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Abstract

A Graph Construction Game is a Maker-Breaker game. Maker and Breaker take turns in
choosing previously unoccupied edges of the complete graph KN . Maker’s aim is to claim a copy
of a given target graph G while Breaker’s aim is to prevent Maker from doing so. In this paper we
show that if G is a d-degenerate graph on n vertices and N > d1122d+9n, then Maker can claim a
copy of G in at most d1122d+7n rounds. We also discuss a lower bound on the number of rounds
Maker needs to win, and the gap between these bounds.

1 Introduction to graph construction games

Let H = (V,E) be a hypergraph, that is, V = V (H) is a finite set (the vertices of H) and E = E(H)
is a family of subsets of V (the hyperedges of H). Two players Maker and Breaker play the following
game:

Both players take turns in claiming the vertices of the board H (each vertex can be claimed only
once). If at any time during the game Maker claims a complete hyperedge of H, called a winning set,
we say Maker won the game. If the entire board is claimed and yet Maker fails to claim a complete
hyperedge of H – we say Breaker wins.

Such a game is called a Weak Positional Game on the hypergraph H; it is called Weak to
distinguish it from the Strong game where both players compete to be the first to claim a complete
hyperedge of H. The hypergraph along with the sets of Maker’s and Breaker’s claimed vertices is
called a Game Position. A pair of consecutive turns – the first played by Maker and the second
played by Breaker is called a round. For a survey of the general theory of positional games the
interested reader is referred to a paper by Beck [4], or to a recent extensive monograph [5].

An important class of weak positional games is the class of Graph Construction Games. In a
graph construction game two players, Maker and Breaker, take turns in claiming the edges of the
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complete graph Kn. Maker’s goal is to claim a copy of some graph G while Breaker’s goal is to
prevent him from doing so. Since this paper deals solely with graph construction games, let us define
these formally:

Definition 1.1. (Graph construction game) Let G be a graph. The graph construction game of G
on KN , denoted (KN , G) is defined to be the weak game on the hypergraph H, whose vertices are
edges of the complete graph KN , and whose hyperedges are the edge sets of copies of G in KN .

When one encounters a weak game, two of the most natural questions that arise are “Who wins?”,
and – if Maker wins – “How quickly can victory be achieved?”. It is not difficult to see that if for
some N0, the game (KN0 , G) can be won by Maker, then for every N > N0 Maker can also win
(KN , G) at least as quickly using the same winning strategy and ignoring the extra vertices and
edges. This fact implies that for every G the number of turns Breaker can delay Maker’s victory in
(KN , G) is non-increasing in N . We also know that (KN , G) cannot be won by Maker when N is
smaller then the number of vertices in G, since the game hypergraph has no winning sets. However,
Beck showed [3] that there exists an explicit winning strategy for Maker in (K2n ,Kn). Since Kn

contains every graph G of n vertices, we can apply the same strategy for winning (K2n , G). Hence,
for every graph G there exists N0 large enough such that Maker can win (KN0 , G). We can therefore
reduce our study to the following couple of questions:
Given a graph G,

• What is the minimal N such that (KN , G) is won by Maker?

• For N for which Maker wins (KN , G), for how many rounds can Breaker delay Maker’s victory?

Since for every G the number of turns Breaker can delay Maker’s victory in (KN , G) is non-
increasing in N we may wish to replace our second question with the following:

• For how many rounds can Breaker delay Maker’s victory in (KN , G) for all N?

In this paper we try to give bounds for both questions constructively; that is to say, through the
description of a fast and explicit winning strategy for the first player, and through the description of
a delay strategy for Breaker. In fact, we will mostly concentrate on the second question and derive
bounds for the first one from results on the length of the game.

One can expect different graphs with the same number of vertices to differ greatly in the answer
to both questions, and that denser graphs are harder (take more turns) to build. For example, due
to Pekeč and to Beck [8], [3] we know that the minimal N such that the Clique Game (KN ,Kn) is
won by Maker is N = P (n)2n/2 where P is a polynomial1, and that for N large enough Maker can
win (KN ,Kn) in less than 2n+2 turns, but cannot win in less than 2n/2 turns. However, constructing

1Actually Beck describes the exact board-size in [3].
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a star of order n can easily be done on K2n as the board and in n rounds. These examples show us
that the order of G is far from being enough to determine both board-size and game-length required
for Maker to win.

Another class of graphs that has been treated in the literature in this regard is that of graphs
with bounded degree. Beck proved in [2] that if N ≥ P (d)3d · n, then in a Maker-Breaker game
played on the edges of KN Maker can create a universal graph for the class of graphs on n vertices
with maximum degree d, i.e., a graph that contains all such graphs. This immediately implies that a
board-size linear in n (with a coefficient of order 3d) is sufficient to construct a graph on n vertices of
maximum degree d. Yet, Beck’s approach can only give an upper bound on the game-length which
is quadratic in n. Our result yields an upper bound on game-length for such graphs, which is linear
in n.

In this paper we show that the degeneracy of G is a key graph theoretic parameter when analyzing
graph construction games.

Definition 1.2. (d-degenerate graph) A graph G is called d-degenerate if every subgraph of G
contains some vertex with degree d or less. We call the minimal d such that G is d-degenerate the
degeneracy of G.

The most important property of a d-degenerate graph is that it has a d-degenerate ordering.

Definition 1.3. (d-degenerate ordering) Let G = (V,E) be a graph. An ordering σ = v1, ..., vn of V
is called a d-degenerate ordering if every vertex vi has at most d neighbors among {vi+1, ..., vn}.

Note that if a graph has maximum degree at most d, then it is d-degenerate, and every ordering
of its vertices is a d-degenerate ordering. We also define:

Definition 1.4. (degenerate indegree) Let G = (V,E) be a graph, let σ = v1, ..., vn be a d-degenerate
ordering of G, and let vi ∈ V be a vertex of G.

We define d−(vi) the indegree of vi with respect to σ to be the number of neighboring vertices vi

has among v1, ..., vi−1.

In the rest of the paper we assume G is a d-degenerate graph of order n whose vertices are
{1, 2, ..., n}, ordered according to some d-degenerate ordering.

In order to distinguish in our proof between vertices of G and vertices of KN we mark the vertices
of KN with a star.

We also use N(v) to denote the set of neighbors of a vertex v in G.
Our main result is that among graphs with bounded degeneracy, both the threshold for victory,

and the length of the game depend linearly on the number of vertices:

Theorem 1. (Quick victory theorem) Let G be a d-degenerate graph on n vertices. For every natural
N > d1122d+9n, Maker can win the game (KN , G) in at most d1122d+7n rounds.
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We learn from this result that the order of the target graph has a relatively small impact on the
length of the construction game. We will see that the reason for this fact is that graphs which are
sparse (in the sense of degeneracy) can be built fast using a local strategy.

Clearly the bound stated in Theorem 1 applies to every graph G of maximum degree d on n

vertices.
We also show a simple lower bound for the length of a sparse graph construction game:

Theorem 2. (Long game theorem) Let G be a graph of order n with m edges. Let k = |aut(G)| be
the number of automorphisms of G. For every N < (2m−1k)1/n the game (KN , G) is won by Breaker.
Also, the game (KM , G) cannot be won by Maker in less than 1

2(2m−1k)1/n rounds, for every M .

Using Theorem 2 we can give a lower bound for the board-size and the game-length required for
Maker to win. Applying the bound to complete bipartite graphs, we obtain a family of d-degenerate
graphs that cannot be constructed by Maker much faster than our strategy suggests:

Corollary 1. (The bounds are relatively close) For every d and n such that 1 ≤ d < n, there exists

a d-degenerate graph G on n vertices such that for N < 2d− d2

n
− 1

n (d!(n − d)!)
1
n , the game (KN , G)

is won by Breaker. Also, for every M the game (KM , G) cannot be won by Maker in less than

2d−1− d2

n
− 1

n (d!(n− d)!)
1
n rounds.

Observe that for a fixed d and a large n, the last quantity behaves as c2dn for an absolute constant
c > 0, showing that the upper bound obtained in Theorem 1 cannot be improved much in the general
d-degenerate case.

Our interest in these results stems in part from their relation to the famous Burr-Erdős conjecture
[6], and the study of Ramsey Numbers of different graph families, in particular of d-degenerate graphs
and graphs with bounded degree. The Ramsey Number of a graph G, denoted by r(G) is the smallest
integer n such that the edges of Kn can not be divided into two disjoint sets, neither of which contains
a copy of G. We know that if N ≥ r(G) then a draw in (KN , G) is impossible. We can then deduce
using the Strategy Stealing argument that Maker has a winning strategy for (KN , G) (though this
approach does not reveal us how to describe that strategy explicitly). The Burr-Erdős conjecture
asserts that for d-degenerate graphs, r(G) < Cn where n is the number of vertices of G, and C is
a constant depending only on the degeneracy d of G. So far this conjecture has been settled for
several cases including graphs with bounded degree. Our results thus support this conjecture. The
value of our proof in the case of graphs with bounded degrees, or in other cases where the Burr-
Erdős conjecture is settled, is partly given by its constructive nature, unlike its Ramsey theory-based
counterpart (which relies on the inherently non-constructive strategy stealing argument); it also deals
with the dependency between C and the degeneracy d of G.
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2 Playing d-degenerate graph construction games

In this section we prove Theorem 1 by describing a quick winning strategy for Maker. Let us first
describe a sketch of the proof.

Maker sequentially produces for every vertex j in G several vertices in KN , amongst which we
will eventually pick one to play the role of j in Maker’s claimed copy of G. We call such vertices
j-candidates. Every j-candidate v∗j in KN will have the property that for every i < j, if vertices
i and j of G have an edge between them, then there will be many i-candidates connected to it by
some edge claimed by Maker. Moreover, we require, for every set i < i1 < i2 < . . . < ik of k vertices
neighboring i in G, and for every choice v∗i1 , v

∗
i2
, . . . , v∗ik of their respective candidates, to have at

least one suitable candidate for i, connected to all of them. Having achieved this, we will be able to
show that a copy of G exists in Maker’s claimed graph, simply by picking its vertices one-at-a-time,
in reverse order, meeting the requirements for edges between them.

In the sketch of the proof, we mentioned the concept of a candidate vertex ; it is not surprising
that the fact that a specific vertex in KN functions as a candidate for some vertex in G depends on
which vertices of KN are the candidates for other vertices of G. Our strategy will advise Maker to
construct candidate vertices one by one, starting from candidates for the first vertex in G and moving
forward. As part of preparation for the proof of Theorem 1, we now give a definition for candidate
vertices that relies only on candidates for preceding vertices in G. Moreover, since our construction
treats every edge in G separately, it will be wise to start by defining first a Vertex Candidate with
respect to a Specific Edge.

Definition 2.1. (Vertex candidate w.r. to a specific edge) Let G be a d-degenerate graph of order
n, and let (i,m) ∈ E(G) with i < m. Let H∗ be a position in (KN , G), let b∗ be a vertex of KN and
let B∗ = (B∗1 , B

∗
2 , . . . , B

∗
m−1) be a family of non-empty pairwise disjoint vertex sets of KN − {b∗}.

Let (v1, . . . , vk) be the set of neighbors of i in G in the interval {i+ 1, ...,m = vk}, ordered according
to the ordering of the vertices of G. We say that b∗ is a candidate for m with respect to the edge
(i,m) and the candidate family B∗, if for every choice of vertices b∗1 ∈ B∗v1

, b∗2 ∈ B∗v2
, ..., b∗k−1 ∈ B∗vk−1

one has: ∣∣{u∗|u∗ ∈ B∗i ,Maker claimed (u∗, b∗), (u∗, b∗1), . . . , (u∗, b∗k−1) in H∗}
∣∣

|B∗i |
≥ 1
k2k

.

Now that we have a definition for a candidate with respect to an edge, we can define a candidate
with respect to a vertex of G, as a vertex which functions as a candidate with respect to every edge
of G connecting that vertex to a vertex preceding it.

Definition 2.2. (Vertex candidate) Let G be a d-degenerate graph of order n, let m ∈ V (G) be a
vertex of G, let H∗ be a position in (KN , G), let b∗ be a vertex of KN and let B∗ = (B∗1 , B

∗
2 , . . . , B

∗
m−1)

be a family of non-empty pairwise disjoint vertex sets of KN−{b∗}. If for every i ∈ N(m)∩{1, ...,m−
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1}, b∗ is a candidate for m with respect to (i,m) and B∗, then b∗ is a candidate for m with respect
to B∗.

Finally we would like to define a candidate scheme in a manner that will support our inductive
construction.

Definition 2.3. (Candidate scheme) Let G be a d-degenerate graph of order n, and let H∗ be a
position in (KN , G). An ordered family B∗ = (B∗1 , B

∗
2 , . . . , B

∗
m) of non-empty pairwise disjoint vertex

sets of KN is called a candidate scheme for the first m vertices of G if for every 2 ≤ i ≤ m and for
every b∗i ∈ B∗i , b∗i is a candidate for i with respect to (B∗1 , ..., B

∗
i−1).

Note that a candidate scheme is designed to allow construction of B∗ sequentially according to
the degenerate order of the graph. It is also clear that in a specific game, once a vertex of KN

becomes a candidate for some vertex in G with respect to a candidate scheme B∗, it will maintain
this property for the rest of the game.

We show next that if Maker was able to construct in KN a candidate scheme containing enough
candidate vertices for each vertex of G, then he has already claimed a copy of G in KN .

Lemma 2.1. Let G be a d-degenerate graph of order n, let H∗ be a position in (KN , G). If there
exists a candidate scheme B∗ = (B∗1 , B

∗
2 , ..., B

∗
n) in G, such that |B∗i | ≥ d2d for every i ∈ 1, .., n, then

there exists a copy of G in H∗ entirely claimed by Maker.

Proof. Let us define M∗ ⊂ H∗ as the graph composed of Maker’s claimed edges. We construct an
embedding φ : G −→M∗ starting from φ(n) and moving down to φ(1) using induction.

First, we choose an arbitrary vertex b∗ ∈ B∗n and a set φ(n) = b∗.
Let us assume that we have already defined φ(n), ..., φ(i+1) so that φ(j) ∈ B∗j , i+1 ≤ j ≤ n, and

that they embed n, ..., i+ 1 properly. By the degeneracy of G we know that i has most d neighbors
in [i+ 1, . . . , n] in G, let us mark them as v1, . . . , vt according to their order in G, where t ≤ d. Since
φ(vt) is a candidate for vt with respect to (B∗1 , B

∗
i+2, . . . , B

∗
vt−1

) we know that :

|{u∗|u∗ ∈ B∗i ,Maker claimed (u∗, φ(v1)), . . . , (u∗, φ(vt)) in H∗}| > |B
∗
i |

t2t
≥ d2d

t2t
≥ 1 .

Let us choose one of these vertices as φ(i). From the way we chose φ(i) it is clear that φ(n), ..., φ(i)
is a proper embedding of the last n− i+ 1 vertices of G.

We can continue this process until φ defines an embedding of G in M∗. The image of the
embedding is a graph isomorphic to G, and entirely claimed by Maker.

All that remains is to show that the conditions for applying Lemma 1 can be met. In order to
provide with such a construction, we need the concept of an untouched vertex.
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Definition 2.4. (Untouched vertex) Let G be a graph and let H∗ be a position in the game (KN , G).
A vertex v ∈ KN is called untouched in H∗ if neither Maker nor Breaker claimed any of the edges
containing it.

The existence of an untouched vertex is certain as long as less than N/4 rounds are played, since
at every round no more than four vertices can be touched. Our intention is to show that once a
large candidate scheme of the first m vertices has been generated, Maker can quickly transform an
untouched vertex b∗ into a candidate for vertex m+ 1.

In order to create such a candidate quickly, Maker would like to make sure that if b∗ is eventually
chosen it would reduce every set of candidates for the neighbors of m+1 amongst 1, 2, ...,m to about
half of its size; we would also like it to reduce the possibilities for every future choice of candidates
in a balanced way. To do this we apply a version of a theorem by Alon, Krivelevich, Spencer and
Szabó [1], extending a previous result by Székely [9]:

Theorem 2.1 (Alon-Krivelevich-Spencer-Szabó). Let H be a hypergraph with X hyperedges, whose
smallest hyperedge contains at least x vertices. In a weak positional game on H Maker can claim at

least x
2 −

√
xln(2X)

2 vertices of each hyperedge.

The next lemma makes use of this theorem to prove that candidate schemes can indeed be
extended quickly.

Lemma 2.2. (Scheme extension) Let G be a d-degenerately ordered graph of order n, let H∗ be a
position in (KN , G) after T rounds, and let d−(m + 1) be the degenerate indegree of m + 1 in G.
Assume that H∗ contains a candidate scheme B∗ = (B∗1 , B

∗
2 , ..., B

∗
m) for the first m vertices of G,

satisfying |B∗i | = d52d+4 for every i ∈ 1, ..,m. Maker can turn any untouched vertex into a candidate
for m+ 1 in at most d−(m+ 1)d52d+3 rounds.

Proof. We prove the lemma by describing a constructive strategy for Maker. Denote the neighbors
of m + 1 preceding it by v1, v2, ..., vd−(m+1). Let us pick some untouched vertex of KN and call it
b∗m+1. Our strategy should transform b∗m+1 into a candidate for m+ 1 with respect to B∗. In order
to do so Maker must make sure that for every i ∈ {1, . . . , d−(m+ 1)}, the vertex b∗m+1 will transform
into a candidate for m+1 with respect to the edge (vi,m+1) and the candidate family B∗. Since we
do not intend to claim any more edges between the vertices of B∗, and since becoming a candidate
with respect to the edge (vi,m + 1) depends only on edges between the vertices of B∗, and edges
between B∗i and b∗m+1, our strategy would be to play on each of these edge sets separately. Whenever
Breaker claims an edge between b∗m+1 and some vertex in B∗i , Maker will claim an edge between b∗m+1

and B∗i . (If Breaker claims an edge of a different form Maker will act as though Breaker claimed an
arbitrarily chosen edge between b∗m+1 and some B∗i .)

Next we would like to describe a specific strategy for Maker regarding the connection of b∗m+1

and some specific B∗i . It should be such that when all the edges between b∗m+1 and B∗i are claimed,
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b∗m+1 will have already become a candidate for m + 1 with respect to the edge (vi,m + 1) and the
candidate family B∗. In order to apply Theorem 2.1 it will be convenient to treat each B∗i − b∗m+1

connection game as a separate weak game.
Let us define formally Hi = (Vi, Ei), the B∗i − b∗m+1 connection game. Let (u1, . . . , uk) be the

neighbors of i ∈ G in the interval {i + 1, ...,m + 1 = uk} ordered according to their order in G;
recall that since the order of the vertices of G is d-degenerate, i has at most d neighbors following
it, and thus k ≤ d. If k = 1, then Maker turns b∗m+1 into a candidate for m + 1 with respect to
the edge (i,m + 1) simply by connecting b∗m+1 to a half of the vertices of B∗i ; this can be done in
|B∗i |/2 = d52d+3 rounds. We thus assume that k ≥ 2. The set Vi, the board of the game, consists
of all d52d+4 edges between b∗m+1 and the vertices in B∗i . As for Ei – for every choice of candidates
b∗u1
∈ B∗u1

, b∗u2
∈ B∗u2

, ..., b∗uk−1
∈ B∗uk−1

there is a single hyperedge in Ei, consisting of the edges of KN

between b∗m+1 and every vertex of B∗i connected to all b∗u1
, b∗u2

, ..., b∗uk−1
. Note that now the property

of b∗m+1 being a candidate for m+ 1 with respect to the edge (i,m+ 1) and the candidate family B∗

translates into the property of Maker having at least |B
∗
i |

k2k = d52d−k+2

k vertices in every hypergraph
hyperedge in Ei. By the fact that B∗ is a candidate scheme for the first m vertices we already know
that for every e ∈ Ei,

|e| =
∣∣∣{u∗|u∗ ∈ B∗i ,Maker claimed {u∗, b∗u1

}, ..., {u∗, b∗uk−1
}} in H∗}

∣∣∣
≥ |B∗i |

2k−1(k − 1)
.

Using our assumption |B∗i | = d52d+4 we get |e| ≥ d52d−k+5

k . Also, since every hyperedge of Ei

is determined by a choice of one element of every set B∗u1
, B∗u2

, ..., B∗uk−1
, we know that |Ei| ≤

(d52d+4)k−1 (This is not an equality since two choices of candidates in sets B∗i may define the same
hyperedge). Using Theorem 2.1 we can now be certain that a strategy for Maker exists, such that
when all the edges between b∗m+1 and Bi are claimed, Maker will have no less than

d52d−k+4

k − 1
−

√
d52d−k+4

k − 1
ln(2(d52d+4)k−1)

claimed vertices on each hyperedge, and thus it remains to verify:

d52d−k+4

k − 1
−

√
d52d−k+4

k − 1
ln(2(d52d+4)k−1) >

d52d−k+4

k
.

The above is equivalent to:

d52d−k+4

(k − 1)k2
> 5(k − 1) ln d+ (d+ 4)(k − 1) ln 2 + ln 2,

which is easily seen to hold for integers 1 < k ≤ d.
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Hence, by the end of each game Hi, vertex b∗m+1 becomes a candidate for m + 1 with respect
to the edge (i,m + 1) and the candidate family B∗. How many rounds does this strategy require?
We play d−(m + 1) parallel games, each on board of size d52d+4, hence we do not play more than
d−(m+ 1)d52d+3 rounds, as promised.

Proof of Theorem 1.
Assume N > d1122d+9n. Since G is a d-degenerate graph on n vertices, G has at most dn

edges. For every vertex i ∈ V (G) we denoted by d−(i) the degenerate indegree of i in G; clearly,∑n
i=1 d

−(i) = |E(G)| ≤ dn. Using Lemma 2.2, Maker can now construct d52d+4 candidates for every
i ∈ V (G), sequentially and according to the degenerate order of G, in at most d−(i)d52d+3 rounds.
Since

N > d1122d+9n ≥ 4
n∑

i=1

(d−(i)d52d+3)d52d+4 ,

we are certain to have untouched vertices available throughout the construction. The construction
is complete after at most

n∑
i=1

(d−(i)d52d+3)d52d+4 ≤ d1122d+7n

rounds with a candidate scheme containing d52d+4 candidates for every vertex of G. At this point
we can apply Lemma 2.1 to be certain that the board contains a copy of G. 2

3 Lower bound

In this section we prove a lower bound for the number of rounds needed for Maker to win in sparse
graph construction games. Before addressing the calculation itself it is important to understand the
relations between how quickly can Maker win, and what board-size does he require to do so.

Lemma 3.1. (Boardsize–delay relations) Suppose the game (KN , G) is Breaker’s win. Then for all
M , the game (KM , G) cannot be won by Maker in less than N/4 rounds.

Proof. Suppose to the contrary that for some M > N Maker can win (KM , G) in less than N/4
rounds. If Maker plays according to his winning strategy, then by the end of the game there will
always be an untouched vertex in KN . Hence (KM−1, G) can also be won using the same strategy.
Therefore (KN , G) can be won by Maker which leads to a contradiction.

We derive our lower bound using an important theorem of Erdős and Selfridge [7]. If every edge
of a hypergraph contains exactly m vertices, the hypergraph is called m-uniform.

Theorem 3.1 (Erdős-Selfridge). If F is an m-uniform hypergraph and |F| < 2m−1 then Breaker
can win a weak game on F .
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Proof of Theorem 2.
Let G = (V,E) be a graph, and suppose |V | = n and |E| = m. Denote by k = |aut(G)|

the number of automorphisms of G. Let us examine the number of winning sets in (KN , G). This
number is equal to the number of copies of G in KN – which is

(
N
n

)
n!
k . Each copy of G in KN contains

|E| = m edges. Therefore the hypergraph of (KN , G) is m-uniform. By the Erdős-Selfridge criterion
(Theorem 3.1) we get that if

(
N
n

)
n!
k < 2m−1 , then Breaker wins (KN , G). Since

(
N
n

)
n!
k < Nn

n!
n!
k = Nn

k ,
the latter condition is satisfied when N < (2m−1k)1/n. Applying Lemma 3.1 we get that Maker
cannot win (KM , G) in less than 1

2(2m−1k)1/n rounds for all M . 2

Corollary 1 is an immediate result, supplying a lower bound for d-degenerate graph construction
games.

Proof. Let G be a complete bipartite graph with parts of size d and n− d. This graph has d(n− d)
edges, is clearly d-degenerate and has k = d!(n− d)! automorphisms. Plugging all this into Theorem
2, we get the claimed result.

4 Remarks and open questions

In this section we give several remarks about graph construction games. We also mention some open
questions suggested by our present work.

Local versus Global. One may have noticed that the strategy we provided for the upper bound was
a local strategy, leaning on local arguments; on the other hand our proof for the lower bound used
only the Erdős-Selfridge theorem which is global in nature. What is the reason for this difference?

It appears that in graph construction games, where the target graph’s structure is relatively
regular (for example – if it has many automorphisms), a local construction, immediately designating
every touched vertex to potentially play the role of a specific vertex in Maker’s claimed copy of G,
may be the fastest possible - or at least asymptotically the fastest. This speculation is supported
by Corollary 1. However, when the graph is very irregular it might be possible for Maker to use a
global strategy, and to decide which vertex in KN shall function as which vertex in G very late in
the game, making Breaker’s life a bit more difficult. Whether this is true remains an open problem.

Problem 1. For a fixed d > 0, are there infinitely many d-regular graphs G for which Maker can
win the game (KN , G) in at most f(d)|V (G)| rounds for large-enough board-size N , where f(d) is
sub-exponential?

Induced graphs versus copies. Note that in the proof of Theorem 1 it is clear that Maker’s
claimed graph not only contains a copy of G in KN , but also contains an induced copy of it. This
follows from the fact that we never claim an edge between two candidates for vertices which have no
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edge between them in G. The reason we chose not to define the graph construction game for induced
copies of G is that such a game cannot be represented as a weak game on a hypergraph.

Disjoint cliques. A particular d-regular graph G, for which it would be quite interesting to analyze
the construction game (KN , G), is a collection of n/d disjoint cliques of size d each. According to the
results of Pekeč [8] and of Beck [3], Maker can construct such G in O(2dn) rounds, for large enough
N . The lower bound from Theorem 2 is significantly weaker.

The gap between bounds. Though in this paper we were able to show that for a fixed d, the length
of the construction of a d-degenerate graph depends linearly on the number of vertices, it remains
an open question to find how this ratio depends on d. There is a gap, exponential in d, between our
lower bound of C2dn rounds and our upper bound of Cd114dn rounds. We suspect that the reason
for this gap lies in the fact that our lower bound was proved using board-size arguments, while our
upper bound comes from the game-length argument. We conjecture that by playing carefully with
vertices which are not untouched, but have a small number of incident edges claimed by Breaker, it
may be possible to reduce the board-size significantly leaving only a polynomial gap between bounds.
Formally:

Conjecture 1. Maker can win the game (KN , G) for every d-degenerate graph G with n vertices if
N > 2dP (d)n where P (d) is some polynomial.

The game-length gap remains an open question too.

Biased games. It may be of interest to extend our method to biased graph construction games.
In these games, Maker claims one edge in each turn as before, but Breaker answers by taking b ≥ 1
edges. The core of our proof can be used without any change. It will require, however, a version of
Theorem 2.1 for biased games. Also, when trying to extend Lemma 2.2, we will no longer be able to
play each B∗i –b∗m+1 connection game separately, as we can no longer answer every Breaker’s move in
the same game.
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References

[1] N. Alon, M. Krivelevich, J. Spencer and T.Szabó, Discrepancy games, Electronic Journal of
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