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Abstract

It is shown that for any outerplanar graph G there is a one to one mapping of the vertices of

G to the plane, so that the number of distinct distances between pairs of connected vertices is at

most three. This settles a problem of Carmi, Dujmovic, Morin and Wood. The proof combines

(elementary) geometric, combinatorial, algebraic and probabilistic arguments.

1 Introduction

A linear embedding of a graph G is a mapping of the vertices of G to distinct points in the plane.

The image of every edge uv of the graph is the open interval between the image of u and the image of

v. The length of that interval is called the edge-length of uv in the embedding. A degenerate drawing

of a graph G is a linear embedding in which the images of all vertices are distinct. A drawing of G

is a degenerate drawing in which the image of every edge is disjoint from the image of every vertex.

The distance-number of a graph is the minimum number of distinct edge-lengths in a drawing of G,

the degenerate distance-number is its counterpart for degenerate drawings.

An outerplanar graph is a graph that can be embedded in the plane without crossings in such

a way that all the vertices lie in the boundary of the unbounded face of the embedding. In [1],

Carmi, Dujmovic, Morin and Wood ask if the degenerate distance-number of outerplanar graphs

are uniformly bounded. We answer this positively by showing that the degenerate distance number

of outerplanar graphs is at most 3. This result is derived by explicitly constructing a degenerate

drawing for every such graph.

Theorem 1. For almost every triple a, b, c ∈ (0, 1), every outerplanar graph has a degenerate drawing

using only edge-lengths a, b and c.
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For matters of convenience, throughout the paper we consider all linear embeddings as mapping

vertices to the complex plane.

2 Background and Motivation

While the distance-number and the degenerate distance-number of a graph are two natural notions

in the context of representing a graph as a diagram in the plane, this was not the sole motivation to

their introduction.

Both notions were introduced by Carmi, Dujmovic, Morin and Wood in [1], in order to generalize

several well studied problems. Indeed, Erdős introduced in [2] the problem of finding the minimal

number of distinct distances between n points in the plane. This problem can be rephrased as

finding the degenerate distance-number of Kn, the complete graph on n vertices. Recently, Larry

Guth and Nets Katz made a ground-breaking advancement in solving this problem, proving in [3] a

lower-bound of cn/ log n on this number, which almost matches the n/
√
log n upper-bound due to

Erdős. Another problem, which was considered by Szemerédi (See Theorem 13.7 in [5]), is that of

finding the minimum possible number of distances between n non-collinear points in the plane. This

problem can be rephrased as finding the distance-number of Kn. One interesting consequence of the

known results on these questions is that the distance-number and degenerate distance-number of Kn

are not the same, thus justifying the two separate notions. For a short survey of the history of both

problems, including some classical bounds, the reader is referred to the background section [1].

Another notion which is generalized by the degenerate distance-number is that of a unit-distance

graph, that is, a graph that can be embedded in the plane so that two vertices are at distance one if

and only if they are connected by and edge. Observe that all unit-distance graphs have degenerate

distance-number 1 while the converse is not true. Constructing ”dense” unit-distance graphs is a

classical problem. The best construction, due to Erdős [2], gives an n-vertex unit-distance graph

with n1+c/ log logn edges, while the best known upper-bound, due to Spencer, Szemerédi and Trotter

[6], is cn4/3 (A simpler proof for this bound was found by Székely, see [7]). Note that this implies

that the k most frequent interpoint distances between n points occur in total no more than ckn4/3

times, and thus that a graph with degenerate distance-number k may have no more than ckn4/3

edges. Katz and Tardos gave in [4] another bound on the frequency of interpoint distances between

n points in the plane, which yields that a graph with distance-number k may have no more than

cn1.46k0.63 edges.

After introducing the notions of distance-number and degenerate distance-number, Carmi, Duj-

movic, Morin and Wood, studied in [1] the behavior of graphs with bounded degree with respect to

these notions. They show that graphs with bounded degree greater or equal to five can have degen-

erate distance-number arbitrarily large, giving a polynomial lower-bound for graphs with bounded

degree greater or equal to seven. They also gave a logarithmic upper-bound of log(n) to the distance-

number of bounded degree graphs with bounded treewidth. In the same paper, the authors ask
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whether this bound can be improved for outerplanar graphs, and in particular whether such graphs

have a uniformly bounded degenerate distance-number, the problem which we resolve here.

3 Preliminaries

Outerplanarity, ∆-trees and T ∗. An outerplanar graph is a graph that can be embedded in

the plane without crossings so that all its vertices lie in the boundary of the unbounded face of the

embedding. The edges which border this unbounded face are uniquely defined, and are called the

external edges of the graph; the rest of the edges are called internal.

Let ∆ be the triangle graph, that is, a graph on three vertices v0, v1, and v2, whose edges are

v0v1, v0v2 and v2v1. A graph is said to be a ∆-tree if it can be generated from ∆ by iterations of

adding a new vertex and connecting it to both ends of some external edge other than v0v1. This

results in an outerplanar graph whose bounded faces are all triangles. The adjacency graph of the

bounded faces of such a graph is a binary tree, that is – a rooted tree of maximal degree 3. In fact,

all ∆-trees are subgraphs of an infinite graph T ∗. All bounded faces of T ∗ are triangles, and the

adjacency graph of those faces is a complete infinite binary tree. The root of T ∗ is denoted by T ∗
root.

An illustration of a ∆-tree can be found in the left hand side of figure 3.

It is a known fact, which can be proved using induction, that the triangulation of every outerplanar

graph is a ∆-tree. All outerplanar graphs are therefore subgraphs of T ∗, a fact which reduces

Theorem 1 to the following:

Proposition 1. For almost every triple a, b, c ∈ (0, 1), the graph T ∗ has a degenerate drawing using

only edge-lengths a, b and c.

The rhombus graph H, Covering T ∗ by rhombi. In order to prove the above proposition,

we construct an explicit embedding of T ∗ in C. To do so we introduce a covering of T ∗ by copies of

a particular directed graph H which we call a rhombus. We then embed T ∗ into C, one copy of H

at a time.

v0 v1

v2 v3

Figure 1: The rhombus graph H.

The rhombus directed graph H, is defined to be the graph satisfying VH = {v0, v1, v2, v3} and

EH = {v0v1, v0v2, v2v3, v1v3, v2v1}. We call v0 the base vertex of H.
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Figure 2: A portion of H∗, including the names of the vertices of the node H∗
root and the labels on

the arcs.

We further define H∗ to be the infinite directed trinary tree whose nodes are copies of H, labeling

the three arcs emanating from every node by v0v2, v2v3 and v1v3. We write L(a) for the label of

an arc a. Let N be a node of H∗, and let vivj ∈ EH ; we call a pair (N, vi) a vertex of H∗, and a

pair (N, vivj), an edge of H∗. Notice the distinction between arcs of H∗ and edges of H∗, and the

distinction between nodes and vertices. The root of H∗ is denoted by H∗
root. A portion of H∗ is

depicted in figure 2.

There exists a natural map π from the vertices of H∗ to the vertices of T ∗ which maps each node

of H∗ to a pair of adjacent triangles of T ∗. π is defined in such a way that H∗
root is mapped to T ∗

root

and to one of its neighboring triangles, and every directed arcMN of H∗, satisfies π((M,L(MN))) =

π((N, v0v1)) (in the sense of mapping origin to origin and destination to destination). In the rest

of the paper we extend π naturally to edges and subgraphs, and abridge π((N, v)) to π(N, v). A

portion of T ∗ and its covering by H∗ through π are depicted in figure 3.

Encoding the rhombi. In order to embed T ∗ into C, rhombus-by-rhombus, a way to refer to

every node N ∈ H∗ is called for. We encode N by the sequence of labels on the path from H∗
root to

N . This trinary sequence is denoted by SN . The map N → SN is a bijection.

One may think of each label in SN as a direction, ”left”, ”right” or ”forward”, in which one must
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N

M

H∗
root

Figure 3: A portion of T ∗ and the corresponding covering byH∗. The orientation of the edges is omit-

ted to simplify the drawing. The nodes M and N are QR-encoded by SM = (v0v2, v2v3, v0v2, v0v2),

QR(M) = ((0, 1, 0, 0), (0, 0, 0), 3) and SN = (v0v2, v2v3, v2v3), QR(N) = ((0, 2), (0), 1) respectively.

descend H∗, until finally arriving at N . To simplify our proofs, we further encode SN , by describing

this sequence by ”how many forward steps to take between each turn left or right” and ”is the i-th

turn left or right”.

Formally, we do this by further encoding SN using a triple ({qi(N)}m(N)+1
i=1 , {ρi(N)}m(N)

i=1 ,m(N)).

We set qi(N) to be the number of v2v3-s between the (i − 1)-th non-v2v3 label in SN and the i-th

one (for i = 1 and for i = m(N) + 1, the number of v2v3-s before the first non-v2v3 label in SN and

after the last non-v2v3 label in SN , respectively). We set ρi(N) to be 0 if the i-th non-v2v3 element is

v0v2 and 1 if it is v1v3. We call the triple ({qi(N)}, {ρi(N)},m(N)) the QR-encoding of N denoting

it by QR(N).

In accordance with our informal introduction, a QR-encoding ({qi}, {ρi},m), should be inter-

preted as taking q1 steps forward, then turning left or right according to ρ1 being 0 or 1 respectively,

then taking another q2 steps forward in the new direction and so on and so forth. The QR-encoding

of each node is unique.

Encoding the vertices of T ∗. The encoding of the nodes of H∗ naturally extends to an

encoding of the vertices of T ∗ by defining QR(u) = {QR(N) : π(N, v0) = u} for u ∈ T ∗. This is

indeed an encoding of all the vertices of T ∗, as for every vertex u ∈ T ∗ there exists at least one node

N such that π(N, v0) = u. However, it is not unique, as an infinite number of nodes encode each

vertex. As a unique encoding of every vertex is desirable for our purpose, we make the following

observation.
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Observation 1. Let u ∈ T ∗, there exists a unique node N such that QR(N) = ({qi}, {ρi},m) ∈
QR(u), satisfying qm+1 = 0 and either qm > 0 or m = 1. We call such an encoding the proper

encoding of u.

Proof. It is not difficult to observe that the only proper encodings of π(H∗
root, v0) and π(H∗

root, v1)

are ((0, 0), (0), 1) and ((0, 0), (1), 1) respectively.

For every vertex u ∈ T ∗, except from π(H∗
root, v0) and π(H∗

root, v1), there exists a unique node

Nu ∈ H∗ satisfying that π(Nu, vi) = u for some i ∈ {2, 3}. Let ∼ denote the concatenation operation

between sequences. Using this notation we have that either S(Nu) ∼ v2v3 ∼ v0v2 or S(Nu) ∼ v2v3 ∼
v1v3 encode a node whose base vertex is mapped by π to u. One may verify from the definition of

QR-encodings that SN ending with either v2v3, v0v2 or with v2v3 ∼ v1v3 is equivalent to qm+1 = 0

and qm > 0.

Polynomial embeddings. A d-polynomial embedding of a graph G using k edge-lengths is a

one-to-one mapping ψ : VG → C[x1, . . . , xd] where C[x1, . . . , xd] is the space of complex polynomials

in d variables, such that for every fixed x ∈ T
d = {(x1, . . . , xd) ∈ C

d : ∀i ∈ {1, . . . , d}, |xi| = 1} the

map v 7→ ψ(v)(x) = ψx(v) is a linear embedding using only k non-zero edge-lengths.

The importance of d-polynomial embeddings to our purpose stems from the following proposition:

Proposition 2. If ψ is a d-polynomial embedding of a graph G with k edge-lengths, then for almost

every x = (x1, . . . , xd) ∈ T
d, ψx is a degenerate drawing of G with k edge-lengths.

Proof. For any v,w ∈ VG, the polynomials ψ(v)(x) and ψ(w)(x) may coincide only on a set of

measure 0 in T d. Taking union over all the pairs v1, v2, we get that outside an exceptional set of

measure zero in T
d, the map ψx is one-to-one.

4 Three Distances Suffice for Degenerate Drawings

In this section we prove Proposition 1 and thus Theorem 1. To do so, for x0, x1 ∈ T, we introduce

in section 4.1 a 2-polynomial embedding ψ = ψ(x0, x1) = ψ(x0,x1) : T
∗ → C. In section 4.2 we then

write an explicit formula for the image of every vertex v under ψ. This we do using the QR-encoding

introduced in the preliminaries section. In section 4.3 we prove that ψ is one-to-one. Finally, in

section 4.4 we conclude the proof of Proposition 1.

4.1 The definition of ψ

In this section we define ψ. An outline of our construction is as follows: we start by presenting

ψH(x), a 1-polynomial embedding of H which embeds the rhombus graph onto a rhombus of side

length 1 with angle x (identifying the complex number x with its angle on the unit circle). We

then use a boolean function Ty on the nodes of T ∗ to decide whether each rhombus is mapped to a
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translated and rotated copy of H(x0) or of H(x1). Finally, we define ψ in the only way that respects

both the covering π and the function Ty. The image of several subsets of T ∗ through ψ(x0, x1) is

depicted in figure 5.

We set ψH(x)(v0) = 0, ψH(x)(v1) = 1, ψH(x)(v2) = x and ψH(x)(v3) = x+ 1. This is indeed a

polynomial drawing, mapping the rhombus graph to a rhombus of edge length 1, whose v1v0v2 angle

is x. Figure 4 illustrates the image of H under ψH .

0 1

x x+ 1

Figure 4: The image of H under ψH . Observe how x determines the v1v0v2 angle of the rhombus.

We define an auxiliary function Ty. Let MN be an arc of H∗. We set

Ty(N) =



















Ty(M) L(MN) = v2v3

Ty(N)⊕ qm(M)+1(M) (mod 2) L(MN) = v0v2

Ty(N)⊕ qm(M)+1(M)⊕ 1 (mod 2) L(MN) = v1v3

, (1)

where ⊕ represents addition modulo 2. We set Ty(H∗
root) = 0.

Set ψ(π(H∗
root)) = ψH(x0)(H). Let M,N ∈ H∗ be a pair of nodes such that MN is an arc of H∗,

and assume that ψ is already defined on the vertices of π(M). By π’s definition, this implies that

ψ(π(N, v0)) and ψ(π(N, v1)) are already defined. We then define ψ(π(N, v2)), ψ(π(N, v3)) so that

ψ(π(N, v0)), ψ(π(N, v1)), ψ(π(N, v2)), ψ(π(N, v3)) form a translated and rotated copy of H(xTy(N)).

As the image of every edge in T ∗ is isometric to some edge of either H(x0) or H(x1), we get

Observation 2. Every edge of T ∗ is mapped through ψ to an interval of length 1, |x0−1|, or |x1−1|.

While this definition of ψ(x0, x1) is complete, an explicit formula for every vertex in T ∗ under

ψ(x0, x1) is required for proving that ψ is indeed a polynomial. We devote the next section to develop

this formula.

4.2 The image of ψ

In this section we state a formula for ψ ◦ π of every base vertex.

Let u ∈ T ∗ and let N ∈ H∗, such that QR(N) = ({qk}, {ρk},m) is the proper encoding of u. The

first i elements of {qk}, {ρk} encode a node in T ∗ which is denoted by Ni (where N0 = H∗
root which

corresponds to the null sequence). Naturally, Nm = N . From (1) we get

Ty(Ni) = Ty(Ni−1)⊕ qi ⊕ ρi (mod 2). (2)
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0 1

x0
x0 + 1

2x0 + 12x0

2x0 + x0x1

x0 + x0x1

x0 + x0x1

2x0 + x0x1
2x0 + 2x0x1

RR

R

R

Figure 5: The image of several subgraphs of T ∗ under ψ. Explicit values are given for several vertices.

In each graph, the image of π(H∗
root) under ψ is marked by R. Rhombi of angle x1 are dark.

Observe that in the embedding of every H∗ node through ψ, the edges v0v2, v1v3 are parallel,

as are the edges v0v1, v2v3. Next, we define Pi(x0, x1) to be a unit vector in the direction of the

edges (v0, v1), (v2, v3) in ψ(π(Ni)) which, for i > 0, is the same as the direction of (v0, v2), (v1, v3) in

ψ(π(Ni−1)).

Formally

P u
i (x0, x1) = Pi(x0, x1) = ψ(π(Ni, v1))− ψ(π(Ni, v0)) = ψ(π(Ni−1, v2)− ψ(π(Ni−1, v0)),

where the last equality holds for i > 0. Notice that P0(x0, x1) = 1.

With this in mind, it is possible to follow the change in Pi between one Ni and the next. This

yields:

Pi(x0, x1) = Pi−1(x0, x1) · xTy(Ni−1). (3)

For 0 ≤ i ≤ m writeQu
i (x0, x1) = Qi(x0, x1) = ψx0,x1

(π(Ni, v0)). Observe thatQ0 = ψ(π(H∗
root, v0)) =

0. Let us describe how to get Qi from Qi−1 using ({qk}, {ρk},m). By definition,

Qi(x0, x1)−Qi−1(x0, x1) = ψ(π(Ni, v0))− ψ(π(Ni−1, v0)).

ThusQi(x0, x1)−Qi−1(x0, x1) can be calculated from the labels of the edges along the path connecting

(Ni−1, v0) and (Ni, v0). Each edge labeled v2v3 contributes to this difference Pi, and thus in total
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such edge contribute qi · Pi. An edge with label v1v3 contributes Pi/xTy(Ni−1) = Pi−1, while an edge

labeled v0v2 does not change the base vertex at all.

Applying this to the encoding, we get that

Qi −Qi−1 = qi · Pi + ρi · Pi−1.

Summing this over 1 ≤ i ≤ m, we get:

ψx0,x1
(u) = Qm =

m
∑

i=1

(qiPi + ρiPi−1)

= ρ1 +

m−1
∑

i=1

(qi + ρi+1)Pi + qmPm

Equivalently, letting ρm = 0 and q0 = 0 we have

ψx0,x1
(u) =

m
∑

i=0

(qi + ρi+1)Pi(x0, x1) =

m
∑

i=0

ciPi(x0, x1), (4)

where

ci = qi + ρi+1. (5)

Observe that for every u ∈ T ∗, ψx0,x1
(u) is a polynomial in x0 and x1 (because Pi are monomials).

Also observe that the total degree of Pi, which we denote by degPi, obeys degPi = degPi−1 + 1.

Therefore {ci} may be regarded as the coefficients of the polynomial ψx0,x1
(u).

Note that in particular, using the above notations, Observation 1 and the fact that ({qk}, {ρk},m)

is proper yield

cm = qm > 0. (6)

4.3 Showing that ψ is a polynomial embedding

In this section we show that the image of the vertices of T ∗ under ψ are all distinct. Relation (4)

and Observation 2 imply that if this is the case, then ψ is a polynomial embedding of T ∗ using three

edge lengths.

The main proposition of this section is the following:

Proposition 3. Let u,w ∈ T ∗ be two distinct vertices. Then ψx0,x1
(u) and ψx0,x1

(w) are distinct

polynomials.

Proof. Let ({qui }, {ρui },m),({qwi }, {ρwi }, n) be the proper QR-encoding sequences for u,w respectfully,

and let Nu
k and Nw

k be the nodes encoded by the first k elements of those sequences respectively. We

write νui = Ty(Nu
i ), ν

w
i = Ty(Nw

i ) for all i.
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Notice that by Observation 1 the two sequences are distinct. The fact that π(H∗
root, v0) and

π(H∗
root, v1) have unique images under ψ is straightforward, as these are the only vertices whose

image is a polynomial of total degree 0. We can therefore assume m > 1.

Assume for the sake of obtaining a contradiction that ψx0,x1
(u) ≡ ψx0,x1

(w) as functions of

(x0, x1), and thus in particular cui = cwi for all i.

Combining this with (6) and Observation 1, we get m = n.

Let j be the first index to satisfy (quj , ρ
u
j ) 6= (qwj , ρ

w
j ). By (2) and (3) this implies

∀i ≤ j : P u
i = Pw

i and νui−1 = νwi−1. (7)

Moreover, since quj−1 = qwj−1 and cuj−1 = cwj−1 we get by (5) that ρuj = ρwj . We deduce that quj 6= qwj .

Since cuj = cwj we have quj − qwj = ρwj+1 − ρuj+1 ∈ {−1, 0, 1}. As we have assumed this difference to be

non-zero, we may assume without loss of generality

quj − qwj = ρwj+1 − ρuj+1 = 1. (8)

Applying (7) for i = j + 1 and the last relation to (2), we get

νuj = νuj−1 ⊕ quj ⊕ ρuj = νwj−1 ⊕ qwj ⊕ ρwj ⊕ 1 = νwj ⊕ 1.

By (3) we get
P u
j+1

Pw
j+1

=
xνu

j

xνw
j

6= 1,

which implies cuj+1 = cwj+1 = 0. This in turn implies that quj+1 = qwj+1 = 0 and ρuj+2 = ρwj+2 = 0.

Using now relation (2) for i = j + 2 and recalling (8), we get

νuj+2 = νuj+1 ⊕ 0⊕ ρuj+1 = (νwj+1 ⊕ 1)⊕ 0⊕ (ρwj+1 − 1) = νwj+2.

Again by (3) we have
P u
j+2

Pw
j+2

=
P u
j+1

Pw
j+1

·
xνu

j+2

xνw
j+2

=
P u
j+1

Pw
j+1

6= 1,

which implies cuj+2 = cwj+2 = 0. Continuing by induction, we conclude that cuj+k = cwj+k = 0 for all

k > 1. Thus j = m, and so by (6), quj = cuj = cwj = qwj , a contradiction to (8).

4.4 Three Distances Suffice for Degenerate Drawings

We are now ready to write the proof of Proposition 1, and thus conclude the proof of Theorem 1.

Proof of Proposition 1. By Proposition 3, ψ is a 2-polynomial embedding of every finite subgraph

G ⊆ T ∗, using 3 edge-lengths. By Proposition 2 and Observation 2, the set

{(x0, x1) : s.t. x0, x1 ∈ T
2 and ψ(x0, x1) is a degenerate drawing}
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is of full measure, and each of these degenerate drawings uses only side lengths 1, |x0−1| and |x1−1|.
Let a ∈ (0, 1), the embedding a · ψ, i.e. the composition of a multiplication by a on ψ, is thus a

degenerate drawing of G for almost every x0, x1 using the side lengths a, a|1 − x0|, a|1 − x1|. The

result follows.

4.5 Open problems

Several interesting problems concerning graphs with low (degenerate) distance number remain unan-

swered. In this section we state those of greater interest to us. The first and most natural one

is:

Problem 1. Do outerplanar graphs have a uniformly bounded distance number?

While we believe we may be able to answer this problem positively, our construction is rather

complicated and is thus postponed to a future paper. It will be interesting to see a simple construction

which can be easily described.

The general problem which, in our mind, extends this work most naturally is:

Problem 2. Which families of graphs have a uniformly bounded (degenerate) distance number?

Observe that planarity, for example, is far from being suitable – as the complete bi-partite graph

Kn,2 is an example of a planar graph whose degenerate distance number is of order
√

(n).

Finally, our result implies that the maximal degenerate distance number of an outerplanar graph

is at most three. It is easy to see that there are outerplanar graphs whose degenerate distance number

is two. Are there any outerplanar graphs whose degenerate distance number is indeed three?

Problem 3. Is it true that the maximum possible degenerate distance number of an outerplanar

graph is two?
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theory of geometric graphs, vol. 342 of Contemp. Math., pp. 119–126. Amer. Math. Soc., 2004.

[5] J. Pach, P K. Agarwal. Combinatorial geometry. John Wiley & Sons Inc., 1995, New York.

11
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