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Setup and terminology

Consider a finite set A C Z4.
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e A g-coloring of A is a function of2loMlo 2ol ol
frA—={0,1,...,¢—1}. o [4] o 7] o [7]2[7] 0
_ ) ol1]2]2]l2[1]2]1]0]2

e fis proper if 1lofo[a]o[2]1]o]2]0
u~v= f(u) #f(v). olt1|2]1]2]1]o[1]o1
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Setup and terminology

Consider a finite set A C Z4.

e A g-coloring of A is a function
f:A—={0,1,...,q—1}.

o fis proper if
u~ v = flu) #f(v) .

o Denote # of singularities in f:

N(f) = {u~ v

2 f(uw) = f(0)}-
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The Potts Model

We consider a random 3-coloring f of A C Z% with one parameter
B called inverse temperature.
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0/2/0/1/0|2]|0|1]0]|2
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The Potts Model

We consider a random 3-coloring f of A C Z% with one parameter
B called inverse temperature.

e IP(f) proportional to e~ #NU). g;g?igﬁ?g;
(Boltzmann distribution.) T omlo Aotz o
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The Potts Model
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The Potts Model

We consider a random 3-coloring f of A C Z% with one parameter
B called inverse temperature.
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The Potts Model

We consider a random 3-coloring f of A C Z% with one parameter
B called inverse temperature.
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The Potts Model

We consider a random 3-coloring f of A C Z% with one parameter
B called inverse temperature.
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Equilibrium statistical mechanics = research of phases
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Motivation from statistical mechanics

Phases of matter.
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Phase depends on temperature and pressure.
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Motivation from statistical mechanics

Magnetic phases.
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Motivation from statistical mechanics

Magnetic phases.
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Motivation from statistical mechanics

Magnetic phases.
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The Ising model

The Ising model (2-states Potts).
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The Ising model

The Ising model (2-states Potts).

e Values represent spin +/— direction.
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The Ising model

The Ising model (2-states Potts).

e Values represent spin +/— direction.
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The Ising model

The Ising model (2-states Potts).

e Values represent spin +/— direction.

e P(f) proportional to e #N(), ] B B
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The Ising model

The Ising model (2-states Potts).

e Values represent spin +/— direction.
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(giving a bias for seeing + vs. —). o4 oA o[T]o[]0
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o4 o[ o]0
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The Ising model

The Ising model (2-states Potts).

e Values represent spin +/— direction.

e P(f) proportional to e #N(), ol oMo
. R o[a]o[a]o[A] o
(Statlo.nary distribution of Glauber o T o Tt o AT o
dynamics) o4 o [a]o[A]o[T]o0
, o4 o4 o]0 []o0
o Of.te?n taker.1 under ex.ternal field o o Bl o T o il o
(giving a bias for seeing + vs. —). o] oA oA o]0
o[a]o[a]o[4]o]1]o
e Ferromagnet (5 < 0) and oMol o Bl o
anti-ferromagnet (8 > 0) are ] B B

equivalent.
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Thermodynamical limit

Thermodynamical questions deal with large volume systems. That
is fixed d, with n — oo (thermodynamical limit).



Introduction
000080000

Thermodynamical limit

Thermodynamical questions deal with large volume systems. That
is fixed d, with n — oo (thermodynamical limit).

Order vs. Disorder



Introduction
000080000

Thermodynamical limit

Thermodynamical questions deal with large volume systems. That
is fixed d, with n — oo (thermodynamical limit).

Order vs. Disorder: dependence on
boundary conditions.



Introduction
000080000

Thermodynamical limit

Thermodynamical questions deal with large volume systems. That
is fixed d, with n — oo (thermodynamical limit).

Order vs. Disorder: dependence on
boundary conditions.
e A large domain.
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the boundary.

Even zero boundary conditions
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Thermodynamical limit

Thermodynamical questions deal with large volume systems. That
is fixed d, with n — oo (thermodynamical limit).

Order vs. Disorder: dependence on
boundary conditions.

e A large domain.

e Condition on f(v) = 7 for all v on
the boundary.

e Does the distribution in the center
depend on 77

e Ordered phase: Yes.
Disordered phase: No.

O—\O—\O—\O—\H
O—\O—\O—\O—\E
O—\O—\O—\O—\H

Aol |lOolm~|Ol=a|O
= O |O|mn(O|=|O

e Mature notions:
Gibbs measures & pure phases.

sample with O-boundary
conditions on even domain
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Basic Questions:

e In which d does a phase transition occur?
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Basic Questions:

e In which d does a phase transition occur?

e What does a typical 3 > 0 sample look like?
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Questions about the model

Basic Questions:

e In which d does a phase transition occur?

e What does a typical 3 > 0 sample look like?
Advanced questions:

e Behavior at/near criticality?

0 0 0 0 0 0
0[1[0[1]0]1]|0 0[0[0[1]0]0]|O
0[1/{0[1|/0f1]0|1]0 0[1{1[{1|/0f1]0]|1]0

0[1/0[1/0|1]0|1]0 0[1[1/0[1|/0]|0|1]0
0[1({0f1/0|1]0]|1]|0 0[0[1{1/0|0]|0|0]|O
0[1/{0[1/0|1]0]|1]|0 0[0[1[1[1|/0]1]0]|0
0[1/{0f1|/0f|1]0|1]0 0[1/0({0|0Of1]1]0]|0O
0[1/0[1|/0f1]0]|1]|0 0[1{1/0[1/0]|0]|1]0
0[1[0[1]0]1]|0 0[0[O[1]1]0]|0
0 0 0 0 0 0
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Questions about the model

Basic Questions:

e In which d does a phase transition occur?

e What does a typical 3 > 0 sample look like?
Advanced questions:

e Behavior at/near criticality?

e Rapid/Torpid mixing?

0 0 0 1 1 1
0f1]0]1]0[1]0O 1]0[1[(0[1]0]|1
Of1/0[1]|0|1j1f1]O0 1]0f{0[1ff1/0]1]0|1

0f1/0[1]0|1|0[1([0 1/{0[1/0f0OJJO|1]O0O|1
0f1/0/1]0|1|0[|1][0 1/{0[{1/0[1]0]1]0]1
0f1/0/1]0|1|0|1([0 1/{0[1/0[1]0]1]0|1
0f1/0[1]0]|1|0[1][0 1/0[{1/0[1/0]1]0]1
0f1/0[1]|0]|1|0[|1([0 1{0[1/0[1/0]1]|0]1
0f1]0]1]0|1]0 1{0[1[(0[1]0]|1
0 0 0 1 1 1
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Questions about the model

Basic Questions:

e In which d does a phase transition occur?

e What does a typical 3 > 0 sample look like?
Advanced questions:

e Behavior at/near criticality?

e Rapid/Torpid mixing?

e How fast do correlations decay?

0 0 0 0 0 0
0[1[0[1]0]1]|0 0[0[0[1]0]0]|O
0[1/{0[1|/0f1]0|1]0 0[1{1[{1|/0f1]0]|1]0

0[1/0[1/0|1]0|1]0 0[1[1/0[1|/0]|0|1]0
0[1({0f1/0|1]0]|1]|0 0[0[1{1/0|0]|0|0]|O
0[1/{0[1/0|1]0]|1]|0 0[0[1[1[1|/0]1]0]|0
0[1/{0f1|/0f|1]0|1]0 0[1/0({0|0Of1]1]0]|0O
0[1/0[1|/0f1]0]|1]|0 0[1{1/0[1/0]|0]|1]0
0[1[0[1]0]1]|0 0[0[O[1]1]0]|0
0 0 0 0 0 0
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More specific strategy for 5 > 0.

e A large even domain.
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Using zero-boundary conditions

How to demonstrate multiple pure phases?
More specific strategy for 5 > 0.

e A large even domain.

e Condition on f(v) = 0 for all v on
the boundary.

e Show that the frequencies on even
and odd sublattice are unbalanced.

O—\O—\O—\O—\H
O—\O—\O—\O—\E
O—\O—\O—\O—\H

sample with 0-boundary
conditions on even domain
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Properties of the Ising model

Answers to these questions are now known for the Ising
model (¢ = 2):
e In all d > 2 there is a critical temperature 1/5. = O(d)
(error terms are known).
e 3 < f3. implies a unique pure state.
e 3> [3. implies two pure states.

e In B > 3. one sublattice is biased towards + and the other
towards —.

Ising 2d ferromagnets and anti-ferromagnets:

F—Crit >0 AF—-Crit >0
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Beyond Ising

Clock and Potts models.

- = B —
Cyril Domb Renfrey Potts
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Baxter (1982): d = 2, ¢ = 3 Potts AF - critical at § = .
Roman Kotecky (1985): Conjecture - for AF
3-states Potts model on Z<, there exists a minimal
do (probably dy = 3) such that for d > dj there is
a positive critical temperature 1/4,.
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Kotecky Conjecture

Baxter (1982): d = 2, ¢ = 3 Potts AF - critical at 5 = cc.

Roman Kotecky (1985): Conjecture - for AF
3-states Potts model on Z<, there exists a minimal
do (probably dy = 3) such that for d > dj there is
a positive critical temperature 1/4,.

o d B0 B
e For B.> Be: six pure states (phase oT210 210 o
co-existence). o]0 A o]2]oA]0
0l1({0/1|{0f2|0f1]|0
e Each state corresponds to one color ol2]of2]o[1]0[Z]0
dominant on one sublattice and nearly g ; ‘1) 5 ‘1) 5 ‘1) ; ‘1) .
absent from the other. ol2]ol2]ol2]0]2]0
o[2]o[a]o[1]0
0 0 0
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Kotecky Conjecture

Baxter (1982): d = 2, ¢ = 3 Potts AF - critical at 5 = cc.

Roman Kotecky (1985): Conjecture - for AF
3-states Potts model on Z<, there exists a minimal
do (probably dy = 3) such that for d > dj there is
a positive critical temperature 1/4,.

. 3 O KB

e For B.> Be: six pure states (phase oT210 210 o
co-existence). o]0 A o]2]oA]0

0f1/0[1/0|2|0|1]0
e Each state corresponds to one color ol2]of2]o[1]0[Z]0
dominant on one sublattice and nearly 0 ; ‘1) 5 ‘1) 5 ‘1) ; ‘1) .

absent from the other. 0[2]0[2]0]2]0]2]o0

. o 2] oo Ao
e For 8 < (B.: one disordered pure phase, A B B

correlations decay exponentially fast.
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AF 3-states Potts

g > 3 AF is more challenging because the model “defies” the third
law of thermodynamics.

3rd law: the entropy of a perfect crystal at absolute zero is zero.

aloINImRINolmINI— o

=S O|N|O[=|O|=aO|=~|N

OIN[=IN|OIN|O|=|IN|O

N|= O |OIN|OIN|O|—>

OIN[=IN|=O|=2|O|=2|O

N|= OO |OIN|O|N

N|=[[OIN|OIN|O|=|O|—>
S IOINIO|N=INOI=2(N
O|IN|[=|O|NO|= OO
N|=2[OIN|=2N|O[=~|N|—=




Kotecky Conjecture
oe

AF 3-states Potts

g > 3 AF is more challenging because the model “defies” the third
law of thermodynamics.

3rd law: the entropy of a perfect crystal at absolute zero is zero.

The remaining entropy is called residual entropy.

aloINImRINolmINI— o

= 1OIN|O|=O|=[(O|2|N

OIN[=IN|OIN|O|=|IN|O

N|= O |OIN|OIN|O|—>

olN|=|Nv[=m|olm|ola|o

N|= OO |OIN|O|N

N|=[[OIN|OIN|O|=|O|—>
S IOINIO|N=INOI=2(N
O|IN|[=|O|NO|= OO
N|=2[OIN|=2N|O[=~|N|—=
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Kahn (2001) and Galvin (2003):
g=3,n=2, =00, d— oo has six pure states.
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Zero Temperature - highly connected

Benjamini, Haggstrom and Mossel (1999):
What about the case n fixed, 8 = oo, d — 00?

Kahn (2001) and Galvin (2003):

g=3,n=2, =00, d— oo has six pure states.

Galvin & Engbers (2012):
Any ¢, n fixed, 5 = 0o, d — 0o has many pure states.
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Zero Temperature - highly connected

Benjamini, Haggstrom and Mossel (1999):
What about the case n fixed, 8 = oo, d — 00?

Kahn (2001) and Galvin (2003):
g=3,n=2, =00, d— oo has six pure states.

Galvin & Engbers (2012):
Any ¢, n fixed, 5 = 0o, d — 0o has many pure states.

This is very encouraging, but fixed n is irrelevant for
thermodynamical limits.
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Zero Temperature through other model

Galvin and Kahn(2004): d > 0
hard-core (independent set)
model has a phase transition.

)

David Galvin Jeff Kahn
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Zero Temperature through other model

Galvin and Kahn(2004): d > 0
hard-core (independent set)
model has a phase transition.

Peled(2010): d > 0 hom(Z?,7Z)
with zero boundary conditions

fluctuate mainly between +1. Ron Peled

0 0 0

o [=] o [F] o [ 0
0(1{0[1|{0}-1/0[1]|0
o[ T o[ o
01 10 (1|0
o[l 1 2 1o 1]o
01 1/0(1[-1(1]|0
of®lol1/oEol1]o
0f-1{0[1]|0|-1]|0

3 B B
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Homomorphism height functions and 3-colorings

There is a natural bijection between 3-colorings and hom(Z%, Z).

1/0({1(2|{0|1[2[0|1]|0 1/0(1
2(1(0(1|2|0f1(2|0]|1 (@\ 1101
112(1(0|1|2|0[1]2]|0 B 1 1/0(1
0|1|0f1(2|1]|2|0|1|2 » 0(1(0/1 1
2|0(1[(2|1]0|1(2|0]|1 -1/0|1 1101
0|1|0f1(2|1]|2|0|1|2 0(1/0/1 1
2|0(1(2|1|2|0(2|0]|1 -1/0|1 1
0(1]/2|0(2|1|2|0|1|2 mod 3 0|1 1
1/0(1(2|{0|2(0[1]|2]|0 1/0(1
0|1|0f1(2|0|1|2(0|1 « 0|1/0(1
Pointed 3-Colorings Pointed HHFs
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Homomorphism height functions and 3-colorings

There is a natural bijection between 3-colorings and hom(Z%, Z).

1/0({1(2|{0|1[2[0|1]|0 1/0(1
2(1(0(1|2|0f1(2|0]|1 (@\ 1101
112(1(0|1|2|0[1]2]|0 B 1 1/0(1
0|1|0f1(2|1]|2|0|1|2 » 0(1(0/1 1
2|0(1[(2|1]0|1(2|0]|1 -1/0|1 1101
0|1|0f1(2|1]|2|0|1|2 0(1/0/1 1
2|0(1(2|1|2|0(2|0]|1 -1/0|1 1
0(1]/2|0(2|1|2|0|1|2 mod 3 0|1 1
1/0(1(2|{0|2(0[1]|2]|0 1/0(1
0|1|0f1(2|0|1|2(0|1 « 0|1/0(1
Pointed 3-Colorings Pointed HHFs

HHF values between +1 = Coloring values of even 0, odd 1,2.
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Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

o
o
o

o|=|Oo|IN|O[=]|O
o

O[NNI~ (N[= O

OIN|O|=(N[=|ON

o
(e} E [l A fol BN o)
Ol=IN|I~ O~ IN|—~

o|lv|o|=|N|=a|N|=|o
OO [N|O|IN[=2]|O
OoOIN|O|=[(O=2|N[~|O
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Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

0-boundary rigidity at zero-temperature (Peled 2010)

(Galvin, Kahn, Randall & Sorkin 2012)

In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in
high dimensions nearly all the even vertices take the color 0.
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Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

0-boundary rigidity at zero-temperature (Peled 2010)

(Galvin, Kahn, Randall & Sorkin 2012)

In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in
high dimensions nearly all the even vertices take the color 0.

Formally:

even .
Elfve Vo f0) £ 00 _ (el )
|Veven| log d
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Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

0-boundary rigidity at zero-temperature (Peled 2010)

(Galvin, Kahn, Randall & Sorkin 2012)

In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in
high dimensions nearly all the even vertices take the color 0.

Formally:

E peven . 0 d
o e £ _ o (_ i )
|Veven| log d

e This verifies the existence of at least six pure states.
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Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

0-boundary rigidity at zero-temperature (Peled 2010)

(Galvin, Kahn, Randall & Sorkin 2012)

In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in
high dimensions nearly all the even vertices take the color 0.

Formally:

E peven . 0 d
o e £ _ o (_ i )
|Veven| log d

e This verifies the existence of at least six pure states.

e A preliminary result on Glauber dynamics' mixing was developed by
Galvin & Randall in 2007.



Zero-temperature
000@00000

Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

0-boundary rigidity at zero-temperature (Peled 2010)

(Galvin, Kahn, Randall & Sorkin 2012)

In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in
high dimensions nearly all the even vertices take the color 0.

Formally:

E peven . 0 d
o e £ _ o (_ i )
|Veven| log d

e This verifies the existence of at least six pure states.

e A preliminary result on Glauber dynamics' mixing was developed by
Galvin & Randall in 2007.

® The bound here deviates by log2 d factor from predicted estimates.
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Zero-temperature case of the Kotecky conjecture.

...and hence for 8 = oo the conjecture has been verified:

0-boundary rigidity at zero-temperature (Peled 2010)

(Galvin, Kahn, Randall & Sorkin 2012)

In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in
high dimensions nearly all the even vertices take the color 0.

Formally:
E € Jeven . 0 d
o S AO ol
|Veven| log d
e This verifies the existence of at least six pure states.

A preliminary result on Glauber dynamics’ mixing was developed by
Galvin & Randall in 2007.

The bound here deviates by log2 d factor from predicted estimates.

Zero-temperature has no physical meaning.
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Peled’'s method for 5 = oo

The main proposition in Peled's
method is that external level line of
length L around a vertex are
exp(—cL/dlog? d) unlikely.

Level lines from Peled’s paper
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Peled’'s method for 5 = oo

The main proposition in Peled's
method is that external level line of
length L around a vertex are
exp(—cL/dlog? d) unlikely.

Level lines from Peled’s paper

The main ingredient is the shift-minus transformation:

Jd B B [ B B J O B
of-1fo[-]o[1]0 of-tfo[-1]o[1]0 o[-]of-1]o[1]0
o/1|o|1|of1]of1]0 oo ol-1of1]o o ol@ol-tlol1]o
0/ 1]2]1]2]1/0[1]0 ol2[1]2[1 ol1]o o/ 1]o[1|o@ol1]o
o/1]2[3[2]1]0]-1]0 0232E0-10 0121@0-10
0/1]2[1]2[1/0]1]0 » o/2[1/2[1Ho[1]o » o/1fof1/oEol1]o
o1l2]1 o7 210 ol2[1E o[T]2]1]0 o410 o[1]2]1]0
o[1]o/1|of-1]o[1]0 o[1]oE of-1[o[1]0 o[1]oBEol1]o[1]0
ol-1]of1]o]-1]0 ol-1]of1]o[]0 o[-1]o 1] o]0
[ B B [ B B J O B

Sublevel set Shift Shift + Minus
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Peled’'s method for 5 = oo

The main proposition in Peled's
method is that external level line of
length L around a vertex are
exp(—cL/dlog? d) unlikely.

Level lines from Peled’s paper

The main ingredient is the shift-minus transformation,

T
whose entropy gain is 5.
b B B b B B J @ B
of-1fo[-]o[1]0 of-tfo[-1]o[1]0 o[-]of-1]o[1]0
o/1|o|1|of1]of1]0 oo ol-1of1]o o ol@ol-tlol1]o
0/ 1]2]1]2]1/0[1]0 ol2[1]2[1 ol1]o o/ 1]o[1|o@ol1]o
o/1]2[3[2]1]0]-1]0 0232E0-10 0121@0-10
0/1]2[1]2[1/0]1]0 » o/2[1/2[1Ho[1]o » o/1fof1/oEol1]o
o[1][2[1|of[1]2]1]0 ol2]1H o [T]2]1]o o[ ol o [T 2]7]0
of[1]of1|of-1]o]1]0 o[1]oEof-1]of1]0 o[1]o|Bo[-1]ol1]0
o[-1[o[1]o]-1]0 o[-1]o]1]o]-1]o o[-1[o[1]o]-1]0
b B B [ B B J @ B
Sublevel set Shift Shift + Minus
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Peled’'s method and the special case of 3-states

Write F'y, for colorings with contour of length L around v. We thus
map: each f € Fy, to 25/24 other colorings.
However this map is not one-to-many.
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Peled’'s method and the special case of 3-states

Write F'y, for colorings with contour of length L around v. We thus
map: each f € Fy, to 25/24 other colorings.
However this map is not one-to-many.

Roughly - the idea is to control the number of f with contour of

length L, using the formula:

in-degree

|domain| < |image| - [NCeBTEe.
out-degree
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Peled’'s method and the special case of 3-states

Write F'y, for colorings with contour of length L around v. We thus
map: each f € Fy, to 25/24 other colorings.
However this map is not one-to-many.

Roughly - the idea is to control the number of f with contour of

length L, using the formula:

in-d

|domain| < |image| - [NCeBTEe.
out-degree

Non-trivial. Hard to estimate in-degree, and requires either
o (Peled) altering the map to avoid high in-degree.
e (Galvin & al.) probabilistic biasing (flow method).
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Beyond proper colorings of Z¢

It is non-trivial to extend this result even to colorings of the torus:

ol1]of1]ol2]of1]0]1]0
1Jol1[2T1]ol1 o1 0]
2[1]of1lo[1]2]1]o]1]2
ol2[1]of1l2]o]2]1]2]0
2[4 21121 ]2]1]0[1]2
1121(ol1]of1]of[1]2]1
ol1]of1]2l1]of1]o]1]o0
2/o0[1]21]o[1]2]1]0]2
ol1]2f1]ol2]of1]o]1]0
1lolt1|ol2]of1]2]1]2]1
of1]o[1]ol2]o[1]o[1]0

Periodic boundary conditions
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Beyond proper colorings of Z¢

The bijection does not extend to the torus.

=

0

o

0

1

1

o

=

0[1/0(1
-1/0]|1

0[1/0(1
-1/0|1

0

0[1/0(1

mod 3

-

110(1(2|/0f1]2]|0|1]|0
2(1/01]2|0|1[2|0|1
112(1(0(1]/2]|0]1]2]|0
O[1(0f1]2]|1]2|0[1]|2
2/0(1|2|1]0]J1[2|0|1
0O[1(0f1]2]|1]2|0[1]|2
2/0(1]12|1]2|0[2|0|1
0(1(2|0]2]|1]2|0[1]|2

110(1(2|/0(2|0]|1]|2]|0
0[1(0f1]2|0|1[2|0|1

Pointed HHFs

Pointed 3-Colorings
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Beyond proper colorings of Z¢

The bijection does not extend to the torus.

1]ol1]2]oT1 201 0 1701
2[1]o[1]2]0]1]2]0 [ 7oy 1001
1]2]1]ol1]2]0o[1]2]0 2-—m 1020101
of1lof1l21]2]o[1]2 » ol1]o[1[2] 1
2lo[1]2[1]o]1]2]0 [ Alol12]1[0]4
oftlof1[2]1]2]o[1]2 ol1]ol1[2]1
2lo[1]2]1]2]0]2]0 [ Al o127 1
of1[2]ol2]1]2]0[1]2 mod 3 01 1
1]ol1]2]ol2]o[1]2]0 1001
of1]o[1]2]of1]2]0[H « o101
Pointed 3-Colorings Pointed HHFs

However, algebraic topology says that it nearly does.
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Beyond zero-temperature

Periodic boundary rigidity at zero-temperature (F. & Peled 2013)

In high dimension, a typical uniformly chosen proper 3-coloring
with periodic boundary conditions is nearly constant on either the
even or odd sublattice.
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Beyond zero-temperature

Periodic boundary rigidity at zero-temperature (F. & Peled 2013)

In high dimension, a typical uniformly chosen proper 3-coloring
with periodic boundary conditions is nearly constant on either the
even or odd sublattice.

e This is a first step beyond the HHF structure.
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At least Lt’s
posutu\/e...
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Positive temperature

Finding contours in positive temperature is quite problematic...

1(2(1/0|2{0|2(0f1|2
0(2(0(1|/0(2[(0|1]|0|2
1(0{1]/0(1{0|1[{2[1]|0
of1|2§j212(1(2}1|0|2
1/0lf0f1]0|2|1(0[2|0
0f1(2{1(2|(1(0[1]|0/|1
1/0{112|1{0|1({2[1]|0
0f1({0|1|/0(2[(0}|1]|0|2
2(0(2|0|1(0|2|0|2]|1
111012 (0[1]0|1|f1]2
B> 0 sample
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Remark - Asymmetric case.

The 3-state AF Potts model has recently been studied on
asymmetric planar lattices.

c AR

Kotecky, Sokal and Swart (2013): TXIXIXIX ::>%<:>%<:>%<

In such lattices there is a phase RS >‘:'<,%>‘:'<%>%<|:>
o . ; Dl

transition at positive temperature, CROKPK

with 3 pure states.

SRR
AR

Lattices from KSS paper
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Remark - Asymmetric case.

The 3-state AF Potts model has recently been studied on
asymmetric planar lattices.

: ?T/\,)T/\,/\T’\,/\
Kotecky, Sokal and Swart (2013): TRINIRIX ::>%<:>%<:>%<
In such lattices there is a phase i : >{<:>:<:>%<I>
transition at positive temperature, ‘ ::>‘l<:>‘:’<;>%<

with 3 pure states.

The proof uses the asymmetry to OO
define and exploit better the phase
interface.

SRRV
AR

Lattices from KSS paper
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Positive temperature on Z¢

To implement the idea of Peled’s proof we require:
e alternative for contours,
e alternative for the transformation,
e better method for using the entropy,

e method to bound the in-degree of a coloring.



Positive-temperature
©000

Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.



L
e
=
3
I
S
[
o
£
Q
2
13
2
=
Z
=]
a

A key definition in approaching positive temperature is that of a

Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel

components.

2

0

1

1/2/0j2]|0|1]0f1|0ff0o[1]0

2|10]2[0]|2|(0[2]0|2]|0]|2|0]|2(0[2]|0|2
of1]jof1]|o|1]Oo|1|O|1]O[1]O|1]|O|1]O
2|0]2|0|2(0f1|2|1]2]|1|2]|1(0]2|0|2

of1|0f1]|0f1]0|1]2]|0]|2|1]|2]J2|0|1]|0
2(of2j0/1|2|1]|2|1|2|0[2|0[1|2|0|2

0110 1]f1

2|1012{1|{2(1/0f1]0J1]0|1]{0]2[1|0|1

o[1]0/2]|1|2]|1|2]|1|2]|1|2]|0f1]|2|1]0
2(o|2|o|2|o|2|0|2|1]|2[0|2|[0[1|[0]|2

0J1]0|1(0f1]0]2]0])2|0f2[0f1]2]1]|0

2|10]2|0]|2|(0f2]|0|2]|0]|2]|1]|2(1

0]1]0]1(0f1]0]2]0)1|0f2({0f2]0]1]0
2|0ffoffoj2jo0)2)of2|0|2[0]2]|0]|2]|0(2
0j1]0|1fof1]O0|1]O0j1|Oof1({Of1]0]1]0

We start by defining four

phases for vertices:
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Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.

We start by defining four

) Ao BB B B B H E
phases for vertices: OB E o BRNRGEAE - B o B
Phase 0 := even 0 d oK o BANBEAA © E
220121 2[12[o[2]o|1]2|FA 2
1 I T 2 o [2] o [4]o [1] of6N 1
227 2 ]o[1fo[7[o[]ol2]1FN 1
1 o BERERBHEAEHA ° BEE
HAoB B B BEA B H°EB
Ao BB A HA°HA - HBAE
oA A B A - BEBER - B
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Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.

We start by defining four

) Ao BB B BB EH E
phases for vertices: o BoE o BRNRGEAE - BB
Phase 0 := even 0 d Ko BANBEAA © E
o A EREBERANRNEA © B
1 o A RRBRANEREE © E
227 2ol 1[o[1[of1]ol2]1 N1
o BERERBHEAEHA ° BEE
AoB B B BEA B H B
Ao BB A A HA - BAE
oA A B A - BEBER - B
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Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.

We start by defining four

phases for vertices: >l 2 i 2 o B
Phase 0 := even 0 0 2
2 2 ol2]ol1]2 W2
1 of2]o[1]o]1]0
Phase 1 := odd 1, even 2 202717271 ]o[1[o]1]o]1]0
2121 2[1]2]1]2
AoBA A A BEH - B 2
AoHAB
AoA A HA°BA - BEBRE 2
2 o B
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Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.

We start by defining four
phases for vertices:
Phase 0 := even 0

Phase 1 := odd 1, even 2
Phase 2 := odd 2, even 1
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Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.

We start by defining four
phases for vertices:
Phase 0 := even 0

Phase 1 := odd 1, even 2
Phase 2 := odd 2, even 1

The improper edges are
encoded by the phases.
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Breakup

A key definition in approaching positive temperature is that of a
Breakup (w.r.t. to a vertex v;), in lieu of Peled's sublevel
components.

We start by defining four
phases for vertices:
Phase 0 := even 0

Phase 1 := odd 1, even 2
Phase 2 := odd 2, even 1

The improper edges are
encoded by the phases.
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Breakup

The first ingredient in our proof is a notion of a Breakup w.r.t. an
odd vertex v;. This - in lieu of Peled’s sublevel components.

We now repeatedly take
co-connected closures:

complement — conn. component — complement
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Breakup

Phase definition reminder
0:even0 | 7:0odd0 | 1: odd 1, even2 | 2: odd 2, even 1.

We now repeatedly take
co-connected closures:

complement — conn. component — complement
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Breakup

Phase definition reminder
0:even0 | 7:0odd0 | 1: odd 1, even2 | 2: odd 2, even 1.
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Phase definition reminder
0:even0 | 7:0odd0 | 1: odd 1, even2 | 2: odd 2, even 1.

@ Co-conn. 0 phase.
® Co-conn. )
©® Co-conn. 1 phase.
O Co-conn. 2 phase.

The result is the Breakup.
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The transformation is good
since:

@ The boundary from one
direction gives us
entropy...

@ ... except near certain
improper edges.

© Given the breakup
everything is reversible.
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Results

Properties of breakups:
e When the coloring is proper it coincides with Peled’s contours.

e We can show, using improved flow methods, that breakups
with long boundary are unlikely.
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0-boundary rigidity at positive temperature (F. & Spinka 2015+)

For every d high enough, there exists 3y such that in a typical
sample of the 3-state AF Potts with 0-boundary conditions and
B > Bo, nearly all the even vertices take the color 0.

Formally:
El{ve Vo i f0) £ 0} _
‘Veven‘ € :

This verifies the Kotecky conjecture for d > 1.

e In particular - Implies the existence of at least 6 pure states.
e Obtains the correct order of magnitude.

e Open: show that 5y decreases with d.
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0-boundary rigidity at positive temperature (F. & Spinka 2015+)

For every d high enough, there exists By such that in a sample of
the 3-state AF Potts with 0-BC and 8 > By, we have

O P(f(v) #0) < e for all even v,
O P(f(u)=0)< e forall odd v,
© P(f(u) =f(v) <e B forall u~ .

0 0 0
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0J1]0|1/0]2|0f1]0

0|1]/0[1/0|2|0]1]0
0|2]|0|2/0]1|0|2]0

0|1]/0/2/0|2|0]|1]0
oj1]|0|1/0]1|0f1]0

0|2]|0]2/0|2|0]|2]0
0|2|0|1[0f1]O

0 0 0



Positive-temperature
0000e0

Result

0-boundary rigidity at positive temperature (F. & Spinka 2015+)

For every d high enough, there exists By such that in a sample of
the 3-state AF Potts with 0-BC and 8 > By, we have

O P(f(v) #0) < e for all even v,
O P(f(u)=0)< e forall odd v,
© P(f(u) =f(v) <e B forall u~ .

e We also have a “structural” theorem mo. .
which provides similar bounds on other o [l o [ o [2 o [ 0

[ 0f1/0{1/0|2|0f1]0
deviations from the pure state. 13101315 o (210

0f1/0[2/0|2|0f1]0
o [ o [7 o A o [ 0

0(2/0(2/0|2|0|2]|0

o 2] oo Ao
0 0 0




Positive-temperature
0000e0

Result

0-boundary rigidity at positive temperature (F. & Spinka 2015+)

For every d high enough, there exists By such that in a sample of
the 3-state AF Potts with 0-BC and 8 > By, we have

O P(f(v) #0) < e for all even v,
O P(f(u)=0)< e forall odd v,
© P(f(u) =f(v) <e B forall u~ .

e We also have a “structural” theorem 0 g 0 g 0 ? 0
which provides similar bounds on other o [l o [ o [2 o [ 0
deviations from the pure state. S ; (2) ; (2) (2) (1) (1) (2) g

e Our results allow us to prove 0 ; ‘1) i ‘1) (2) ‘1) (1) ‘1) .
convergence to an infinite-volume o[2]o]2]0]2]0]2]0
measure under 0-boundary conditions. 0 (2) 0 ; 0 ; 0
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Open problems

Decrease of critical temperature with the dimension.
It is conjectured that 8.(d) = ©(1/d).
Periodic boundary conditions.

Four colors (and more), i.e., ¢ > 4.

Other graph homomorphisms.

Showing the existence of a single critical point.

Low dimensions, e.g., d = 3.
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We are left with the the challenge of showing that a breakup is
rare. To explain this we should understand:

e How to use the entropy wisely.

e how to bound the indegree of every configuration.
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Bounding the indegree

Flow one measure unit from every coloring.

Potts samples Potts samples
M more likely
L,M Breakup samples /

~ 2L/24 images
/
—

—

<3

Colorings in
aBreakup

Not good
enough!

By, » breakups

L - Boundary
M - Improper edges

P(3BE€ By : f€B) <|Bpy|- e BM.27L/2d
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Flow principle:

Let S, D be two finite sets.

Given a flow v: S x D — [0, 1], such that
for every s € S, we have Y ,cpv(s,d) > 1 and
for every d € D, we have Y cqv(s,d) < p,

we can deduce
S| < plD].
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Approximation

A key step inspired by previous methods is to obtain a small family
of approximations for the Breakup.

First we obtain a small family
of crude dist-5-connected
approx. for each phase set.
We then add all the improper
edges.

We carefully increase the
family using properties of the
breakup.

Finally we combine the
information about our breakup
from all phases, forming an
information scheme.

Here much of the technical
innovation is hidden.




Approximations
0000e

We have more than enough entropy to find our breakup’s
approximation, but not enough to enumerate over the missing
information.



Approximations
0000e

We have more than enough entropy to find our breakup’s
approximation, but not enough to enumerate over the missing
information.

Let us show how uneven flows help (in the simplest case).




Approximations
0000e

We have more than enough entropy to find our breakup’s
approximation, but not enough to enumerate over the missing
information.

Let us show how uneven flows help (in the simplest case).

<
1/2
If we use our entropy 1/2<:
uniformly we get:
y we g o
ﬂ<
1/2

[2]o[1]1/2

[1Jo]1]2/2

[1]o 2/2

[2]o]2]1/2
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We have more than enough entropy to find our breakup’s
approximation, but not enough to enumerate over the missing
information.

Let us show how uneven flows help (in the simplest case).

<
1/4
However if we use it more 1/2
carefully we get:
y g >
ﬂ<
3/4

[2]0]1]3/4

[1]o]1]s/a

[1]o]2]s/4

[2]o]2]s/4
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What was not included?

e How do we obtain the approximation?
e How to generalize the flow?
(beyond the simplest case)
e |s there a height function counterpart? what does it mean?




Approximations
oe

Ferromagnetic Memories

0 1

0

Yivy
122221
12222
12222
Yyvy

tHitt |
tHttt WK |
ttte e
tritt WA
tret 724

AR
RRRRN
AN
R

IS

Anti-Ferromagnetic Memories

Room temperature AF

memory resistor

(Marti et al.)



	Introduction
	The model
	Motivation

	Kotecky Conjecture
	Kotecky

	Zero-temperature
	Zero-temperature

	Positive-temperature
	positive
	Breakup
	Transformation

	Approximations
	details
	Summary


