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Abstract. A cutset is a non-empty finite subset of Zd which is both connected and co-connected.
A cutset is odd if its vertex boundary lies in the odd bipartition class of Zd. Peled [18] suggested
that the number of odd cutsets which contain the origin and have n boundary edges may be of
order eΘ(n/d) as d → ∞, much smaller than the number of general cutsets, which was shown by
Lebowitz and Mazel [15] to be of order dΘ(n/d). In this paper, we verify this by showing that the

number of such odd cutsets is (2 + o(1))n/2d.

1. Introduction and results

We consider the integer lattice Zd as a graph with nearest-neighbor adjacency, i.e., the edge set is
the set of {u, v} such that u and v differ by one in exactly one coordinate. The edge-boundary of a
subset U of Zd is the set of edges having exactly one endpoint in U , and the internal vertex-boundary
of U is the set of vertices in U which are adjacent to some vertex outside U .

A cutset is a non-empty finite subset of Zd which is both connected and co-connected (i.e., both
it and its complement span connected subgraphs). The edge-boundaries of cutsets are exactly the
finite minimal edge-cuts of Zd, i.e., finite minimal sets of edges whose removal disconnects Zd. A
vertex of Zd is called odd (even) if it is at odd (even) graph-distance from the origin, and a subset
of Zd is called odd (even) if its internal vertex-boundary consists solely of odd (even) vertices. In
this work, we study OddCutn(d), the number of odd cutsets in Zd with edge-boundary size n which
contain the origin. Random samples of such sets are depicted in Figure 1. Our main result is the
following.

Theorem 1.1. There exists a constant C > 0 such that for any integer d ≥ 2 and any sufficiently
large multiple n of 2d, we have

2
n
2d

(
1+2−2d

)
≤ OddCutn(d) ≤ 2

n
2d

(
1+C log3/2 d√

d

)
.

We further prove the existence of a growth constant for the number of odd cutsets.

Theorem 1.2. For any integer d ≥ 2, the limit µ(d) := lim
n→∞

OddCut2dn(d)1/n exists.

The existence of the above limit is proven via a super-multiplicitivity argument. It follows from
Theorem 1.1 that µ(d) satisfies the following bounds:

1 + 2−2d ≤ log2 µ(d) ≤ 1 +
C log3/2 d√

d
.

We remark that the divisibility condition on n in the theorems is essential as the size of the edge-
boundary of an odd set in Zd is always a multiple of 2d (see Lemma 1.3 below).
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(a) n = 3000 (b) n = 600

Figure 1. Samples of random odd cutsets in Z2 with n boundary edges.

The lower bound in Theorem 1.1 is obtained with relative ease, by estimating the number of odd
cutsets which are obtained as local fluctuations of a single set, bearing resemblance to a (d − 1)-
dimensional cube. Note that some restriction on the minimum value of n is necessary, since any odd
cutset S in Zd which contains the origin has at least 2d(2d− 1) boundary edges (see Corollary 1.4
below).

The upper bound in Theorem 1.1, which is the main result of this paper, is obtained by a more
involved method. It is based on the intuition that the primary phenomenon which accounts for
the number of odd cutsets is the great variety of possible local structures near the boundary. In
other words, every odd cutset can be obtained as a perturbation of one of a relatively small number
of global shapes. Thus, the proof of the upper bound is based on a classification of odd cutsets
according to their approximate global structure, which we call an approximation. We first show
that the number of different approximations is small and then provide tight bounds on the number
of regular odd sets corresponding to each approximation and use it to bound the total number of
odd cutsets. This general method of approximations goes back to Sapozhenko [20]. Similar methods
were used also by Peled [18], by Galvin and Kahn [8] and by the authors [4]. The proof given here
relies on ideas from [20] and follows the approach of [8] with simplifications introduced in [4] (in a
more complex setting). As it requires no additional effort, we prove the upper bound under weaker
connectivity assumptions than those used in the definition of a cutset (see Theorem 4.1).

We remark that although Theorem 1.1 is stated (and has meaningful content) for all d ≥ 2, the
bounds become crude when d is small, in which case a similar upper bound could be obtained from
the bound in [15] for general cutsets.

1.1. Discussion. In 1988, Lebowitz and Mazel [15] investigated general cutsets in Zd (which they
refer to as primitive Peierls contours). They showed that the number of cutsets with boundary

size n which contain the origin is at most d64n/d when d ≥ 2, and used this to show that the
low-temperature expansion for the d-dimensional Ising model, written in terms of Peierls contours,
converges when the inverse-temperature is at least 64(log d)/d. Ten years later, Balister and Bol-
lobás [1] improved this result by reducing the aforementioned bound on the number of cutsets to

(8d)2n/d. They also proved that the number of such sets is bounded from below by (cd)n/2d.
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(a) The even and odd bipar-
tition classes of Zd.

(b) An odd set. (c) A regular odd set.

Figure 2. The vertices of Zd are depicted as squares, with the even vertices in
white and the odd vertices in gray. An odd set is a set whose internal boundary
consists solely of odd vertices. A set is regular if both it and its complement have
no isolated vertices.

Odd cutsets have been used in various probabilistic models to obtain phase transition and torpid
mixing results. Some of these include works on the hard-core model by Galvin [7], Galvin–Kahn [8],
Galvin–Tetali [11, 12] and Peled–Samotij [19], on homomorphism height functions by Galvin [5] and
on 3-colorings by Galvin [6], Galvin–Randall [10], Galvin–Kahn–Randall–Sorkin [9] and Peled [18]
(who also treated discrete Lipschitz functions). Recently, using a generalization of odd cutsets,
the authors showed that the 3-state antiferromagnetic Potts model in high dimensions undergoes
a phase transition at positive temperature.

Peled [18] raised the question of whether or not the number of odd cutsets is of smaller order of
magnitude than the total number of cutsets. Namely, he asked whether this quantity is of order
dΘ(n/d) or only of order eΘ(n/d). Theorem 1.1 resolves this question by showing that it is indeed
the latter and pinpointing the constant in the exponent, i.e., (2 + o(1))n/2d.

It is worthwhile to mention that the method of approximations, which we use to obtain our upper
bound, played a role in many of the aforementioned works. This method goes back to Sapozhenko
who studied enumeration problems on bipartite graphs and posets [20, 21, 22] motivated by previous
results of Korshunov on antichains [13] and of Korshunov–Sapozhenko on binary codes [14].

In addition to cutsets, other types of connected subgraphs of Zd have also been investigated. In
this context, we mention the recent work of Miranda–Slade [17] who obtained estimates for the
growth constant of lattice trees and lattice animals in high dimensions.

1.2. Open problems. The bounds obtained in Theorem 1.1 on the number of odd cutsets match
in the first order term at the exponent. The next order term is determined by λ(d) := log2 µ(d)−1.

We have shown that 2−2d ≤ λ(d) ≤ C log3/2 d√
d

and it is natural to ask what the correct asymptotics

of λ(d) is. Namely, is it exponential as in the lower bound? Is it polynomial as in the upper bound?
In [18], Peled also raised the question of determining the scaling limit of odd cutsets. He suggested

that in contrast to the case of ordinary cutsets (without the oddness condition), where it is plausible
that the scaling limit is super Brownian motion, it may be the case that a random odd cutset
typically contains a macroscopic cube in its interior.

1.3. Notation. Let G = (V,E) be a graph. For vertices u, v ∈ V such that {u, v} ∈ E, we say
that u and v are adjacent and write u ∼ v. For a subset U ⊂ V , denote by N(U) the neighbors of
U , i.e., vertices in V adjacent to some vertex in U , and define for t > 0,

Nt(U) := {v ∈ V : |N(v) ∩ U | ≥ t}.
In particular, N1(U) = N(U). Denote the internal and external vertex-boundary of U by ∂•U :=
U ∩ N(U c) and ∂◦U := N(U) \ U , respectively. We also use the notation ∂•◦U := ∂•U ∪ ∂◦U ,
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U+ := U ∪∂◦U and v+ := {v}+. The set of edges between two disjoint sets U and W is denoted by
∂(U,W ) := {{u,w} ∈ E : u ∈ U,w ∈W}. In particular, the edge-boundary of U is ∂U := ∂(U,U c).
We also write ∂u := ∂{u}. The graph-distance between u and v is denoted by dist(u, v). For two
non-empty sets U,W ⊂ V , we denote by dist(U,W ) the minimum graph-distance between a vertex
in U and a vertex in W .

Policy regarding constants. In the rest of the paper, we employ the following policy on
constants. We write C, c, C ′, c′ for positive absolute constants, whose values may change from line
to line. Specifically, the values of C,C ′ may increase and the values of c, c′ may decrease from line
to line.

1.4. Odd sets and isoperimerty. We use Even (Odd) to denote the set of even (odd) vertices of
Zd. Thus, a set U ⊂ Zd is odd if and only if ∂•U ⊂ Odd and it is even if and only if ∂•U ⊂ Even.
We say that U is regular if both it and its complement contain no isolated vertices. Thus, a cutset
is regular if and only if it is not a singleton. Observe that U is odd if and only if (Even∩U)+ ⊂ U
and that U is regular odd if and only if U = (Even ∩ U)+ and U c = (Odd ∩ U c)+. See Figure 2.

For a set U ⊂ Zd and a unit vector s ∈ Zd, we define the boundary of U in direction s to be
∂sU := {v ∈ U : v + s /∈ U}. A nice property of odd sets is that the size of their boundary is the
same in every direction.

Lemma 1.3. Let U ⊂ Zd be finite and odd. Then, for any unit vector s ∈ Zd, we have

|∂sU | = |Odd ∩ U | − |Even ∩ U | = |∂U |
2d .

Proof. Denote U s := {u+ s : u ∈ U}. The first equality follows from

|Even ∩ U | = |Odd ∩ U s| = |Odd ∩ U s ∩ U | = |Odd ∩ U | − |Odd ∩ U \ U s|
= |Odd ∩ U | − |U \ U s| = |Odd ∩ U | − |∂sU |.

The second equality now follows from the first, since |∂U | = ∑s′ |∂s
′
U | = 2d · |∂sU |. �

Corollary 1.4. Let U ⊂ Zd be finite and odd. If U contains an even vertex then |∂U | ≥ 2d(2d−1).

Proof. Let u ∈ U be even. Since U is odd, we have u+ ⊂ U . Thus, |∂sU | ≥ 2d− 1, where s ∈ Zd is
any unit vector, and the corollary follows from Lemma 1.3. �

We conclude with a well-known isoperimetric inequality.

Lemma 1.5 ([4]). Let U ⊂ Zd be finite. Then |∂U | ≥ 2d · |U |1−1/d.

1.5. Organization. The rest of the paper is organized as follows. In Section 2, we show that
OddCutn(d) is almost super-multiplicitive and use this to prove Theorem 1.2. In Section 3, we
prove the lower bound stated in Theorem 1.1. In Section 4, we state two propositions; Propo-
sition 4.2 which bounds the number of odd cutsets approximated by a given approximation and
Proposition 4.3 which shows that a relatively small number of approximations are sufficient to
approximate every odd cutset in question. We then deduce the upper bound stated in Theorem 1.1
from these propositions. Section 5 and Section 6 are dedicated to the proofs of Proposition 4.2 and
Proposition 4.3, respectively.

1.6. Acknowledgments. We wish to thank Ron Peled for suggesting the problem to us and for
useful discussions.

2. Almost super-multiplicitivity

The main step in showing the existence of the limit defining the growth constant µ(d) is estab-
lishing the following “almost” super-multiplicitivity property of OddCutn(d).
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u

v

{x1 + x2 = a+ 1}

w

(a) Modifying an odd cutset
to create a peak.

{x1 + x2 = 2r + 2s}

v1

v2 u1

(b) Modifying an odd cutset
(with a peak) to adjust its
boundary size.

{x1 + x2 = u1 + u2 + 1}

u

(c) Merging two odd cutsets
(one with a peak and one
with an inverted peak).

Figure 3. Modifying odd cutsets.

Proposition 2.1. Let d ≥ 2 and let n,m, k ∈ 2dN with k ≥ 12d2. Then

OddCutn+m+k(d) ≥ OddCutn(d) ·OddCutm(d)(
m
d

) d
d−1

.

Proof. Fix d ≥ 2 and denote by Cn the collection of odd cutsets S in Zd having |∂S| = n and
containing the origin so that |Cn| = OddCutn(d). Endow Zd with the partial order induced by
the sum of the first two coordinates. We say that a vertex u is the peak of an odd set S if it is
the unique maximal element among all the even vertices in S. Denote by Pn the collection of odd
cutsets in Cn having a peak and by On those having a peak at the origin. The proof consists of
four parts:

(1) |Cn| ≤ |Pn+2d(2d−3)|.
(2) |Pn| ≤ |On| · (n/2d)d/(d−1).
(3) |On| ≤ |On+k−8d2 |.
(4) |Pn| · |Om| ≤ |Cn+m−4d|.

Since we may assume that m ≥ 2d(2d− 1) by Corollary 1.4, the proposition then follows from

|Cn| · |Cm|
(1)

≤ |Pn+2d(2d−3)| · |Pm+2d(2d−3)|
(2)

≤ |Pn+2d(2d−3)| · |Om+2d(2d−3)| · (m/2d+ 2d− 3)d/(d−1)

(3)

≤ |Pn+2d(2d−3)| · |Om+k−4d2+10d| · (m/d)d/(d−1)

(4)

≤ |Cn+m+k| · (m/d)d/(d−1).

To prove the first part, we take a set S ∈ Cn and construct a set S′ ∈ Pn+2d(2d−3) in an injective
manner. Let a be the maximum value for which the hyperplane {x1 + x2 = a} intersects S. Let v
be a vertex in this intersection, let u ∈ S be a adjacent to v (note that S 6= {v} since 0+ ⊂ S) and
denote w := u+e1 +e2 /∈ S. Since S is odd and v+e1 /∈ S, we have that v is odd, u is even, u+ ⊂ S
and v−u ∈ {e1, e2}. It is easy to check that S′ := S ∪w+ is an odd set with |∂S′| = n+ 2d(2d− 3)
and a peak at w. Since S′ is clearly connected, it remains only to check that S′ is co-connected.
Since S is co-connected, any two vertices x, y ∈ (S′)c can be connected via a path in Sc. Thus, it
suffices to check that any two vertices x, y ∈ (S′)c ∩N(S′ \S) can be connected via a path in (S′)c.
Using that (S′)c ∩N(S′ \ S) = w++ ∩ {x1 + x2 ≥ a+ 1} and that w is the peak of S′, this is easily
verified. See Figure 3a.

The second part follows from the isoperimetric inequality in Lemma 1.5.
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To prove the third part, let r, s ∈ N, and, for S ∈ On, define

S′ := S ∪
{

(i, i, 0, . . . , 0) ∈ Zd : 0 < i ≤ r
}+ ∪

{
(r + 2i, r, 0, . . . , 0) ∈ Zd : 0 < i ≤ s

}+
.

It is straightforward to check that S′ ∈ Cn+r(2d−3)+s(2d−2) and has a peak at (r + 2s, r, 0, . . . , 0).
Since the mapping S 7→ S′ is injective, this shows that |On| ≤ |On+r(2d−3)+s(2d−2)|. See Figure 3b.

Finally, since 2d−2 and 2d−3 are co-prime (i.e., their gcd is 1) and since k−8d2 > (2d−3)(2d−2),
it is possible to choose r, s ∈ N so that k− 8d2 = r(2d− 3) + s(2d− 2) (this is known as Sylvester’s
solution to the Frobenius problem for two coins).

To prove the fourth part, we take an element (S, S′) ∈ Pn×Om and construct a set T ∈ Cn+m−4d

in an injective manner. Let S′′ be the reflection of S′ through the hyperplane {x1 + x2 = 0} (i.e.,
S′′ is obtained by negating the first two coordinates of every vertex in S′). Let u be the peak of S
and define T := S ∪ R, where R := u + e1 + e2 + S′′. Since S and R lie on different sides of the
hyperplane {x1 +x2 = u1 +u2 + 1} (except for {u+ e1, u+ e2}, which is their common intersection
with this hyperplane), it follows easily that T is a connected odd set with |∂T | = n+m−4d. To see
that T ∈ Cn+m−4d, it remains to check that T is co-connected, i.e., that T c = Sc ∩Rc is connected.
This follows from the observation that S := Sc∩{x1 +x2 ≤ u1 +u2 +1} is connected, and similarly,
that R := Rc ∩ {x1 + x2 ≥ u1 + u2 + 1} is connected, and from S ∩R 6= ∅ and T c = S ∪R. Finally,
it is clear that this mapping is injective, since u can be recovered by considering all hyperplanes
{x1 + x2 = a} which intersect T at two points and using that |∂S| is known. See Figure 3c. �

Proof of Theorem 1.2. Fix d ≥ 2 and denote an := OddCut2dn(d) and bn := an−6d/16n2. Clearly,

it suffices to show the existence of the limit limn→∞ b
1/n
n . This will follow from Fekete’s subadditive

lemma (applied to − log bn) if we show that bn is a super-multipliciative sequence. Indeed, by
Proposition 2.1, for n ≥ m > 6d, we have

bn+m =
a(n−6d)+(m−6d)+6d

16(n+m)2
≥ an−6d · am−6d

16(n+m)2 · (2m)d/(d−1)
≥ bnbm ·

4n2

(n+m)2
≥ bnbm. �

3. The lower bound

The proof of the lower bound in Theorem 1.1 is based on a simple counting argument. The idea
appeared already in [18] (see also [19]). Since the details have not appeared in print, we give a
short proof here. Let d ≥ 2 and let m be a large even integer. We first prove the lower bound
for n := 2d(md−1 + (d − 1)md−2) directly by constructing a large family of odd cutsets having
n boundary edges. We then use Proposition 2.1 to extend the lower bound to other values of n.
For brevity, we shall employ the notation [a, b) := {a, . . . , b − 1} for integers a < b. The proof is
accompanied by Figure 4.

Let B0 := Even∩ [0,m)d−1×{0} and observe that B+
0 is an odd cutset in Zd which contains the

origin. We now show that its edge-boundary size is n. Let ↑= ed be the d-th standard basis vector
and recall that the boundary of U ⊂ Zd in direction ↑ is ∂↑U = {v ∈ U : v+ ed /∈ U}, and that, by
Lemma 1.3, |∂U | = 2d|∂↑U | if U is odd. Let π : Zd → Zd−1 be the projection onto the first d − 1
coordinates and note that π(U) = π(∂↑U) for any finite set U . Observe also that

π(B+
0 ) = [0,m)d−1 ∪

d−2⋃
i=0

Oddd−1 ∩ [0,m)i × {−1,m} × [0,m)d−2−i,

where Oddd−1 denotes the set of odd vertices in Zd−1. Thus, since π is injective on ∂↑B+
0 , we have

|∂B+
0 |

2d
= |∂↑B+

0 | = |π(∂↑B+
0 )| = |π(B+

0 )| = md−1 + (d− 1)md−2 =
n

2d
.

Let A1 := Even ∩ [1,m − 1)d−1 × {±1} and observe that for any B1 ⊂ A1, the set (B0 ∪ B1)+

is an odd cutset. Since π((B0 ∪ B1)+) = π(B+
0 ) and since π is injective on ∂↑(B0 ∪ B1)+, we
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Figure 4. Constructing a large family of odd cutsets. The vertices in B0, A1 and
A2(B1) (all of which are even vertices) are depicted by ∗, × and +, respectively.
The set B+

0 is an odd cutset (shown in red), and any choice of B1 ⊂ A1 gives an
odd cutset (B0 ∪B1)+ with the same number of boundary edges (the red and pink
regions). Once B1 is chosen, any choice of B2 ⊂ A2(B1) then gives another odd
cutset (B0∪B1∪B2)+ also with the same number of boundary edges (the red, pink
and gray regions).

deduce that |∂(B0 ∪ B1)+| = |∂B+
0 | = n. Also notice that (v1, . . . , vd−1, 2) ∈ (B0 ∪ B1)+ if

and only if (v1, . . . , vd−1, 1) ∈ B1, and similarly, (v1, . . . , vd−1,−2) ∈ (B0 ∪ B1)+ if and only if
(v1, . . . , vd−1,−1) ∈ B1, so that different choices of B1 produce distinct sets. By counting the
number of such sets, we obtain

OddCutn(d) ≥ 2|A1| = 2(m−2)d−1
= 2

n
2d
· (m−2)d−1

md−1+(d−1)md−2 ≥ 2
n
2d
·(1−10d/m).

To obtain a better bound, we consider a “second order” augmentation. Given B1 ⊂ A1, define

A2(B1) :=
{
x ∈ Even ∩ [2,m− 2)d−1 × {±2} : ∀1 ≤ i ≤ d− 1 (x1, . . . , xd−1,

xd
2 )± ei ∈ B1

}
.

As before, one may easily check that for every choice of B1 ⊂ A1 and B2 ⊂ A2(B1), the set
(B0 ∪ B1 ∪ B2)+ is a distinct odd cutset with precisely n boundary edges. In order to use this to
improve the lower bound, we apply a first moment argument. Let X be a uniformly chosen random
subset of A1 and denote Y := |A2(X)|. Then using Jensen’s inequality, we obtain

OddCutn(d) ≥
∑

B1⊂A1

2|A2(B1)| = 2|A1| · E
[
2Y
]
≥ 2|A1|+E[Y ].

By linearity of expectation, we have E[Y ] = (m− 4)d−1 · 2−(2d−2) so that

OddCutn(d) ≥ 2(m−2)d−1+(m−4)d−1·2−2d+2 ≥ 2
n
2d
·(1−10d/m)(1+2−2d+2) ≥ 2

n
2d
·(1+2−2d+1). (1)

To complete the proof of the lower bound, we now extend this bound to arbitrary (large) n′ ∈ 2dN.
Let m be the largest even integer satisfying n′ − 16d2 ≥ n := 2d(md−1 + (d − 1)md−2). Then, by
Proposition 2.1, by (1), by the maximality of m and since OddCut2d(2d−1)(d) = 1, we obtain

OddCutn′(d) ≥ 1
4d2 OddCutn(d) ≥ 2(m−2)d−1+(m−4)d−1·2−2d+2−log2(4d2) ≥ 2

n′
2d

(1+2−2d+1).

4. The upper bound

For the upper bound in Theorem 1.1, which is the main result of this paper, we consider a slightly
more general class of sets. Recall that a subset of Zd is called regular if both it and its complement
contain no isolated vertices. For a graph G and a positive integer r, we denote by G⊗r the graph
on the same vertex set as G in which two vertices are adjacent if their distance in G is at most r.
A finite regular subset of Zd is an r-cutset if both it and its complement are connected in (Zd)⊗r.
Note that the notions of a regular cutset and a 1-cutset coincide. We write Sdn,r for the collection

of odd r-cutsets S in Zd having |∂S| = n and dist(0, S) ≤ r, where 0 denotes the origin in Zd.
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(b) Two possible regular odd sets approximated by A.

Figure 5. An approximation and two regular odd sets approximated by it are illus-
trated. Vertices belonging to A• (A◦) are known to be in S (Sc); these are depicted
in (a) by a red (yellow) background. The remaining vertices belong to A∗ = (A•∪A◦)c
and are unknown to be in S or Sc; these are depicted by ∗ and a white background.

Theorem 4.1. There exists a constant C > 0 such that for any integers d ≥ 2 and n, r ≥ 1,

|Sdn,r| ≤ 2
n
2d

(
1+Cr log3/2 d√

d

)
.

As discussed in the introduction, the proof is based on a classification of odd r-cutsets according
to their approximate global structure. To this end, we require some definitions. An approximation
is a pair A = (A•, A◦) of disjoint subsets of Zd such that A• is odd and A◦ is even. We say that
A approximates an odd set S if A• ⊂ S and A◦ ⊂ Sc. Thus, we think of A• as the set of vertices
known to be in S, A◦ as the vertices known to be outside S, and A∗ := (A• ∪ A◦)c as the vertices
whose association is unknown.

Let 1 ≤ t < 2d be an integer. A t-approximation is an approximation A such that the subgraph
of Zd induced by A∗ has maximum degree at most t and has no isolated vertices. For an illustration
of these notions, see Figure 5. It is instructive to notice that if a t-approximation A approximates
S, then any unknown vertex is near the boundary in the sense that A∗ ⊂ (∂•◦S)+; see (2) below.

We now give two key propositions which summarize the role of t-approximations in our proof
of the upper bound. We henceforth fix the dimension d ≥ 2 and omit the explicit dependence
on d in the notation. Denote by S the collection of regular odd sets and by Sn the collection of
S ∈ S having |∂S| = n. For an approximation A, denote by S(A) the collection of S ∈ S which
are approximated by A. We extend this notation to a family of approximations A, by setting
S(A) := ∪A∈A S(A). Our first proposition justifies our notions of approximation by bounding the
number of regular odd sets approximated by a given t-approximation.

Proposition 4.2. For any integers n ≥ 1 and 1 ≤ t < 2d and any t-approximation A, we have

| Sn(A)| ≤ 2n/(2d−t).

Our second proposition shows that a small family of t-approximations suffices to approximate
every set in Sn,r.
Proposition 4.3. There exists a constant C > 0 such that for any integers n, r ≥ 1 and 1 ≤ t < 2d,
there exists a family A of t-approximations of size

|A| ≤ exp
(
Cnr

( log d
d

)3/2
+ Cn log d

dt

)
such that every S ∈ Sn,r is approximated by some element in A, i.e., Sn,r ⊂ S(A).
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The proofs of Proposition 4.2 and Proposition 4.3 are given in Section 5 and Section 6, respec-
tively. Equipped with these propositions, we are now ready to prove the upper bound.

Proof of upper bound in Theorem 4.1. Let d ≥ 2, 1 ≤ t < 2d and n, r ≥ 1 be integers. Let A be a
family of t-approximations obtained by applying Proposition 4.3. By Proposition 4.2,

|Sn,r| ≤
∑
A∈A
| Sn(A)| ≤ |A| · 2n/(2d−t) ≤ 2

n
2d

(
1+

t
2d−t+

Cr log3/2 d√
d

+
C log d

t

)
.

Substituting any integer t satisfying
√
d/ log d ≤ t ≤

√
d log3/2 d yields the theorem. �

5. Counting regular odd sets with a given approximation

In this section, we prove Proposition 4.2. That is, our goal is to prove an upper bound on
the number of regular odd sets with given boundary size which are approximated by a particular
t-approximation. The proof is based on an analysis of minimal vertex-covers.

We henceforth fix an integer 1 ≤ t < 2d and a t-approximation A = (A•, A◦). Recall our notation
A∗ := (A• ∪A◦)c. For S ∈ S(A), define

D•(S) := A∗ ∩ ∂•S = Odd ∩A∗ ∩ S,
D◦(S) := A∗ ∩ ∂◦S = Even ∩A∗ ∩ Sc,

(2)

where the first equality follows from Odd∩A∗ ∩ S ⊂ N(A◦) ⊂ N(Sc), which in turn uses the facts
that A• is odd and the maximum degree of A∗ is strictly less than 2d; the second equality follows
similarly. Define also

D(S) := D•(S) ∪D◦(S) = A∗ ∩ ∂•◦S.
Two key properties of this definition are that S is determined by D(S) and that D(S) is a minimal
vertex-cover of A∗ (see Figure 6). This is stated precisely in the following lemma.

A vertex-cover of a graph G is a subset of vertices U ⊂ V (G) satisfying that every edge of G has
an endpoint in U . A vertex-cover is minimal if it is minimal with respect to inclusion. Denote by
MC(G) the set of all minimal vertex-covers of G. For a set V ⊂ Zd, we also write MC(V ) for the
set of minimal covers of the subgraph of Zd induced by V .

Lemma 5.1. The map S 7→ D(S) is an injective map from S(A) to MC(A∗)

Proof. Let S ∈ S(A) and denote D• := D•(S), D◦ := D◦(S) and D := D• ∪D◦. To see that the
map is injective, it suffices to reconstruct S from D. In fact, we can reconstruct S both from D•
and from D◦, separately. Indeed, as A• ⊂ S and A◦ ⊂ Sc, it follows that

Odd ∩ S = Odd ∩A• ∪D• and Even ∩ Sc = Even ∩A◦ ∪D◦,
and since S is regular odd, S is determined by Odd∩ S via S = (Odd∩ S)∪N2d(Odd∩ S) and by
Even ∩ Sc via S = (Even ∩ S)+ = (Even \ (Even ∩ Sc))+.

Next, we show that D is a vertex-cover of A∗. To this end, let u, v ∈ A∗ be a pair of adjacent
vertices, and assume without loss of generality that u is odd and v is even. Assume towards
obtaining a contradiction that neither u nor v belong to D, and observe that in this case u /∈ S
and v ∈ S, which is impossible since S is odd. Hence either u ∈ D or v ∈ D.

Finally, we show that D is a minimal vertex-cover. To this end, let v ∈ D and assume towards
a contradiction that N(v) ∩ A∗ ⊂ D. Assume without loss of generality that v is odd, so that
v ∈ D• and N(v) ∩A∗ ⊂ D◦. Since A• is odd, v is odd and v /∈ A•, we have N(v) ∩A• = ∅. Thus,
N(v) ⊂ A◦ ∪D◦ ⊂ Sc, which is impossible since v ∈ S and S is regular. �

We require the following lemma from [4].
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(a) A region of unknown vertices
in A∗. These vertices are denoted
by ∗ (with odd vertices having a
gray background). The vertices in
A• and A◦ are shown in red and
yellow, respectively.
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(b) An example of (D•, D◦) and its corresponding regular odd set.
The property that D• ∪D◦ is a minimal vertex-cover of A∗ is man-
ifested in the figure by the fact that there are no two adjacent ∗.
The corresponding regular odd set is obtained by adding each ver-
tex in D• to S and each vertex in D◦ to Sc, and then determining
the remaining vertices according to their neighbors.

Figure 6. The figure illustrates the process of recovering S from D• and D◦.

Lemma 5.2 ([4, Lemma 4.9]). Let G be a finite graph and let {pv}v∈V (G) be non-negative numbers
satisfying pu + pv ≤ 1 for all {u, v} ∈ E(G). Then∑

U∈MC(G)

∏
u∈U

pu ≤ 1.

Applying this with pv = 1/2 for all v ∈ V (G), yields

|U| ≤ max
U∈U

2|U |, for any U ⊂ MC(G).

Hence, Lemma 5.1 implies that for any n ≥ 1,

| Sn(A)| ≤ |{D(S) : S ∈ Sn(A)}| ≤ max
S∈Sn(A)

2|D(S)|.

Proposition 4.2 is now an immediate consequence of the following lemma.

Lemma 5.3. For any S ∈ S(A), we have

|D(S)| ≤ |∂S|
2d− t .

Proof. Let S ∈ S(A) and denote D• := D•(S), D◦ := D◦(S) and D := D• ∪D◦. Since A• is odd,
A◦ is even and A∗ induces a subgraph of maximum degree at most t, we have

Odd ∩A∗ ⊂ N2d−t(A◦) and Even ∩A∗ ⊂ N2d−t(A•).

Thus,

|D•| ≤ |∂(D•,A◦)|
2d−t and |D◦| ≤ |∂(D◦,A•)|

2d−t .

Since ∂(D•, A◦) and ∂(D◦, A•) are disjoint subsets of ∂S (since A• ⊂ S and A◦ ⊂ Sc), we have

|D| = |D• ∪D◦| ≤
|∂S|

2d− t . �

6. Constructing approximations

This section is dedicated to the proof of Proposition 4.3. That is, we show that there exists a small
family A of t-approximations which covers Sn,r in the sense that Sn,r ⊂ S(A). The construction
of A is done in two steps, which we outline here. For an approximation A, recall the notation
A∗ := (A• ∪A◦)c and say that |A∗| is the size of A. The first step is to construct a small family of
small approximations which covers Sn,r.
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Lemma 6.1. For any integers n ≥ 1 and r ≥ 1, there exists a family A of approximations, each
of size at most Cn

√
(log d)/d, such that Sn,r ⊂ S(A) and

|A| ≤ exp
(
Cnr log3/2 d

d3/2

)
.

The second step is to upgrade an approximation to a small family of t-approximations which
covers at least the same collection of regular odd sets.

Lemma 6.2. For any integers n,m ≥ 1 and 1 ≤ t < 2d and any approximation A of size m, there
exists a family A of t-approximations such that Sn(A) ⊂ S(A) and

|A| ≤ exp
(
C log d

d ·
(
m+ n

t

))
.

Lemma 6.1 and Lemma 6.2 are proved in Sections 6.2, and 6.3 below.

Proof of Proposition 4.3. Applying Lemma 6.1, we obtain a family B of approximations, each of size
at most m := Cn

√
(log d)/d, such that Sn,r ⊂ S(B) and |B| ≤ exp(Cnrd−3/2 log3/2 d). Applying

Lemma 6.2 to each approximation in B, we obtain a collection of families of t-approximations. Tak-
ing the union over this collection, we obtain a family A of t-approximations such that Sn,r ⊂ S(A)

and |A| ≤ |B| · exp(Cnd−1 log d · (
√

(log d)/d+ 1/t)). The required bound follows. �

6.1. Preliminaries. In this section, we gather some elementary combinatorial facts about graphs
which we require for the construction of approximations. For the purpose of these preliminaries,
we fix an arbitrary graph G = (V,E) of maximum degree ∆.

Lemma 6.3. Let U ⊂ V be finite and let t > 0. Then

|Nt(U)| ≤ ∆

t
· |U |.

Proof. This follows from a simple double counting argument.

t|Nt(U)| ≤
∑

v∈Nt(U)

|N(v) ∩ U | =
∑
u∈U

∑
v∈Nt(U)

1N(u)(v) =
∑
u∈U
|N(u) ∩Nt(U)| ≤ ∆|U |. �

The next lemma follows from a classical result of Lovász [16, Corollary 2] about fractional vertex
covers, applied to a weight function assigning a weight of 1

t to each vertex of S.

Lemma 6.4. Let S ⊂ V be finite and let t ≥ 1. Then there exists a set T ⊂ S of size |T | ≤ 1+log ∆
t |S|

such that Nt(S) ⊂ N(T ).

The following standard lemma gives a bound on the number of connected subsets of a graph.

Lemma 6.5 ([2, Chapter 45]). The number of connected subsets of V of size k + 1 which contain
the origin is at most (e(∆− 1))k.

Recall that G⊗r is the graph on V in which two vertices are adjacent if their distance in G is at
most r. The next simple lemma was first introduced by Sapozhenko [20].

Lemma 6.6 ([20, Lemma 2.1]). Let S, T ⊂ V and let a, b be positive integers. Assume that S is
connected in G⊗a, dist(s, T ) ≤ b for all s ∈ S and dist(S, t) ≤ b for all t ∈ T . Then T is connected

in G⊗(a+2b).

The following lemma, based on ideas of Timár [23], establishes the connectivity of the boundary
of subsets of Zd which are both connected and co-connected.

Lemma 6.7 ([3, Proposition 3.1]). Let U ⊂ Zd be connected and co-connected. Then ∂•◦U is
connected.
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Corollary 6.8. Let r ≥ 1 be an integer and let U ⊂ Zd be such that U and U c are connected in
(Zd)⊗r. Then ∂•◦U is connected in (Zd)⊗r.

Proof. Since U is connected in (Zd)⊗r, it suffices to show that ∂•◦B is connected in (Zd)⊗r for
every connected component B of U . Let C be the collection of connected components of Bc. Since
U c is connected in (Zd)⊗r, it suffices to show that ∂•◦W ∪ ∂•◦W ′ is connected in (Zd)⊗r whenever
W,W ′ ∈ C satisfy dist(W,W ′) ≤ r. This follows from Lemma 6.7. �

6.2. Constructing small approximations. This section is devoted to the proof of Lemma 6.1.
That is, we construct a small family of approximations, each of size at most Cn

√
(log d)/d, such

that Sn,r ⊂ S(A). This is done in two steps. First, we show that for every regular odd set S, there
exists a small set U such that N(U) separates S, where we say that a set W separates S if every
edge in ∂S has an endpoint in W .

Lemma 6.9. Let n ≥ 1 be an integer and let S ∈ Sn. Then there exists U ⊂ (∂•◦S)+ of size at

most Cnd−3/2
√

log d such that N(U) separates S.

We then show that every separating set gives rise to a small family of small approximations.

Lemma 6.10. For any integer n ≥ 1 and any finite W ⊂ Zd, there exists a family A of approx-
imations, each of size at most 3|W |, such that every S ∈ Sn which is separated by W satisfies

S ∈ S(A), and |A| ≤ 4|W |/d.

Before proving these lemmas, let us show how they imply Lemma 6.1.

Proof of Lemma 6.1. Let n, r ≥ 1 be integers. By Corollary 1.4, if Sn is non-empty then n ≥ d2.
Thus, we may assume that n ≥ d2. Denote k := Cnd−3/2

√
log d, V := {0 + ie1 : 0 ≤ i < n2} and

V := {v ∈ Zd : dist(v, V ) ≤ r + 2}. Let U be the collection of all subsets of Zd of size at most k

which intersect V and are connected in (Zd)⊗(r+4). Since the maximum degree of (Zd)⊗(r+4) is at
most (Cd)r+4, Lemma 6.5 implies that

|U| ≤ |V | · (e(Cd)r+4)k ≤ exp
(
Cnrd−3/2 log3/2 d

)
,

where the rightmost inequality uses the fact that |V | ≤ n2(2d+ 1)r+2 and n ≥ d2.
For each U ∈ U , apply Lemma 6.10 to W = N(U) to obtain a family AU of approximations,

each of size at most 3|N(U)| ≤ 6dk, such that every S ∈ Sn which is separated by N(U) satisfies
S ∈ S(AU ), and |AU | ≤ 42k. Denote A := ∪U∈UAU and note that A is a family of approximations,
each of size at most 6dk, such that

|A| ≤ |U| · 42k ≤ exp
(
Cnrd−3/2 log3/2 d

)
.

It remains to check that Sn,r ⊂ S(A). Towards showing this, let S ∈ Sn,r. By Lemma 6.9, there
exists U ⊂ (∂•◦S)+ of size at most k such that N(U) separates S. Thus, since S ∈ S(AU ) by
definition, to conclude that S ∈ S(A), it suffices to show that U ∈ U . Since |U | ≤ k, we need only

show that U is connected in (Zd)⊗(r+4) and that U intersects V .
We first show that U intersects V , or equivalently, that dist(U, V ) ≤ r+2. Since N(U) separates

S, we have ∂•◦S ⊂ N(U)+ so that it suffices to show that dist(∂•◦S, V ) ≤ r. Indeed, if 0 /∈ S
then dist(0, ∂•◦S) ≤ r, since dist(0, S) ≤ r, and if 0 ∈ S then V ∩ ∂•◦S 6= ∅, since, by Lemma 1.5,
|S| ≤ |∂S|2 ≤ n2.

We are left with showing that U is connected in (Zd)⊗(r+4). Indeed, since U ⊂ (∂•◦S)+, we
see that dist(u, ∂•◦S) ≤ 1 for all u ∈ U , and since ∂•◦S ⊂ N(U)+, we have dist(w,U) ≤ 2 for all
w ∈ ∂•◦S. As S and Sc are connected in (Zd)⊗r, Corollary 6.8 and Lemma 6.6 imply that U is

connected in (Zd)⊗(r+4). �
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vu

z w

(a) u,w, z ∈ S, v ∈ Sc

vu

z w

(b) v ∈ A, (v, w) ∈ G

vu

z w

(c) w ∈ A′, (v, w) ∈ G′

Figure 7. Constructing the separating set. In (a), a revealed vertex u ∈ S is
depicted along with a neighbor z ∈ S. Every four-cycle (u, v, w, z) such that v ∈ Sc

(and hence w ∈ S) falls into one of two types. Either v has at least s boundary
edges as shown in (b), or w has at least 2d− s boundary edges as in (c). At least
1/2 of all such four-cycles belong to the same type. If it is the first type, then u is
adjacent to many vertices which have many boundary edges and one such neighbor
of u is included in B; if it the second type, then z is adjacent to many vertices which
have almost all their edges in the boundary and z is included in B′. The set US is
obtained by taking the union of B and B′.

Constructing separating sets. Before proving Lemma 6.9, we start with a basic geometric
property of odd sets which we require for the construction of the separating set.

Lemma 6.11. Let S be an odd set and let {u, v} ∈ ∂S. Then, for any unit vector e ∈ Zd, either
{u, u+ e} or {v, v + e} belongs to ∂S. In particular,

|∂u ∩ ∂S|+ |∂v ∩ ∂S| ≥ 2d.

Proof. Assume without loss of generality that u is odd. Since S is odd, we have u ∈ S and v /∈ S.
Similarly, if u+ e ∈ S then v + e ∈ S. Thus, either {u, u+ e} ∈ ∂S or {v, v + e} ∈ ∂S. �

For a set S, denote the revealed vertices in S by

Srev := {v ∈ Zd : |∂v ∩ ∂S| ≥ d}.
That is, a vertex is revealed if it sees the boundary in at least half of the 2d directions. The
following is an immediate corollary of Lemma 6.11.

Corollary 6.12. Let S be an odd set. Then Srev separates S.

Proof of Lemma 6.9. Let n ≥ 1 and let S ∈ Sn. Note that ∂S = ∂Sc implies that Srev = (Sc)rev.
Thus, in light of Corollary 6.12, it suffices to show that, for each R ∈ {S, Sc}, there exists a set

UR ⊂ N(∂•R) such that R ∩ Rrev ⊂ N(UR) and |UR| ≤ Cnd−3/2
√

log d. Indeed, the lemma then
follows by taking U := US ∪ USc . Since S and Sc are symmetric (up to parity), we may consider
the case R = S. The proof is accompanied by Figure 7.

Denote s :=
√
d log d and t := d/4, and define

A := ∂◦S ∩Ns(∂•S) and A′ := ∂•S ∩N2d−s(∂◦S).

Observe that, by Lemma 6.3,

|A| ≤ n

s
and |A′| ≤ n

2d− s.

We now use Lemma 6.4 with A to obtain a set B ⊂ A ⊂ ∂◦S such that

|B| ≤ 3 log d

t
|A| and Nt(A) ⊂ N(B).

We also define B′ := S ∩Nt(A
′). By Lemma 6.3, we have

|B′| ≤ 2s

t
|A′|.
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Finally, we define US := B ∪B′. Clearly, US ⊂ N(∂•S) and

|US | ≤
3n log d

ts
+

2sn

t(2d− s) ≤
12n log d

d
√
d log d

+
8n
√
d log d

d2
=

20n
√

log d

d3/2
.

It remains to show that S∩Srev ⊂ N(US). Towards showing this, let u ∈ S∩Srev = ∂•S∩Nd(∂◦S).
Since S is regular, there exists a vertex z ∈ N(u) ∩ S. Let F denote the set of pairs (v, w) such
that (u, v, w, z) is a four-cycle and v ∈ ∂◦S, and note that |F | ≥ d− 1. Denote

G := {(v, w) ∈ F : v ∈ A} and G′ := {(v, w) ∈ F : w ∈ A′}.
Note that, by Lemma 6.11, F = G∪G′ and, for any (v, w) ∈ F , we have w ∈ S. Since F = G∪G′,
either |G| or |G′| is at least |F |/2 ≥ t. Now observe that if |G| ≥ t then u ∈ Nt(A) ⊂ N(B), while
if |G′| ≥ t then z ∈ Nt(A

′) so that u ∈ N(B′). Therefore, we have shown that u ∈ N(US). �

From separating sets to small approximations.

Proof of Lemma 6.10. Let n ≥ 1 and let W ⊂ Zd. Consider the set X := Zd \W . Say that a
connected component of X is small if its size is at most d, and that it is large otherwise.

Let S ∈ Sn be such that W separates S and observe that every connected component of X
is entirely contained in either S or Sc. Thus, if we let B• and B◦ be the union of all the large
components of X which are contained in S and Sc, respectively, we have that B• ⊂ S and B◦ ⊂ Sc.
To obtain an approximation of S from (B•, B◦), define A• := B• ∪ (Odd ∩ B+

• ) and A◦ := B◦ ∪
(Even ∩B+

◦ ). Clearly, A• is odd and A◦ is even, and, since S is odd, A• ⊂ S and A◦ ⊂ Sc. Hence,
A = A(S) := (A•, A◦) is an approximation of S, i.e., S ∈ S(A).

Next, we bound the size of A. For this we require a simple corollary of Lemma 1.5. Namely,

|∂T | ≥ d ·min{d, |T |} for any finite T ⊂ Zd.

Indeed, this follows immediately from Lemma 1.5 since 2 ≥ e1/e ≥ x1/x for all x > 0. Denoting
by Y the union of all the small components of X, we observe that A∗ ⊂ Y ∪W . Since any small
component T of X has |T | ≤ |∂T |/d and ∂T ⊂ ∂W , we obtain

|Y | ≤ |∂W |
d
≤ 2d|W |

d
≤ 2|W |.

Thus, |A∗| ≤ |Y ∪W | ≤ 3|W |.
Now, denote by A the collection of approximations A(S) constructed above for all S ∈ Sn which

are separated by W . To conclude the proof, it remains to bound |A|. Let ` be the number of large
components of X, and observe that |A| ≤ 2`. Since any large component T of X has |∂T | ≥ d2 and

∂T ⊂ ∂W , we obtain ` ≤ |∂W |/d2 ≤ 2|W |/d so that |A| ≤ 4|W |/d, as required. �

6.3. Constructing t-approximations. In this section, we take a small approximation and refine
it into a multitude of t-approximations. The following lemma allows us to eliminate any isolated
unknown vertices in an approximation.

Lemma 6.13. For every approximation A there exists an approximation B such that S(A) = S(B),
B∗ ⊂ A∗ and B∗ has no isolated vertices.

Proof. The lemma clearly holds when S(A) = ∅ so that we may assume that S(A) 6= ∅. Define
B• := A•∪N2d(A•) and B◦ := A◦∪N2d(A◦). Using the definition of a regular set and the assumption
that S(A) is non-empty, it is straightforward to check that B = (B•, B◦) is an approximation and
that S(B) = S(A). Finally, since A• is odd and A◦ is even, we have that the set of isolated
vertices of A∗ is A∗ \N(A∗) = N2d(A◦) ∪N2d(A•), and similarly for B∗. Thus, B∗ has no isolated
vertices. �
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For an approximation A and an integer m ≥ 0, we define

S∗m(A) :=
{
S ∈ S(A) : |Odd ∩A∗ ∩ S|+ |Even ∩A∗ ∩ Sc| ≤ m

}
.

Note that, by Lemma 5.3 and (2), if A is a t-approximation for some 1 ≤ t < 2d then

Sn(A) ⊂ S∗bn/(2d−t)c(A). (3)

Lemma 6.14. For any integers m ≥ 1 and 1 ≤ t < 2d and any approximation A, there exists a
family A of t-approximations such that S∗m(A) ⊂ S(A) and |A| ≤ exp(C log d ·m/t).

Proof. We may assume S∗m(A) 6= ∅ as otherwise the statement is trivial. Moreover, by Lemma 6.13
we may assume that A∗ has no isolated vertices. For an indepedent set W ⊂ A∗ (i.e., a set
containing no two adjacent vertices), write WEven := W ∩Even and WOdd := W ∩Odd, and define

W• := W+
Even ∪

(
Odd ∩Nt(A∗ \W+)

)
,

W◦ := W+
Odd ∪

(
Even ∩Nt(A∗ \W+)

)
.

Here one should think of W as recording the locations of a subset of even vertices in A∗∩S and odd
vertices in A∗ ∩ Sc. We shall see that if this subset is chosen suitably then W• ⊂ S and W◦ ⊂ Sc.

Let W denote the family of such sets W having size at most m/t, and define

B := {(A• ∪W•, A◦ ∪W◦) : W ∈ W} .
It is straightforward to check that every B ∈ B is an approximation. Let us show that, for any
B ∈ B, the maximal degree of the subgraph induced by B∗ is less than t, i.e., that B∗∩Nt(B∗) = ∅.
Indeed, letting W ∈ W be such that B = (A• ∪W•, A◦ ∪W◦) and noting that B∗ = A∗ \ (W• ∪W◦)
and W• ∪W◦ = W+ ∪Nt(A∗ \W+), we have

B∗ ∩Nt(B∗) ⊂ (A∗ \Nt(A∗ \W+)
)
∩Nt(A∗ \W+) = ∅,

Hence, applying Lemma 6.13 to every element in B, we obtain a family A of t-approximations such
that |A| ≤ |B| and S(A) = S(B).

Next, we bound the size of A. By assumption, there exists a set S ∈ S∗m(A). Since S is odd and
since A∗ has no isolated vertices, we have

A∗ ⊂ (Odd ∩A∗ ∩ S)+ ∪ (Even ∩A∗ ∩ Sc)+,

so that |A∗| ≤ (2d+ 1)m ≤ 3dm, and hence,

|A| ≤ |B| ≤ |W| ≤
bm/tc∑
k=0

(
3dm

k

)
≤ (m/t+ 1)(3edt)m/t ≤ dCm/t.

It remains to show that S∗m(A) ⊂ S(B). Let S ∈ S∗m(A) and let W be a maximal subset of A∗
among those satisfying WEven ⊂ S, WOdd ⊂ Sc and |A∗ ∩N(W )| ≥ t|W |. Observe that

A∗ ∩N(W ) ⊂ (Odd ∩A∗ ∩ S) ∪ (Even ∩A∗ ∩ Sc).

Thus, t|W | ≤ |A∗ ∩ N(W )| ≤ m and, as W is clearly an independent set, we have W ∈ W. Now
define B• := A•∪W• and B◦ := A◦∪W◦ so that B := (B•, B◦) ∈ B. We are left with showing that
S ∈ S(B), i.e., that B• ⊂ S and B◦ ⊂ Sc. The two statements are very similar so we only show the
former. Since S ∈ S(A), it suffices to show that A∗ ∩W• ⊂ S. Let v ∈ A∗ ∩W•. If v ∈W+

Even then
v ∈ S by the definition of W and since S is odd. Otherwise, v ∈ Odd ∩ (A∗ \W+) ∩Nt(A∗ \W+)
so that |A∗ ∩N(W ∪ {v})| ≥ |A∗ ∩N(W )|+ t. Hence, v ∈ S by the maximality of W . �

We are now ready to prove Lemma 6.2.
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Proof of Lemma 6.2. Applying Lemma 6.14 with m1 := m and t1 = d to A, we obtain a fam-
ily B of d-approximation such that |B| ≤ exp(C log d · m/d) and S∗m(A) ⊂ S(B). Applying
Lemma 6.14 with m2 := bn/dc and t2 := t to each B ∈ B, we obtain a collection of families of
t-approximations. Taking the union over this collection, we obtain a family A of t-approximations
such that S∗bn/dc(B) ⊂ S(A) and

|A| ≤ |B| · exp(C log d · n/dt) ≤ exp(C log d · (m/d+ n/dt)).

It remains to show that Sn(A) ⊂ S(A). To this end, let S ∈ Sn(A) and note that S ∈ S∗m(A) ⊂
S(B). Thus, there exists B ∈ B such that S ∈ S(B). Hence, S ∈ Sn(B) and (3) now implies that
S ∈ S∗bn/dc(B) ⊂ S(A), as required. �
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