Ohad N. Feldheim

Institute of Mathematics and its Applications, UMN

Jan 2015

Let G = (V, E) be a finite graph (loops and multi-edges are OK). k agents, a_0, \ldots, a_{k-1} moving on V, are said to form a (simple) avoidance coupling (SAC) if:

• The agents move one at a time (i.e. a_0 , then a_1 etc'),

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

Let G = (V, E) be a finite graph (loops and multi-edges are OK). k agents, a_0, \ldots, a_{k-1} moving on V, are said to form a (simple) avoidance coupling (SAC) if:

- The agents move one at a time (i.e. a_0 , then a_1 etc'),
- The agents never collide

 (i.e. at most one agent per site),
- The path of each agent is a simple random walk.

Q(AHMWW): Given G what is the maximal k for which an avoidance coupling exists?

Terminology

- ullet Sites: $\subset \mathbb{Z}$
- Agents: a_0, \ldots, a_{k-1} .
- "Step": the movement of a single agent.
- "Round": the movement of all agnets.
- t: measures time in terms of rounds.
- K_n : complete graph.
- K_n^* : complete graph with loops.

Coupling random walks

• Coupling of random variables X_1, \ldots, X_k is their embedding in a joint probability space Ω .

Coupling random walks

- Coupling of random variables X_1, \ldots, X_k is their embedding in a joint probability space Ω .
- Random walks are often coupled so that they will a.s. collide.

Coupling random walks

- Coupling of random variables X_1, \ldots, X_k is their embedding in a joint probability space Ω .
- Random walks are often coupled so that they will a.s. collide.
- Avoiding collision through scheduling was studied by Winkler, Basu, Sidoravicius and Sly.

Coupling random walks

- Coupling of random variables X_1, \ldots, X_k is their embedding in a joint probability space Ω .
- Random walks are often coupled so that they will a.s. collide.
- Avoiding collision through scheduling was studied by Winkler, Basu, Sidoravicius and Sly.
- SAC tends to be stronger, thus allows more agents.

Relating a distribution and its marginals

Relating a distribution and its marginals

• Alexandrov's projection theorem (37'): one can reconstruct a convex body from all hyperplane projections.

Relating a distribution and its marginals

- Alexandrov's projection theorem (37'): one can reconstruct a convex body from all hyperplane projections.
 - ...followed by an industry of obtaining useful information about convex bodies from various projected properties.

Relating a distribution and its marginals

- Alexandrov's projection theorem (37'): one can reconstruct a convex body from all hyperplane projections.
 ...followed by an industry of obtaining useful information about convex bodies from various projected properties.
- k i.i.d. random walkers on a connected graph always collide.
 The contra-positive of our question is:

When is it impossible for a joint distribution with the same marginals to avoid collision?

Remarks

• Markovian and Hidden Markovian SAC.

Remarks

- Markovian and Hidden Markovian SAC.
- $\bullet \ \, \mathsf{Discrete} \ \mathsf{time} \longleftrightarrow \mathsf{Continuous} \ \mathsf{time} \ \mathsf{poisson}.$

Remarks

- Markovian and Hidden Markovian SAC.
- Discrete time \longleftrightarrow Continuous time poisson.
- In general starting position cannot be assumed uniform.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

On a 2n cycle graph - maximal SAC is a least of size n.

- Lower bound: move all agents in the same direction in each round.
- Upper bound: neighbours must keep moving in the same direction.

On a 2n cycle graph - maximal SAC is a least of size n.

- Lower bound: move all agents in the same direction in each round.
- Upper bound: neighbours must keep moving in the same direction.
- This is a *minimum-entropy* coupling.

On a 2n cycle graph - maximal SAC is a least of size n.

- Lower bound: move all agents in the same direction in each round.
- Upper bound: neighbours must keep moving in the same direction.
- This is a minimum-entropy coupling.
- The same principle works for $\mathbb{Z}^d/n\mathbb{Z}^d$,

Simple Examples - II - loop triangle

On a K_3^* - maximal SAC is of size 2.

Simple Examples - II - loop triangle

On a K_3^* - maximal SAC is of size 2.

Strategy:

- a₁ makes a random walk.
- If a₁ stays a₀ moves, otherwise - a₀ follows its only viable option.

Simple Examples - II - loop triangle

On a K_3^* - maximal SAC is of size 2.

Strategy:

- a₁ makes a random walk.
- If a₁ stays a₀ moves, otherwise - a₀ follows its only viable option.

This walk is:

- minimum-entropy coupling,
- invariant to time reversal.

Theorem (Angel, Holroyd, Martin, Wilson & Winkler)

Let $n = 2^{d+1}$. There exists a Markovian, minimum-entropy SAC of 2^d agents on K_n^*, K_{n+1}^* and K_{n+1} .

Theorem (Angel, Holroyd, Martin, Wilson & Winkler)

Let $n = 2^{d+1}$. There exists a Markovian, minimum-entropy SAC of 2^d agents on K_n^*, K_{n+1}^* and K_{n+1} .

AC(G) := maximum SAC on G.

Theorem

 $AC(K_n^*)$ is monotone in n. (AHMWW)

 $AC(K_n)$ is monotone in n. (F)

Theorem (Angel, Holroyd, Martin, Wilson & Winkler)

Let $n = 2^{d+1}$. There exists a Markovian, minimum-entropy SAC of 2^d agents on K_n^*, K_{n+1}^* and K_{n+1} .

AC(G) := maximum SAC on G.

Theorem

 $AC(K_n^*)$ is monotone in n. (AHMWW)

 $AC(K_n)$ is monotone in n. (F)

Corollary

There exists a SAC of $\lceil n/4 \rceil$ agents on both K_n^* and K_n .

Theorem (Angel, Holroyd, Martin, Wilson & Winkler)

Let $n = 2^{d+1}$. There exists a Markovian, minimum-entropy SAC of 2^d agents on K_n^*, K_{n+1}^* and K_{n+1} .

AC(G) := maximum SAC on G.

$\mathsf{Theorem}$

[Bernoulli SAC] $AC(K_n^*)$ is monotone in n. (AHMWW)

[POSAC] $AC(K_n)$ is monotone in n. (F)

Corollary

There exists a SAC of $\lceil n/4 \rceil$ agents on both K_n^* and K_n .

Theorem (Angel, Holroyd, Martin, Wilson & Winkler)

Let $n = 2^{d+1}$. There exists a Markovian, minimum-entropy SAC of 2^d agents on K_n^*, K_{n+1}^* and K_{n+1} .

AC(G) := maximum SAC on G.

Theorem

[Bernoulli SAC] $AC(K_n^*)$ is monotone in n. (AHMWW)

[POSAC] $AC(K_n)$ is monotone in n. (F)

Corollary

There exists a SAC of $\lceil n/4 \rceil$ agents on both K_n^* and K_n .

These couplings are hidden Markovian.

Constructing an Avoidance Coupling on Kzd+1

"I think you should be more explicit here in step two."

Write
$$n = 2^d$$
, $V = \{0, ..., 2n\}$,

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$.

Write $n = 2^d$, $V = \{0, ..., 2n\}$, assume WLOG $a_n(t-1) = 0$. Let m < n and write $m := \sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$.

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable.

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable. we set

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable. we set

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

 δ_t determines $a_0(t) = a_{00}(t)$.

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable. we set

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

 δ_t determines $a_0(t)=a_{00}(t).$ Then $arepsilon_t^0$ determines $a_1(t)=a_{01}(t),$

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable. we set

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

 δ_t determines $a_0(t) = a_{00}(t)$. Then ε_t^0 determines $a_1(t) = a_{01}(t)$, and ε_t^1 determines $a_2(t) = a_{10}(t)$.

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable. we set

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

 δ_t determines $a_0(t)=a_{00}(t)$. Then ε_t^0 determines $a_1(t)=a_{01}(t)$, and ε_t^1 determines $a_2(t)=a_{10}(t)$. $a_3(t)=a_{11}(t)$ is fixed by $\varepsilon_t^0, \varepsilon_t^1$.

Write $n=2^d$, $V=\{0,\ldots,2n\}$, assume WLOG $a_n(t-1)=0$. Let m< n and write $m:=\sum m^i 2^i$. We now define $a_m(t)|a_n(t-1)$. Let $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ be i.i.d. uniform $\{-1,1\}$ variables, and let δ_t be an independent uniform $\{0,1\}$ variable. we set

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{a-1} m^i \varepsilon_t^i 2^i,$$

 δ_t determines $a_0(t)=a_{00}(t)$. Then ε_t^0 determines $a_1(t)=a_{01}(t)$, and ε_t^1 determines $a_2(t)=a_{10}(t)$. $a_3(t)=a_{11}(t)$ is fixed by $\varepsilon_t^0, \varepsilon_t^1$.

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

- No collision in the same round
- Each agent performs simple random walk
- No collisions between rounds

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

- No collision in the same round straightforward.
- Each agent performs simple random walk
- No collisions between rounds

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

- No collision in the same round straightforward.
- Each agent performs simple random walk we show this first.
- No collisions between rounds

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$a_m(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} m^i \varepsilon_{t-1}^i 2^i$$

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$a_m(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} m^i \varepsilon_{t-1}^i 2^i,$$

$$a_n(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^i 2^i$$

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$a_m(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} m^i \varepsilon_{t-1}^i 2^i,$$

$$a_n(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^i 2^i = 0,$$

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$a_{m}(t-1) \equiv a_{n}(t-2) + 2^{d} + \delta_{t-1} + \sum_{i=0}^{d-1} m^{i} \varepsilon_{t-1}^{i} 2^{i},$$

$$a_{n}(t-1) \equiv a_{n}(t-2) + 2^{d} + \delta_{t-1} + \sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^{i} 2^{i} = 0,$$

$$a_{m}(t-1) \equiv \sum_{i=0}^{d-1} (m^{i} - 1) \varepsilon_{t-1}^{i} 2^{i}.$$

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$\begin{aligned} a_m(t-1) &\equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} m^i \varepsilon_{t-1}^i 2^i, \\ a_n(t-1) &\equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^i 2^i = 0, \\ a_m(t-1) &\equiv \sum_{i=0}^{d-1} (m^i - 1) \varepsilon_{t-1}^i 2^i. \text{ Thus} \\ a_m(t) - a_m(t-1) &\equiv 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i + \sum_{i=1}^{d-1} (1 - m_{t-1}^i) \varepsilon_{t-1}^i 2^i. \end{aligned}$$

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$\begin{split} a_m(t-1) &\equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} m^i \varepsilon_{t-1}^i 2^i, \\ a_n(t-1) &\equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^i 2^i = 0, \\ a_m(t-1) &\equiv \sum_{i=0}^{d-1} (m^i - 1) \varepsilon_{t-1}^i 2^i. \text{ Thus} \\ a_m(t) - a_m(t-1) &\equiv 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i + \sum_{i=1}^{d-1} (1 - m_{t-1}^i) \varepsilon_{t-1}^i 2^i \\ &\equiv 2^d + \delta_t + \sum_{i=0}^{d-1} b^i(t) 2^i \text{ where } b^i \text{ are i.i.d. Bernoulli } \{-1, 1\}, \end{split}$$

$$a_m(t) = 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i,$$

$$\begin{split} &a_m(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} m^i \varepsilon_{t-1}^i 2^i, \\ &a_n(t-1) \equiv a_n(t-2) + 2^d + \delta_{t-1} + \sum_{i=0}^{d-1} 1 \cdot \varepsilon_{t-1}^i 2^i = 0, \\ &a_m(t-1) \equiv \sum_{i=0}^{d-1} (m^i - 1) \varepsilon_{t-1}^i 2^i. \text{ Thus} \\ &a_m(t) - a_m(t-1) \\ &\equiv 2^d + \delta_t + \sum_{i=0}^{d-1} m^i \varepsilon_t^i 2^i + \sum_{i=1}^{d-1} (1 - m_{t-1}^i) \varepsilon_{t-1}^i 2^i \\ &\equiv 2^d + \delta_t + \sum_{i=0}^{d-1} b^i(t) 2^i \text{ where } b^i \text{ are i.i.d. Bernoulli } \{-1,1\}, \\ &\equiv \text{Unif}\{1 \dots 2^{d+1}\}. \end{split}$$

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

- No collision in the same round Done.
- Each agent performs simple random walk Done.
- No collisions between rounds

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i,$

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1)\varepsilon_{t-1}^i 2^i$, and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i)\varepsilon_{t-1}^i \right] 2^i$

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i$, and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i$.

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i$, and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i$. Taking $k = \max_i (m^i \neq q^i)$, we have $m^k = 0$, $q^k = 1$,

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \qquad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i$, and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i$. Taking $k = \max_i (m^i \neq q^i)$, we have $m^k = 0$, $q^k = 1$, and so,

$$|\Delta^{i}| \le \begin{cases} 1 & i > k \\ 0 & i = k \\ 2 & i < k \end{cases}$$

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \quad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i,$ and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i.$ Taking $k = \max_i (m^i \neq q^i),$ we have $m^k = 0, \ q^k = 1,$ and so, $|\Delta^i| \le \begin{cases} 1 & i > k \\ 0 & i = k \\ 2 & i < k \end{cases} \Rightarrow |\delta_t + \sum_{i=1}^{d-1} \Delta^i 2^i| < 1 + \sum_{i=2}^{d-1} 2^i < 2^d$

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \quad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i,$ and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i.$ Taking $k = \max_i (m^i \neq q^i),$ we have $m^k = 0, \ q^k = 1,$ and so, $|\Delta^i| \le \begin{cases} 1 & i > k \\ 0 & i = k \\ 2 & i < k \end{cases} \Rightarrow |\delta_t + \sum_{i=1}^{d-1} \Delta^i 2^i| < 1 + \sum_{i=2}^{d-1} 2^i < 2^d$

2^d agents SAC on $K_{2^{d+1}+1}$ - cont.

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \quad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i$, and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i$. Taking $k = \max_i (m^i \neq q^i)$, we have $m^k = 0$, $q^k = 1$, and so, $\begin{cases} 1 & i > k \\ 2 & i = k \end{cases}$

$$\begin{aligned} |\Delta^{i}| &\leq \begin{cases} 1 & i > k \\ 0 & i = k \Rightarrow |\delta_{t} + \sum_{i=1}^{d-1} \Delta^{i} 2^{i}| < 1 + \sum_{i=2}^{d-1} 2^{i} < 2^{d} \\ 2 & i < k \end{cases} \\ \Rightarrow a_{m}(t) - a_{q}(t-1) \neq 0. \end{aligned}$$

2^d agents SAC on $K_{2^{d+1}+1}$ - cont.

 $n=2^d$, $V=\{0,\ldots,2^{d+1}\}$, $a_n(t-1)=0$. $m^i:=i$ -th binary digit of m. $\varepsilon_t^0\ldots\varepsilon_t^{d-1}$ uniform $\{-1,1\}$, δ_t uniform $\{0,1\}$.

$$a_m(t) = 2^d + \delta_t + \sum_{i=1}^{d-1} m^i \varepsilon_t^i 2^i, \quad a_m(t-1) \equiv \sum_{i=1}^{d-1} (m_i - 1) \varepsilon_{t-1}^i 2^i.$$

Let m < q and recall that: $a_q(t-1) \equiv \sum_{i=1}^{d-1} (q_i-1) \varepsilon_{t-1}^i 2^i$, and thus: $a_m(t) - a_q(t-1) \equiv 2^d + \delta_t + \sum_{i=1}^{d-1} \left[m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i \right] 2^i$ Write $\Delta^i := m^i \varepsilon_t^i + (1-q^i) \varepsilon_{t-1}^i$. Taking $k = \max_i (m^i \neq q^i)$, we have $m^k = 0$, $q^k = 1$, and so,

$$\begin{aligned} |\Delta^{i}| &\leq \begin{cases} 1 & i > k \\ 0 & i = k \Rightarrow |\delta_{t} + \sum_{i=1}^{d-1} \Delta^{i} 2^{i}| < 1 + \sum_{i=2}^{d-1} 2^{i} < 2^{d} \\ 2 & i < k \end{cases} \\ &\Rightarrow a_{m}(t) - a_{q}(t-1) \neq 0. \end{aligned}$$

 2^d agents SAC on K_{2^d+1} - cont.

And there is also an applet! (by David Wilson)

http://dbwilson.com/avoidance.svg

Monotonicity of Avoidance coupling on Kn

Let G = (V, E) be a finite graph (loops and multi-edges are OK). m agents, a_0, \ldots, a_{m-1} moving on V, are said to form a k-POSAC if:

 The agents move one at a time but in changing order,

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.

- The agents move one at a time but in changing order,
- Agents a_1, \ldots, a_k are always moving in order,
- The agents never collide
- The path of each agent is a simple random walk.

Theorem

If there is a k-POSAC of m agents on K_n , then there also is a k-POSAC of m+1 agents on K_{n+1} .

At start of a round flip the special vertex with another vertex.

Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels.

Add a special vertex with a special disordered agent. At start of a round flip the special vertex with another vertex. Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

- No collisions occur.
- Each walker makes a simple random walk.

- No collisions occur.
- Each walker makes a simple random walk.

- No collisions occur.
- Each walker makes a simple random walk.

collusion can occur only in the previous * vertex.

- No collisions occur.
- Each walker makes a simple random walk.

collusion can occur only in the previous * vertex. However, it is occupied only as long as the new * vertex is occupied.

At start of a round flip the special vertex with another vertex.

Continue the process respecting the new labels.

- No collisions occur.
- Each walker makes a simple random walk.

- No collisions occur.
- Each walker makes a simple random walk.

The new agent clearly makes a simple random walk.

- No collisions occur.
- Each walker makes a simple random walk.

Other agents make a simple random walks on the A-F labels.

- No collisions occur.
- Each walker makes a simple random walk.

Other agents make a simple random walks on the A-F labels. Now suppose an agent is in A at time t, its probability of ending in a vertex currently labeled by B, \ldots, F is:

- No collisions occur.
- Each walker makes a simple random walk.

Other agents make a simple random walks on the A-F labels. Now suppose an agent is in A at time t, its probability of ending in a vertex currently labeled by B, \ldots, F is:

 $\mathbb{P}(\text{it moved to that label}) \cdot \mathbb{P}(\text{the label isn't replaced by }*)$

- No collisions occur.
- Each walker makes a simple random walk.

Other agents make a simple random walks on the A-F labels. Now suppose an agent is in A at time t, its probability of ending in a vertex currently labeled by B, \ldots, F is:

 $\mathbb{P}(\text{it moved to that label}) \cdot \mathbb{P}(\text{the label isn't replaced by }*)$

$$=\frac{1}{n-1}\cdot\frac{n-1}{n}=\frac{1}{n}.$$

- No collisions occur.
- Each walker makes a simple random walk.

Other agents make a simple random walks on the A-F labels. Now suppose an agent is in A at time t, its probability of ending in a vertex currently labeled by B, \ldots, F is:

 $\mathbb{P}(\text{it moved to that label}) \cdot \mathbb{P}(\text{the label isn't replaced by }*)$

$$=\frac{1}{n-1}\cdot\frac{n-1}{n}=\frac{1}{n}.$$

The complementary $\frac{1}{n}$ is the probability of moving to the vertex currently labeled by *.

Open Problems

Open problems

- Upper bound.
- ullet Is $rac{\mathcal{K}_n}{n}
 ightarrow 1?$
- General & random graphs.
- High entropy avoidance coupling.

Thank you!

* all cartoons by Sidney Harris.