median of a random variable X if

$$\mathbb{P}(X < x) \le \frac{1}{2} \le \mathbb{P}(X \le x).$$

All medians of X are in general a compact nonempty interval (often a single point). Also, x is a median of X if and only if (-x) is a median of (-X).

11a3 Exercise. The following three conditions are equivalent for every sequence of random variables X_n :

- (a) $(X_n)_n \in \text{ExpCon};$
- (b) there exist medians x_n of X_n such that $(X_n x_n)_n \in \text{ExpConZero}$;
- (c) all medians x_n of X_n satisfy $(X_n x_n)_n \in \text{ExpConZero}$. Prove it.

In this sense,

$$(X_n)_n \in \text{ExpCon}$$
 if and only if $(X_n - \text{Me}(X_n))_n \in \text{ExpConZero}$.

The median interval of X_n is of length o(1) whenever $(X_n)_n \in \text{ExpCon}$. Medians cannot be replaced with expectations...

11a4 Exercise. (a) ExpCon is a linear space (for given $(\Omega_n)_n$).

(b) Let $(X_n)_n$, $(Y_n)_n \in \text{ExpCon}$, then $\text{Me}(X_n + Y_n) = \text{Me}(X_n) + \text{Me}(Y_n) + o(1)$.

Formulate it accurately, and prove.

11a5 Exercise. ("Sandwich") Let random variables $Y_n : \Omega_n \to \mathbb{R}$ be such that for every r > 0 there exist $X_n, Z_n : \Omega_n \to \mathbb{R}$ satisfying

$$(X_n)_n, (Z_n)_n \in \operatorname{ExpCon},$$

 $\forall n \ (X_n \leq Y_n \leq Z_n \text{ a.s.}),$
 $\forall n \ \operatorname{Me}(Z_n) - \operatorname{Me}(X_n) \leq r.$

Then $(Y_n)_n \in \text{ExpCon}$. Prove it. Gaussian concentration usually ensures $\mathbb{E}|X_n| < \infty$ (integrability) and $\operatorname{Me}(X_n) - \mathbb{E} X_n \to 0$. Thus, we define ExpConInt (for given Ω_n) as the set of all sequences $(X_n)_n$ where $X_n : \Omega_n \to \mathbb{R}$ are integrable, and

$$(X_n - \mathbb{E} X_n)_n \in \operatorname{ExpConZero}$$
.

This is a linear space.

11a6 Lemma. Let random variables $Y_n : \Omega_n \to \mathbb{R}$ be such that for every $\varepsilon > 0$ there exist $X_n, Z_n : \Omega_n \to \mathbb{R}$ satisfying

$$(X_n)_n, (Z_n)_n \in \text{ExpConInt},$$

 $\forall n \ (X_n \leq Y_n \leq Z_n \text{ a.s.}),$
 $\forall n \ \mathbb{E} Z_n - \mathbb{E} X_n < \varepsilon.$

Then $(Y_n)_n \in \text{ExpConInt}$.

It can be proved similarly to 11a5. However, we need a quantitative version.

First, we note that the relation $(X_n)_n \in \text{ExpConInt}$ may be reformulated as follows: there exist families $(\delta_{\varepsilon})_{\varepsilon}$ and $(C_{\varepsilon})_{\varepsilon}$ of numbers $\delta_{\varepsilon} > 0$, $C_{\varepsilon} < \infty$ given for $\varepsilon > 0$ such that for all n,

$$\forall \varepsilon > 0 \quad \mathbb{P}(|X_n - \mathbb{E} X_n| > \varepsilon) \le C_{\varepsilon} e^{-\delta_{\varepsilon} n}.$$

Second, in order to get $\mathbb{P}(|Y_n - \mathbb{E} Y_n| > \varepsilon) \leq C_{\varepsilon} e^{-\delta_{\varepsilon} n}$ in the conclusion of "Sandwich", we require $\mathbb{P}(|X_n - \mathbb{E} X_n| > \varepsilon) \leq C_{r,\varepsilon} e^{-\delta_{r,\varepsilon} n}$ (and the same for Z_n) in the assumption; here r is the parameter denoted by r in 11a5.

The lemma below constructs δ_{ε} and C_{ε} for given $\delta_{r,\varepsilon}$ and $C_{r,\varepsilon}$. The formulas are simple, but will not be used; rather, their existence will be used.

11a7 Lemma. ("Sandwich") Let positive numbers $\delta_{r,\varepsilon}$ and $C_{r,\varepsilon}$ be given for all positive r and ε . Let random variables $Y_n:\Omega_n\to\mathbb{R}$ be such that for every r>0 there exist $X_n,Z_n:\Omega_n\to\mathbb{R}$ satisfying

$$\forall n, \varepsilon \quad \mathbb{P}(|X_n - \mathbb{E} X_n| > \varepsilon) \leq C_{r,\varepsilon} e^{-\delta_{r,\varepsilon} n},$$

$$\forall n, \varepsilon \quad \mathbb{P}(|Z_n - \mathbb{E} Z_n| > \varepsilon) \leq C_{r,\varepsilon} e^{-\delta_{r,\varepsilon} n},$$

$$\forall n \quad (X_n \leq Y_n \leq Z_n \text{ a.s.}),$$

$$\forall n \quad \mathbb{E} Z_n - \mathbb{E} X_n \leq r.$$

Then

$$\forall n, \varepsilon \quad \mathbb{P}(|Y_n - \mathbb{E}Y_n| > \varepsilon) \le C_{\varepsilon} e^{-\delta_{\varepsilon} n}$$

where $\delta_{\varepsilon} = \delta_{\varepsilon/2,\varepsilon/2}$ and $C_{\varepsilon} = 2C_{\varepsilon/2,\varepsilon/2}$.

11a8 Exercise. Prove Lemma 11a7.

11a9 Lemma. ("Approximation") Let integrable random variables $X_n: \Omega_n \to \mathbb{R}$ be such that for every $\varepsilon > 0$ there exist $Y_n: \Omega_n \to \mathbb{R}$ satisfying

$$(Y_n)_n \in \text{ExpConInt}$$
,

the sequence of numbers $\mathbb{P}(|X_n - Y_n| > \varepsilon)$ is exponentially decaying, $\forall n \mid \mathbb{E} X_n - \mathbb{E} Y_n | \le \varepsilon$.

Then $(X_n)_n \in \text{ExpConInt}$.

11a10 Exercise. Prove Lemma 11a9.

Here is a quantitative version. The assumption $(Y_n)_n \in \text{ExpConInt}$ is weakened (to a single ε ...). The same δ_{ε} , C_{ε} are used in two assumptions, which is not a problem (just take the minimum of two δ_{ε} and the sum of two C_{ε}).

11a11 Lemma. ("Approximation") Let positive numbers δ_{ε} and C_{ε} be given for all positive ε . Let random variables $X_n : \Omega_n \to \mathbb{R}$ be such that for every $\varepsilon > 0$ there exist $Y_n : \Omega_n \to \mathbb{R}$ satisfying

$$\forall n \quad \mathbb{P}(|Y_n - \mathbb{E} Y_n| > \varepsilon) \le C_{\varepsilon} e^{-\delta_{\varepsilon} n},$$

$$\forall n \quad \mathbb{P}(|X_n - Y_n| > \varepsilon) \le C_{\varepsilon} e^{-\delta_{\varepsilon} n},$$

$$\forall n \quad |\mathbb{E} X_n - \mathbb{E} Y_n| \le \varepsilon.$$

Then

$$\forall n, \varepsilon \quad \mathbb{P}(|X_n - \mathbb{E} X_n| > \varepsilon) \le 2C_{\varepsilon/3} e^{-\delta_{\varepsilon/3} n}.$$

11a12 Exercise. Prove Lemma 11a11.

11b Exponential concentration over Gaussian measures

If a function $\xi : \mathbb{R}^d \to \mathbb{R}$ is $\operatorname{Lip}(\sigma)$ for a given $\sigma > 0$ then Theorem 1a2 gives $\xi[\gamma^d] = f[\gamma^1]$ for an increasing $f : \mathbb{R} \to \mathbb{R}$, $f \in \operatorname{Lip}(\sigma)$. Let us denote by GaussLip (σ) the set of all such random variables. Clearly, f(0) is the only median of ξ , and¹

$$\begin{split} \mathbb{P}\left(|\xi - \operatorname{Me}(\xi)| > \varepsilon\right) &= \mathbb{P}\left(|f(\zeta) - f(0)| > \varepsilon\right) \leq \\ &\leq \mathbb{P}\left(|\zeta| > \varepsilon/\sigma\right) \leq C \exp\left(-\frac{\varepsilon^2}{2\sigma^2}\right) \end{split}$$

 $^{^{1}\}zeta \sim \gamma^{1}$ as before.

for some absolute constant C.¹ Also, $|\text{Me}(\xi) - \mathbb{E}\xi| = |f(0) - \int f \,d\gamma^1| \le C\sigma$ for another absolute constant C.² It follows easily that

(11b1)
$$\mathbb{P}(|\xi - \mathbb{E}\xi| > \varepsilon) \le C \exp\left(-c\frac{\varepsilon^2}{2\sigma^2}\right)$$

for some absolute constants c, C^{3} and, of course,

(11b2)
$$\mathbb{E}\left|\xi - \mathbb{E}\,\xi\right| \le C\sigma$$

for some absolute constant C.

11c Using assumption A_n

We consider the Gaussian random function $X(\cdot)$ introduced in Sect. 2a as a linear function of the independent N(0,1) random variables X_1, \ldots, X_{2n} (via a_1, \ldots, a_N and $\lambda_1, \ldots, \lambda_N$) under the assumption A_n (also introduced in Sect. 2a). Here is a non-probabilistic property of the linear operator $\mathbb{R}^{2n} \to L_2[0,1]$.

11c1 Proposition.

$$\int_0^1 X^2(t) \, \mathrm{d}t \le \frac{C}{n} (X_1^2 + \dots + X_{2N}^2)$$

for some absolute constant C.

11c2 Remark. Assumption A_n requires also assumption A, namely $\sum_k a_k^2 = 1$, but we do not need it here; we use only the assumption

$$\forall \lambda \in [0, \infty)$$
 $\sum_{k: \lambda_k \in [\lambda, \lambda+1]} a_k^2 \le \frac{1}{n}.$

Given $f \in L_2[0,1]$, we consider the random variable

$$\langle f, X \rangle = \int_0^1 f(t)X(t) dt;$$

this is a linear combination of X_1, \ldots, X_{2n} , thus $\langle f, X \rangle \sim N(0, \operatorname{Var}\langle f, X \rangle)$.

$$\frac{{}^{1}C = \sup_{t>0} \mathrm{e}^{t^{2}/2} \cdot 2 \int_{t}^{\infty} (2\pi)^{-1/2} \mathrm{e}^{-u^{2}/2} \, \mathrm{d}u = 2 \sup_{t>0} (2\pi)^{-1/2} \int_{0}^{\infty} \exp(-\frac{s^{2}}{2} - ts) \, \mathrm{d}s = 1. }$$

⁵But under assumption A only, the operator need not be of small norm; just try N=1.

³Here and henceforth, constants c and C (possibly with indices) are positive. They may be different in different formulas.

⁴In fact, c=1 and C=2. Moreover, $\mathbb{P}(\xi - \mathbb{E}\xi > \varepsilon) \leq 2\mathbb{P}(\sigma\zeta > \varepsilon)$ (Cirel'son, Ibragimov, Sudakov 1976), thus, $\mathbb{P}(\xi - \mathbb{E}\xi > \varepsilon) \leq \exp(-\frac{\varepsilon^2}{2\sigma^2})$.

11c3 Exercise. Deduce 11c1 from the following claim (to be proved soon):

$$\operatorname{Var}\langle f, X \rangle \le \frac{C}{n} ||f||^2$$
.

11c4 Exercise. Prove that

$$\operatorname{Var}\langle f, X \rangle = \sum_{k=1}^{N} a_k^2 |g(\lambda_k)|^2,$$

where $g(\lambda) = \int_0^1 e^{i\lambda t} f(t) dt$.

It is well-known that $||g||_2^2 = 2\pi ||f||_2^2$. Thus, the claim in 11c3 boils down to¹

$$\sum a_k^2 |g(\lambda_k)|^2 \le C ||g||^2 \sup_{\lambda} \sum_{k: \lambda_k \in [\lambda, \lambda+1]} a_k^2,$$

which may be rewritten as

(11c5)
$$\int |g|^2 d\mu \le C \left(\int |g|^2 dm \right) \sup_{\lambda} \mu([\lambda, \lambda + 1])$$

where $\mu = \sum_{k} a_k^2 \delta_{\lambda_k}$ (a discrete measure), and m is the Lebesgue measure.

The idea is, roughly, that g cannot be nearly concentrated on a short interval, because f is concentrated on an interval of length 1. The proof, given below, uses Fourier transform $(\varphi \mapsto \hat{\varphi})$ and convolution (*). If you are familiar with these, keep reading. Otherwise feel free to skip the rest of 11c.

11c6 Lemma. There exist even real-valued functions $\varphi \in L_{\infty}[-0.5, 0.5] \subset L_1(\mathbb{R})$ and $\psi \in L_1(\mathbb{R})$ such that $\hat{\varphi}(x)\hat{\psi}(x) = 1$ for all $t \in [-1, 1]$.

Proof. We take $\varphi(t) = \text{const}$ on [-0.5, 0.5] (and 0 outside), $\hat{\varphi}(t) = \frac{1}{t} \sin \frac{t}{2}$, note that $\hat{\varphi}(\cdot)$ does not vanish on [-1, 1], $1/\hat{\varphi}(\cdot)$ is smooth on [-1, 1] and therefore can be extended to a smooth compactly supported function $\hat{\psi}(\cdot)$; its Fourier transform is integrable, since it decays fast enough.

Proof of the proposition. The function $|g(\cdot)|^2$ is the Fourier transform of a function supported on [-1,1] and therefore invariant under multiplication by $\hat{\varphi}\hat{\psi}$. It means that $|g|^2 = |g|^2 * \varphi * \psi$. Thus,

$$\int |g|^2 d\mu = \langle |g|^2 * \psi, \mu * \varphi \rangle \le ||g|^2 * \psi||_1 ||\mu * \varphi||_{\infty};$$

$$||g|^2 * \psi||_1 \le ||g|^2 ||_1 ||\psi||_1 = ||g||_2^2 ||\psi||_1 \le C ||g||_2^2;$$

$$||\mu * \varphi||_{\infty} \le ||\varphi||_{\infty} \sup_{\lambda} \mu ([\lambda - 0.5, \lambda + 0.5]) \le C \sup_{\lambda} \mu ([\lambda, \lambda + 1]),$$

which gives (11c5).

 $^{^{1}}$ Do not forget that C may be different in different formulas.

11d Proving Theorem 2a2

If $\xi: L_2[0,1] \to \mathbb{R}$ is Lip(1) then $\xi(X)$, treated as a function of X_1, \ldots, X_{2N} , is a Lip (C/\sqrt{n}) function $\mathbb{R}^{2N} \to \mathbb{R}$ (by 11c1). Thus, $\xi(X) \in \text{GaussLip}(C/\sqrt{n})$. By (11b1),¹

(11d1)
$$\mathbb{P}(|\xi - \mathbb{E}\xi| > \varepsilon) \le C \exp(-c\varepsilon^2 n)$$

for some absolute constants c, C. In this sense, abusing the language, we write (under assumption A_n)

$$\xi \in \operatorname{ExpConInt}(n)$$

whenever ξ is Lip(1) on $L_2[0,1]$, or Lip(C) for some C not depending on n. Usually, a stronger condition will be satisfied: ξ is Lip(C) on $L_1[0,1]$.

11d2 Exercise. Prove Lemma 2a1.

11d3 Exercise. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be Lip(1). Then the function $\xi : L_1[0,1] \to \mathbb{R}$,

$$\xi(x) = \int_0^1 \varphi(x(t)) \, \mathrm{d}t \,,$$

is well-defined and Lip(1).

Prove it.

Thus, for such φ the random variable

$$\xi = \int_0^1 \varphi(X(t)) \, \mathrm{d}t$$

satisfies

$$\xi \in \text{GaussLip}(C/\sqrt{n}); \quad \xi \in \text{ExpConInt}(n)$$

with absolute constants (as in (11d1)).

Now let φ be as in Theorem 2a2 (continuous a.e., of linear growth). We introduce for every k

$$\varphi_k^-(x) = \inf_y (\varphi(y) + k|y - x|), \quad \varphi_k^+(x) = \sup_y (\varphi(y) - k|y - x|).$$

11d4 Exercise. (a) φ_k^-, φ_k^+ are Lip(k) functions $\mathbb{R} \to \mathbb{R}$ for all k large enough:²

(b) $\varphi_k^- \uparrow \varphi$ and $\varphi_k^+ \downarrow \varphi$ almost everywhere;

¹I often write just ξ instead of $\xi(X)$.

 $^{^{2}}$ Do you understand why not just "for all k"?

(c) there exists C_{φ} such that for all k large enough and all x

$$-C_{\varphi}(1+|x|) \le \varphi_k^-(x) \le \varphi_k^+(x) \le C_{\varphi}(1+|x|).$$

Prove it.

It follows (using Fubini and the dominated convergence theorem) that $\mathbb{E}\,\xi_k^- \uparrow \mathbb{E}\,\xi$ and $\mathbb{E}\,\xi_k^+ \downarrow \mathbb{E}\,\xi$ a.s., where $\xi_k^{\pm} = \int_0^1 \varphi_k^{\pm}(X(t)) \,\mathrm{d}t$. We have a "sandwich"; and so, Theorem 2a2 follows by 11a7. (The upper bound $2\mathrm{e}^{-c_{\varepsilon,\varphi}n}$ is not stronger than $C_{\varepsilon,\varphi}\mathrm{e}^{-c_{\varepsilon,\varphi}n}$ since $c_{\varepsilon,\varphi}$ can be made smaller.)

11e Proving Theorem 2a3

The function T was defined in Sect. 2a on C[0,1], but the same definition works on $L_1[0,1]$ and evidently gives a Lip(1) function $T:L_1[0,1]\to [0,\infty)$. It follows that $T(X)\in \operatorname{ExpConInt}(n)$. However, Theorem 2a3 states that $T(X)\in \operatorname{ExpConZero}(n)$. Thus, it is sufficient to prove that $\mathbb{E} T(X)\leq \varepsilon_n\to 0$.

We modify T as follows:

$$T_k(f) = \inf_{g} \|\psi_k(f(\cdot)) - \psi_k(g(\cdot))\|_1$$

where g is as before (distributed γ^1), and $\psi_k(x) = \text{mid}(-k, x, k)$, that is, -k for $x \in (-\infty, -k]$; x for $x \in [-k, k]$; and k for $x \in [k, \infty)$. We have

$$\mathbb{E} |T_k(X(\cdot)) - T(X(\cdot))| \le \mathbb{E} \|\psi_k(X(\cdot)) - X(\cdot)\|_1 + \|\psi_k(g(\cdot)) - g(\cdot)\|_1 =$$

$$= 2 \int |\psi_k(x) - x| \, \gamma^1(\mathrm{d}x) \to 0$$

as $k \to \infty$. It remains to prove that $\mathbb{E} T_k(X) \le \varepsilon_{k,n} \to 0$ as $n \to \infty$.

11e1 Exercise. For every $f \in L_1[0,1]$ and every Lip(1) function $\varphi : \mathbb{R} \to \mathbb{R}$,

$$\left| \int_0^1 \varphi(f(t)) dt - \int \varphi d\gamma^1 \right| \le T(f).$$

Prove it.

It is well-known that 1

$$\sup_{\varphi} \left| \int_{0}^{1} \varphi(f(t)) dt - \int \varphi d\gamma^{1} \right| = T(f),$$

where the supremum is taken over all Lip(1) functions $\mathbb{R} \to \mathbb{R}$. (I use this fact without proof.) Clearly we may demand $\varphi(0) = 0$.

¹Kantorovich-Rubinstein theorem. This T(f) is nothing but the transportation distance between γ^1 and the distribution of f. This fact is evident when f is a step function. It extends to the whole $L_1[0,1]$ by continuity.

11e2 Exercise. For every k and ε there exists a finite set of Lip(1) functions $\varphi_1, \ldots, \varphi_N : [-k, k] \to \mathbb{R}$ such that $\varphi_1(0) = 0, \ldots, \varphi_N(0) = 0$, and every Lip(1) function $\varphi : [-k, k] \to \mathbb{R}$ such that $\varphi(0) = 0$ is ε -close to some φ_i uniformly on [-k, k].

Prove it.

11e3 Exercise. Prove that

$$T_k(f) \leq 2\varepsilon + \max_{i=1,\dots,N} \left| \int_0^1 \varphi_i(\psi_k(f(t))) dt - \int \varphi_i(\psi_k(\cdot)) d\gamma^1 \right|.$$

The function $\varphi_i(\psi_k(\cdot))$ is Lip(1), thus the random variable $\xi_{i,k} = \int_0^1 \varphi_i(\psi_k(X(t))) dt$ belongs to GaussLip (C/\sqrt{n}) . By (11b2), $\mathbb{E} |\xi_{i,k} - \mathbb{E} \xi_{i,k}| \le C/\sqrt{n}$. Thus,

$$\mathbb{E} T_k(X) \le 2\varepsilon + \mathbb{E} \max_{i=1,\dots,N} |\xi_{i,k} - \mathbb{E} \xi_{i,k}| \le 2\varepsilon + N_{k,\varepsilon} \cdot \frac{C}{\sqrt{n}},$$

which can be made small enough by choosing ε first and n afterwards. That is, $\mathbb{E} T_k(X) \leq \varepsilon_{k,n} \to 0$ as $n \to \infty$, which completes the proof.¹

11f Dimension two, and higher

Returning to the definition of $X(\cdot)$ given in Sect. 2a via a_1, \ldots, a_N and $\lambda_1, \ldots, \lambda_N$, we replace the numbers $a_1, \ldots, a_N > 0$ with vectors $a_1, \ldots, a_N \in \mathbb{R}^2$, thus getting $X : \mathbb{R} \to \mathbb{R}^2$; we endow \mathbb{R}^2 with the Euclidean norm $x \mapsto |x|$. Further, all occurrences of a_k^2 (in assumptions A and A_n , and everywhere) turn into $|a_k|^2$, and all occurrences of $X^2(t)$ (in Prop. 11c1, and everywhere) into $|X(t)|^2$. We also replace the requirement $0 < \lambda_1 < \cdots < \lambda_N < \infty$ with a weaker requirement $0 < \lambda_1 \le \cdots \le \lambda_N < \infty$, thus allowing a single frequency to cover more than one dimension. The distribution of the process X fails to determine uniquely the vectors a_k , but still determines the measure $\sum_k |a_k|^2 \delta_{\lambda_k}$, since

$$\mathbb{E}\langle X(0), X(t)\rangle = \sum_{k=1}^{N} |a_k|^2 \cos \lambda_k t.$$

¹In fact, $\mathbb{P}(T(X) \geq \varepsilon) \leq \exp(-c((\varepsilon - \alpha_n)^+)^2 n)$ for some absolute constant c and some $\alpha_n \to 0$ (depending on n only). It is like the large deviations principle with the rate function $I(\varepsilon) \geq c\varepsilon^2$.

²Think, what does it change in the one-dimensional case.

Still, 11c3 and 11c4 hold, but $f \in L_2[0,1]$ turns into $f \in L_2([0,1] \to \mathbb{R}^2)$, and 11c4 becomes

$$\operatorname{Var}\langle f, X \rangle = \sum_{k=1}^{N} |\langle a_k, g(\lambda_k) \rangle|^2 \le \sum_{k=1}^{N} |a_k|^2 |g(\lambda_k)|^2.$$

Nothing changes in the rest of Sect. 11c (it is about the measure $\mu = \sum_{k} |a_{k}|^{2} \delta_{\lambda_{k}}$).

Thus, 11c1 gives us a linear operator $\mathbb{R}^{2N} \to L_2([0,1] \to \mathbb{R}^2)$ of norm $\leq C/\sqrt{n}$. If $\xi: L_2([0,1] \to \mathbb{R}^2) \to \mathbb{R}$ is Lip(1) then $\xi(X) \in \text{GaussLip}(C/\sqrt{n})$.

The function $\varphi : \mathbb{R} \to \mathbb{R}$ in 2a1, 2a2, 11d3, 11d4 (as well as φ_k^{\pm} in 11d4) turns into $\varphi : \mathbb{R}^2 \to \mathbb{R}$; γ^1 in 2a1 turns into γ^2 . And of course, $L_1[0,1]$ in 11d3 turns into $L_1([0,1] \to \mathbb{R}^2)$.

Theorem 2a2 is thus generalized.

About Theorem 2a3. The definition of T(f) is generalized evidently $(\gamma^1 \text{ turns into } \gamma^2)$; now T is a Lip(1) function $L_1([0,1] \to \mathbb{R}^2) \to [0,\infty)$. The functions $\psi_k : \mathbb{R}^2 \to \mathbb{R}^2$ may be defined by $\psi_k(x) = x$ if $|x| \le k$, otherwise $\psi_k(x) = kx/|x|$. The Kantorovich-Rubinstein theorem holds for all metric spaces, in particular \mathbb{R}^2 . Exercise 11e2 generalizes for a disk of \mathbb{R}^2 (and in fact for every precompact metric space). Exercise 11e3 and the rest of the proof remain valid.²

Theorem 2a3 is thus generalized.

All said about \mathbb{R}^2 holds equally well for \mathbb{R}^d , $d = 3, 4, \dots$

11g Hints to exercises

11d2: Fubini.

Index

approximation lemma, 4	ExpConInt, 3 ExpConInt (n) , 7
exponentially	ExpConTero, 1
concentrated, 1	GaussLip, 4
at zero, 1	$\operatorname{Lip}(\sigma), \stackrel{\circ}{4}$
decaying, 1	Me, 2
median, 2	$egin{array}{c} \mu,6\ T,8 \end{array}$
sandwich lemma, $2, 3$	$T_k, 8$ $X(\cdot), 5$
ExpCon, 1	$X_1, \ldots, X_{2n}, 5$

 $^{^{1}}$ And so, the absolute constant C in 11c1 remains intact.

²Still, $\mathbb{P}(T(X) \ge \varepsilon) \le \exp(-c((\varepsilon - \alpha_n)^+)^2 n)$ for the same absolute constant c as in dimension one, and another (worse) sequence $\alpha_n \to 0$.