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Abstract. Let f be a continuous stationary Gaussian process on R whose spectral
measure vanishes in a δ-neighborhood of the origin. Then the probability that f

stays non-negative on an interval of length L is at most e−cδ
2L2

with some absolute
c > 0 and the result is sharp without additional assumptions.

1. Introduction

Let f be a continuous stationary Gaussian process on R and let L > 0. We are
interested in good bounds for the probability that f stays non-negative on some fixed
interval of length L (since f is stationary, this probability does not depend on the
location of the interval, so we can always assume that our interval is just [0, L]). It
has been recently observed in [FF], [KK] and [FFN] that in many interesting cases,
one can get reasonably sharp bounds for this probability from both above and below
in terms of the behavior of the spectral measure µ of the Gaussian process f near the
origin, usually under the assumption that µ has a non-trivial absolutely continuous
component. In the present paper, we will prove the following

Theorem 1. Let f be a continuous stationary Gaussian process on R whose spectral
measure µ has a gap, i.e.,

µ([−δ, δ]) = 0 for some δ > 0 .

Then

(1) P{f > 0 on [0, L]} 6 e−cδ
2L2

with some absolute constant c > 0.

We will show in Section 5 that this bound cannot be improved in general. In
particular, one can prove a matching bound from below for any stationary Gaussian
process whose spectral measure is compactly supported and has a non-trivial abso-
lutely continuous component, extending the results of [KK] where it was done for a
class of processes with discrete time.
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An analogue of Theorem 1 (with the same proof) holds for stationary Gaussian
processes on Z.

The inequality (1) itself is not new: it appeared in [FFN] already. The novelty
here is that the gap condition is the only one we impose on the spectral measure
µ; no other a priori assumptions of any kind are made about it. This seems to put
our setup beyond the scope of the techniques used in [FFN] despite the fact that our
present argument follows the same approach.

2. Basic facts about stationary Gaussian processes

A Gaussian process on R is a mapping f : R×Ω→ R, where (Ω,F ,P) is a proba-
bility space, such that it is jointly measurable and satisfies the condition that for every
x1, . . . , xm ∈ R, the vector (f(x1, ·), . . . , f(xm, ·)) has a (possibly degenerate) Gauss-
ian distribution in Rm. We say that f is continuous if f(·, ω) is a continuous function
on R almost surely (i.e., for P-almost every ω ∈ Ω). We say that f is stationary if
for every x1, . . . , xm ∈ R, the distribution of the vector (f(x1 +x, ·), . . . , f(xm +x, ·))
does not depend on x ∈ R. In what follows, we will often suppress the probability
variable ω in the notation f(x, ω) and just write f(x) instead. Also, we will always
assume that our process f is not identically 0.

If a Gaussian process f is continuous and stationary, then its covariance kernel
K(x, y) = E [f(x)f(y)] can be written as K(x, y) = k(x − y) with some positive
definite (in the sense that

∑m
i,j=1 k(xi − xj)cjcj > 0 for all xi ∈ R and all real

numbers ci) continuous function k : R→ R. By the Bochner theorem, there exists a
non-negative symmetric with respect to the origin finite measure µ on R such that

k(x) = µ̂(x) =

∫
R
e2πixy dµ(y) .

This measure µ is called the spectral measure of f . Conversely, given any finite
symmetric measure µ on R that decays not too slowly near infinity, we can construct
a unique continuous stationary Gaussian process f on R whose spectral measure is
µ.

If fj are independent continuous stationary Gaussian processes with spectral mea-
sures µj and the series

∑
j fj converges uniformly on compact subsets of R almost

surely, then its sum is a continuous stationary Gaussian process whose spectral mea-
sure is µ =

∑
j µj. Conversely, if f is a continuous stationary Gaussian process with

spectral measure µ and µ is represented as a countable sum µ =
∑

j µj, then, under
some mild extra assumptions, f can be decomposed into a uniformly converging on
compact subsets of R sum of independent continuous stationary Gaussian processes
fj with spectral measures µj.

We refer the reader who wants to learn more about continuous and smooth Gauss-
ian processes to the Appendix in [NS] and books and articles mentioned therein.

The words “decaying not too slowly” and “under some mild extra assumptions” in
the above two paragraphs can be given precise meaning by stating the corresponding
(nearly) optimal assumptions explicitly. However, the following remark shows that
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for the purpose of proving Theorem 1, we do not need the full strength of the cor-
responding delicate theory, but can get away with very crude sufficient conditions
instead.

Remark 1. Let f be any continuous stationary Gaussian process with some spectral
measure µ (possibly, decaying very slowly). Then, for every non-negative compactly
supported smooth mollifier η : R → R, the convolution f ∗ η is a continuous (and
even smooth) stationary Gaussian process whose spectral measure is |η̂|2µ.

If η is supported on [0, ε], then the condition f > 0 on [0, L] implies that f ∗ η > 0
on [0, L− ε], so

P{f > 0 on [0, L]} 6 P{f ∗ η > 0 on [0, L− ε]} .

Since

(|η̂|2µ)(R \ [−R,R]) =

∫
R\[−R,R]

|η̂|2 dµ 6 µ(R) max
R\[−R,R]

|η̂|2 ,

we can thus reduce the general case to the case when the spectral measure µ of the
process has the property that µ(R \ [−R,R]) decays faster than any power of R as
R → ∞, in which case all our claims about convergence, decompositions, existence,
etc. in the course of the proof of Theorem 1 become totally routine.

3. The main lemma

The following lemma is the basis for all our further considerations and may be of
independent interest as well.

Lemma 1. There exist n0 ∈ N and c, c′ > 0 such that if f is a continuous stationary
Gaussian process on R whose spectral measure is supported on [−1

2
, 1
2
] \ [−1

4
, 1
4
], then

for every n > n0, there exist a number σ ∈ [0,
√
µ(R)] and a non-negative measure

ν =
∑n

k=0 βkδk depending on µ and n such that ν(R) = 1,

E
[(∫

R
f dν

)2]
6 e−6cnσ2 ,

and for every deterministic function ϕ : R→ R, we have

P
{
f + ϕ > 0 on supp ν,

∫
R
(f + ϕ) dν 6 e−cnσ

}
6 e−c

′n2

.

Here, as usual, δk stands for the Dirac unit point mass at k.

Proof. Let n ∈ N be sufficiently large. Fix N ∈ [1, n] to be chosen later (the reader
should think of N as of a small constant multiple of n) and consider the minimization
problem∫

R
|P (e2πiy)|2 dµ(y)→ min, P (z) =

N∑
k=0

akz
k, ak ∈ C,

N∑
k=0

|ak|2 = 1 .
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Let P be a minimizing polynomial and let σ2 be the value of the minimum (since
P (z) = 1 is an admissible polynomial, we certainly have σ2 6 µ(R)). Write

P (z) = a
N∏
k=1

Lk(z)

where a ∈ C and each Lk(z) is a linear polynomial either of the form z − zk, or of
the form 1 − zkz with |zk| 6 1 (these two types correspond to the roots of P inside
and outside the unit disk respectively). Notice that |Lk(z)| 6 2 for |z| = 1, so

1 =

∫ 1
2

− 1
2

|P (e2πiy)|2 dy 6 22N |a|2 ,

whence |a| > 2−N .

We will now replace each factor Lk(z) by a polynomial L̃k(z) of low degree with

positive coefficients summing to 1 (or, equivalently, satisfying L̃k(1) = 1) so that

|L̃k(z)| 6 3|Lk(z)| for all z on the left unit semicircle T− = {z : |z| = 1,Re z 6 0} .
Consider two cases
Case 1: dist(zk,T−) > 1

2
.

In this case we just put L̃k(z) = 1. Then on T−, we have |L̃k(z)| 6 2|Lk(z)|.
Case 2: dist(zk,T−) < 1

2
.

In this case the absolute value of the argument of zk is at least π
3

and, therefore, 0
is in the convex hull of 1, zk, z

2
k, z

3
k, so there exist α0, . . . , α3 > 0 with α0+ · · ·+α3 = 1

such that α0 + α1zk + α2z
2
k + α3z

3
k = 0. Let U(z) = α0 + α1z + α2z

2 + α3z
3. Notice

that U(zk) = 0 and |U ′(z)| 6 3 in the unit disk, so |U(ζ)| 6 3|ζ − zk| if |ζ| = 1.

If Lk(z) = z − zk, put L̃k(z) = U(z). Then |L̃k(z)| = |U(z)| 6 3|z − zk| = 3|Lk(z)|
on T−.

If Lk(z) = 1− zkz, put L̃k(z) = z3U(1/z). Then |L̃k(z)| = |U(1/z)| 6 3
∣∣1
z
− zk

∣∣ =
3|Lk(z)| on T−.

Now put P̃ (z) =
∏N

k=1 L̃k(z). Note that P̃ is a polynomial of degree at most 3N
with positive coefficients summing to 1. Moreover, on T−, one has

|P̃ | =
N∏
k=1

|L̃k| 6 3N
N∏
k=1

|Lk| 6
3N

|a|
|P | 6 6N |P | .

Let m ∈ N. Consider the polynomial

Q(z) =
1

m+ 4N + 1
(1 + z + · · ·+ zm+4N)

(
1 + z

2

)m
P̃ (z) =

∑
k>0

βkz
k .

This polynomial still has non-negative coefficients summing up to 1 but, since |1+z| 6√
2 on T−, it satisfies the bound

|Q(z)| 6 6N2−m/2|P (z)|, z ∈ T− .

Next, the degree of Q is at most 2m + 7N . At last, notice that the coefficients of

Q can be obtained by convolving the coefficients of the polynomial
(
1+z
2

)m
P̃ (z) of
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degree at most m+ 3N with the coefficients of 1
m+4N+1

(1 + z + · · ·+ zm+4N), which
form a flat sequence of length m+ 4N . Thus the coefficients of Q with indices from
m + 3N to m + 4N are equal to 1

m+4N+1
(the common value of the coefficients of

1
m+4N+1

(1 + z + · · ·+ zm+4N), which is 1
m+4N+1

, times the full sum of the coefficients

of
(
1+z
2

)m
P̃ (z), which is 1).

Choosing m = 8N and N =
⌊
n
23

⌋
, say, and putting ν =

∑
k>0 βkδk, (here, as above,

βk are the coefficients of the polynomial Q) we see that ν is supported on {0, 1, . . . , n}
and

E
[(∫

R
f dν

)2]
=

∫
R
|Q(e2πiy)|2 dµ(y) 6 2−2N

∫
R
|P (e2πiy)|2 dµ(y)

= 2−2Nσ2 6 e−6cnσ2

with c = log 2
100

, say, provided that n is not too small. Let us now fix this value of c

and estimate the probability P
{
f + ϕ > 0 on supp ν,

∫
R(f + ϕ) dν 6 e−cnσ

}
.

Notice that on the event in question, for k = m+ 3N, . . . ,m+ 4N , we must have

0 6 f(k) + ϕ(k) 6
1

βk

∫
R
(f + ϕ) dν 6 (m+ 4N + 1)e−cnσ 6 ne−cnσ .

If σ = 0, then this implies that the probability we are interested in is just 0. Other-
wise, let A be the covariance matrix of the vector F = (f(m+ 3N), . . . , f(m+ 4N)).
By the stationarity of f , it is the same as the covariance matrix of the vector
(f(0), . . . , f(N)). It follows immediately from the definition of the spectral mea-
sure and the construction of σ that the least eigenvalue of A is σ2. Thus, the density
of the distribution of the Gaussian vector F in RN+1 is bounded by

(2π)−
N+1

2 (detA)−
1
2 6 1 · σ−N−1 = σ−N−1 .

On the other hand, on the event under consideration, F belongs to a cube with
sidelength ne−cnσ whose Euclidean volume is (ne−cnσ)N+1. Hence, the probability

in question is at most (ne−cn)N+1 6 e−c
′n2

, provided that n is not too small. The
lemma is completely proved. �

Let us make two remarks:

Remark 2. Considering the process f(x/a) instead of f(x) with some a > 0, we
can immediately generalize this result to the case when the spectral measure µ is
supported on [−a

2
, a
2
] \ [−a

4
, a
4
]. In this case the measure ν will be supported on the

set {0, 1
a
, . . . , n

a
} but the rest of the formulation of Lemma 1 will remain exactly the

same; in particular, the constants n0, c and c′ will not depend on a in any way.

Remark 3. The argument in the proof of Lemma 1 applies with some minor changes
to the case when the spectral gap is [−δ, δ] with some small δ > 0 instead of [−1

4
, 1
4
].

This allows one to almost immediately get the bound e−c(δ)n
2

with some c(δ) > 0 for
the positivity probability in the discrete case. However, the dependence of c(δ) on δ
one could get on this way would be suboptimal, so we will not use this most direct
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approach but, instead, will resort to a more elaborate scheme that would allow us to
treat the continuous case and spectral measures with unbounded supports as well.

4. The dyadic decomposition of the spectral measure and the proof
of Theorem 1

Let f be any continuous stationary Gaussian process with any spectral measure µ
that decays not too slowly at infinity and satisfies the gap condition µ([−δ, δ]) = 0.
Note that the positivity probability is never greater than 1

2
, which is the probability

that f is non-negative at a single point, so it will suffice to prove inequality (1) under
the assumption that δL is greater than some fixed absolute constant.

We start with the decomposition µ =
∑

a µa where a runs over the numbers of the
kind 2kδ, k > 2, and µa is just the part of the measure µ supported on [−a

2
, a
2
]\[−a

4
, a
4
].

This decomposition of the spectral measure corresponds to a decomposition of the
continuous stationary Gaussian process f into the sum of independent processes fa.
For each a, fix an integer na > n0 to be chosen later.

By Remark 2, for each a, we can find a non-negative measure νa of total mass 1
supported on {0, 1

a
, . . . , na

a
} and a number σa ∈ [0,

√
µa(R)] such that

E
[(∫

R
fa dνa

)2]
6 e−6cnaσ2

a ,

and for every deterministic function ϕa : R→ R, we have

P
{
fa + ϕa > 0 on supp νa,

∫
R
(fa + ϕa) dνa 6 e−cnaσa

}
6 e−c

′n2
a .

Since fa is stationary, the same inequalities hold for any shift of the measure νa.
Consider now the (countably infinite in general) convolution ν = ∗aνa = ν4δ ∗ν8δ ∗ . . . .
Since each measure νa is non-negative and satisfies νa(R) = 1, this convolution is well-
defined and supported on [0, L], provided that

(2)
∑
a

na
a
6 L .

Using the Minkowski inequality, we get the bound[
E
(∫

R
f dν

)2] 1
2

6
∑
a

[
E
(∫

R
fa dν

)2] 1
2

.

Note now that we can write ν as νa ∗ ν(a) where ν(a) = ∗a′ 6=aνa′ is also a measure
of total mass 1. Then, denoting by νa,t the shift of the measure νa by t ∈ R (so
νa,t(E) = νa(E − t)), and using the integral version of the Minkowski inequality, we
get[
E
(∫

R
fa dν

)2] 1
2

=

[
E
(∫

R

[∫
R
fa dνa,t

]
dν(a)(t)

)2] 1
2

6
∫
R

[
E
(∫

R
fa dνa,t

)2] 1
2

dν(a)(t) =

[
E
(∫

R
fa dνa

)2] 1
2

6 e−3cnaσa .
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Here we used the fact that the Gaussian process fa is stationary, so the distribution
of
∫
R fa dνa,t does not depend on t.

Hence, [
E
(∫

R
f dν

)2] 1
2

6
∑
a

e−3cnaσa 6 max
a

(e−2cnaσa) ,

provided that

(3)
∑
a

e−cna 6 1 .

The maximum always exists because σa tend to 0 as a→∞ (recall that σ2
a 6 µa(R)

and
∑

a µa(R) = µ(R) < +∞). We can also assume that the maximum is strictly
positive since, otherwise, the only chance for f to be non-negative on supp ν is to be
identically 0 there and that event has zero probability.

Let α be the value of a for which the maximum is attained. By the standard
Gaussian tail estimate, we have

P
{∫

R
f dν >

1

2
e−cnασα

}
6 exp

(
−e

2cnα

8

)
6 e−δ

2L2

,

provided that

(4) min
a
na > c′′δL with some c′′ > 0

and δL is not too small.
Thus, it will suffice to bound the probability of the event S that f > 0 on supp ν

and
∫
R f dν 6

1
2
e−cnασα. For t ∈ R, let St be the event that f > 0 on supp ν and∫

R f dνα,t 6 e−cnασα. Writing f = fα +
∑

a6=α fa = fα +ϕα and conditioning upon fa
with a 6= α, we see that for every fixed t ∈ supp ν(α), the event St is (conditionally)
contained in the event that fα+ϕα > 0 on supp να,t and

∫
R(fα+ϕα) dνα,t 6 e−cnασα.

Thus, the probability of St does not exceed e−c
′n2
α .

Now define g(ω) =
∫
R χSt(ω) dν(α)(t). Then, on the one hand,

E [g] 6 sup
t∈supp ν(α)

P{St} 6 e−c
′n2
α

while on the other hand, on S we must clearly have g > 1
2
. This yields the bound

P{S} 6 2e−c
′n2
α 6 e−c

′′′δ2L2

provided that (4) holds and δL is not too small.
It remains to show that we can, indeed, choose na satisfying (2–4). We will just

take a small c′′ > 0 and, for a = 2kδ, put na = bc′′2k/2δLc. Then (2) rewrites as∑
k>2

c′′2−k/2 6 1 ,

which can be ensured by an appropriate choice of c′′ > 0, while, (3), (4) and the
inequality mina na > n0 are satisfied as long as δL is not too small.

This finishes the proof of the desired bound in the continuous case. To handle the
discrete case (stationary Gaussian processes on Z with spectral gap), it suffices to
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note that every such discrete process can be viewed as the restriction of a continuous
process with the spectral measure supported on [−1

2
, 1
2
] with the same spectral gap.

If we assume that δ > 0 is a negative power of 2 (which we can always do without
loss of generality) and restrict the dyadic decomposition in the argument above to
a 6 1, then all measures νa and their convolutions will be supported on Z.

5. The sharpness of the bound

Now we will present a simple theorem that provides a wide class of spectral mea-
sures for which the result of Theorem 1 cannot be substantially improved.

Theorem 2. Let f be any continuous stationary Gaussian process whose spectral
measure µ is supported on [−R,R] and satisfies

(5) ρ2n = inf

{∫
R
|P |2 dµ : P (y) = 1 +

n∑
k=1

aky
k, ak ∈ C

}
> e−2Cnµ(R)

for all n > 1 with some C > 0. Then, for some C ′ > 0, L0 > 0 depending on C only,
we have

P{f > 0 on [0, L]} > e−C
′R2L2

for all L > L0.

Note that this requirement is compatible with the spectral gap condition. For
instance, the classical Remez theorem (see [CW], Lemma 4) immediately yields the
following

Corollary 1. Let f be any continuous stationary Gaussian process whose spectral
measure µ is compactly supported and has a non-trivial absolutely continuous compo-
nent. Then, for some C ′ > 0, L0 > 0, we have

P{f > 0 on [0, L]} > e−C
′L2

for all L > L0.

In general, the compact support condition in the Corollary cannot be removed if
one wants to preserve the conclusion in the current form (see [FFN], Corollary 5,
for an example of a continuous stationary Gaussian process whose spectral measure
is absolutely continuous and for which P{f > 0 on [0, L]} 6 e−e

cL
for large L).

However, having a non-trivial absolutely continuous part is by no means necessary
for the conditions of Theorem 2 to be satisfied. At the end of this section we will
present a purely discrete measure µ that has a spectral gap around the origin and
still satisfies (5).

Proof. Since µ is compactly supported, the Gaussian process f represents a random
entire function of exponential type and we have the Taylor series decomposition

f(x) =
∑
k>0

1

k!
f (k)(0)xk

converging almost surely on the entire real line.
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Fix some L > 0. We will certainly have f preserving sign on [0, L] if we can

find some positive numbers a, a1, a2, . . . such that a >
∑

k>1 ak
Lk

k!
, |f(0)| > a, and

|f (k)(0)| 6 ak for all k > 1. Since f and −f are equidistributed, we have f > 0 on
one half (with respect to the probability measure) of that event. In what follows, we
assume without loss of generality that R = 1

2π
, µ(R) = 1.

When choosing a and ak, it will be convenient to take care of “small” and “large”
k separately. So, fix some big K > 1 (it will end up being a constant multiple of L
for large L) and consider first the derivatives f (k)(0) with k 6 K.

Condition (5) shows, in particular, that the Gaussian random variable f(0) cannot
be completely determined by the vector F = (f ′(0), . . . , f (K)(0)). More precisely,
we can represent f(0) as ρKg + AF where g is the standard real Gaussian random
variable independent of F and A is some linear mapping from RK to R.

Indeed, let A = (a1, . . . , aK) ∈ CK be a minimizer of

E [(f(0)− AF )2] =

∫
R

∣∣∣1 +
K∑
k=1

(2πi)kaky
k
∣∣∣2 dµ(y) .

Note that the expression on the right hand side of this identity shows that the mini-
mization problem we are talking about is just the problem of finding the closest point
to the constant function 1 in the finite-dimensional subspace of the complex Hilbert
space L2(µ) spanned by yk (k = 1, . . . , K), so it always has a solution, which is just
the orthogonal projection of 1 to that subspace.

On the other hand, the expression on left hand side shows that the minimizing
vector A can always be taken real (since f(0), f (k)(0) are all real Gaussian random
variables, removing the imaginary part does not increase the functional), and, for
this choice of a minimizing vector, f(0) − AF is a real Gaussian random variable
satisfying E [(f(0) − AF )f (k)(0)] = 0 for all k = 1, . . . , K. By the special properties
of jointly Gaussian random variables, it means that f(0)− AF is independent of F .
At last, by the definition of ρK (see (5)), we get

E[(f(0)− AF )2] = ρ2K

so we can write f(0)− AF as ρK times a standard real Gaussian g.
Since we want to impose the restriction that F is small, our only chance to get f(0)

reasonably large is to use the ρKg component of this decomposition, which dictates
the choice a = ρK > e−CK . We will also put ak = α > 0 for k = 1, . . . , K. Since we

need to ensure that a >
∑

k>1 ak
Lk

k!
in the end, we choose α = a

2
e−L, so that

K∑
k=1

Lk

k!
ak < eLα =

a

2
.

Our next goal will be to estimate from below the probability that |f(0)| > a while
|f (k)(0)| < α for all k = 1, . . . , K. Since

E[f (k)(0)2] = (2π)2k
∫
R
y2k dµ(y) 6 1 ,
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for all k, the diagonal elements of the covariance matrix of F are bounded by 1.
Therefore its norm is at most K, whence F can be written as BG where B : RK → RK

is a linear transformation of norm at most
√
K and G = (g1, . . . , gK) is the standard

Gaussian vector in RK .
Thus, denoting the Euclidean norm of the vector F by |F |, as usual, and observing

that α < 1, we have

P{|f (k)(0)| 6 α for all k = 1, . . . , K}

> P{|F | 6 α} > P{|G| < K−
1
2α} > P{|gk| < K−1α for all k = 1, . . . , K}

>

(
2αe−

1
2
K−2α2

√
2πK

)K

>
( α

3K

)K
,

say.
Conditioning upon F , we see that for every F̄ ∈ RK ,

P{|f(0)| > ρK | F = F̄} > inf
t∈R
P{|ρKg + t| > ρK} = P{|g| > 1} = p0 > 0 ,

whence

P{|f(0)| > a; |f (k)(0)| 6 ak for all k = 1, . . . , K}
= P{|f(0)| > ρK ; |f (k)(0)| 6 α for all k = 1, . . . , K}

> p0

( α

3K

)K
.

Plugging in the value α = a
2
e−L = 1

2
ρKe

−L > 1
2
e−CK−L (recall that by (5) we have

ρK > e−CK), we get the lower bound

p0

( α

3K

)K
> p0

(
e−CK−L

6K

)K
.

For K > L, the right hand side of the last inequality is at least e−C̃K
2

with C̃ =
C + 7 + p−10 , say.

Now let us take care of k > K. We have already seen that

E[f (k)(0)2] 6 1 ,

so we have the standard Gaussian tail bound

P{|f (k)(0)| > ak} 6 e−
1
2
a2k .

Thus, for any choice of ak > 0, the probability that the inequality |f (k)(0)| 6 ak is

violated for some k > K is at most
∑

k>K e
− 1

2
a2k and, therefore,

P{|f(0)| > a; |f (k)(0)| 6 ak for all k > 1}
= P{|f(0)| > a; |f (k)(0)| 6 ak for all k = 1, . . . , K; and |f (k)(0)| 6 ak for k > K}

> e−C̃K
2 −

∑
k>K

e−
1
2
a2k .
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We want to make sure that
∑

k>K e
− 1

2
a2k stays well below e−C̃K

2
so that the sub-

traction in the probability estimate is harmless. It can be achieved, say, by putting

ak =

√
2(C̃K2 + k) for k > K, in which case the sum in question is bounded by

e−C̃K
2∑

k>K e
−k 6 1

2
e−C̃K

2
, so we still have the lower bound 1

2
e−C̃K

2
for the proba-

bility of the event we are interested in.

Since we have already ensured that
∑

16k6K
Lk

k!
ak <

a
2
, it remains to choose K so

that
∑

k>K
Lk

k!
ak 6 a

2
as well. Recalling that a = ρK > e−CK , we see that it will

suffice to ensure that ∑
k>K

Lk

k!

√
2(C̃K2 + k) 6

1

2
e−CK .

The classical bound k! >
(
k
e

)k
and the inequality

√
2(C̃K2 + k) 6

√
2(C̃k2 + k) 6 2C̃k 6 e2C̃k

imply that the left hand side is at most

∑
k>K

(
Le2C̃+1

K

)k

.

If K > 2e2C̃+1L (i.e., the common ratio of this geometric progression is at most 1
2
),

then the sum converges and does not exceed the term of the progression corresponding

to k = K, which is
(
Le2C̃+1

K

)K
. To ensure that it is less than 1

2
e−CK >

(
e−C−1

)K
, it

is enough to choose K such that

Le2C̃+1

K
6 e−C−1 ,

i.e., K > eC+2C̃+2L . Compared to all the previous conditions imposed on K (K > 1,

K > L, K > 2e2C̃+1L), this one is the most restrictive for L > 1 but it still allows
one to choose K below or at some fixed constant multiple of L > 1, so the desired
estimate follows. �

Now, it remains to present a symmetric discrete measure µ with a spectral gap that
satisfies the assumptions of Theorem 2. We will merely take for µ the measure whose
restriction to [0,+∞) is

∑
n>2

1
n2n

∑n
k=1 δn+k

4πn
. It is supported on [− 1

2π
1
2π

] \ [− 1
4π
, 1
4π

]
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and satisfies (5) just by the Lagrange interpolation formula

1 = P (0) =
n+1∑
k=1

[ ∏
16j6n+1,j 6=k

0− n+1+j
4π(n+1)

k−j
4π(n+1)

]
P

(
n+ 1 + k

4π(n+ 1)

)

6
n+1∑
k=1

(2n+ 2)!

(k − 1)!(n+ 1− k)!(n+ 1)!

∣∣∣∣P (n+ 1 + k

4π(n+ 1)

)∣∣∣∣
6 32n+1(2n+ 2)

n+1∑
k=1

∣∣∣∣P (n+ 1 + k

4π(n+ 1)

)∣∣∣∣
6 32n+12n+2(n+ 1)2

∫
R
|P | dµ 6 103n

√∫
R
|P |2 dµ .
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