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Abstract

We prove that a uniformly chosen proper 3-coloring of the d-dimensional discrete torus has a
very rigid structure when the dimension d is sufficiently high. We show that with high probability
the coloring takes just one color on almost all of either the even or the odd sub-torus. In particular,
one color appears on nearly half of the torus sites. This model is the zero temperature case of the
3-state anti-ferromagnetic Potts model from statistical physics.

Our work extends previously obtained results for the hypercube, and for the discrete torus with
specific boundary conditions. The main challenge in this extension is to overcome certain topo-
logical obstructions which appear when no boundary conditions are imposed on the model. These
are addressed by developing discrete analogues of appropriate results from algebraic topology.

This theory is developed in some generality and may be of use in the study of other models.

1 Introduction

We study proper 3-colorings of T%, the d-dimensional discrete torus (Z/nZ)?, whose side length n is
even. Our main theorem is that in high dimensions, a uniformly chosen proper 3-coloring of ’]I“flZ is
nearly constant on one of the two bipartition classes of T¢. Precisely, denote the partite classes of
T¢ by VO and V1. A proper 3-coloring of T¢ is a function f: T¢ — {0,1,2} satisfying f(v) # f(w)
whenever v and w are adjacent in ']Tfll. Denote by CP; 1(f) the proportion of color & on V', that is,

{veVi: flo) =k}
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Theorem 1.1. There exist dy,c > 0 such that for every integer d > dg and every even n, a uniformly

chosen proper 3-coloring f: T4 — {0,1,2} satisfies

. cd
E<Zér{1(1)ri}(CPlk(f))> < exp <_log—2d> for all k € {0,1,2}.

Thus, the theorem asserts that typically in high dimensions, for each color there is a partite class
on which the color hardly appears. Equivalently, one of the partite classes is dominated by a single
color.

The next section describes the main idea of the proof. More precise definitions are given in

Section 2.

1.1 Main idea of the proof

Our proof of Theorem 1.1 exploits a connection between proper 3-colorings and height functions,
which we now describe. It is convenient to introduce the required notions on a general graph. Suppose
G is a connected, bipartite graph with a fixed vertex vg € V(G). Let Col(G,vg) be the set of all
proper 3-colorings of G taking the value 0 at vg. That is,

Col(G,vy) :={f : V(G) = {0,1,2} : f(vg) =0, f(v) # f(w) when (v,w) € E(G)}. (1)

An integer-valued function on V(G) is called a homomorphism height function on G, or simply height
function or HHF, if it differs by exactly one between adjacent vertices of G. Let Hom(G, vg) be the

set of all homomorphism height functions on G which take the value 0 at vy. Precisely,
Hom(G,vo) = {f : V(G) = Z : f(v0) = 0, |f(v) — F(w)| = 1 when (v,w) € B(G)}.  (2)

In this paper, we always take G to be either T¢ or Z¢ for some n and d. We consider both T¢ and
7% to come with a fixed coordinate system and denote by 0 the vector (0,0,...,0) in that system.
For these graphs, we abbreviate Col(G, 0) to Col(G) and Hom(G, 0) to Hom(G).

The connection we need between proper colorings and height functions is summarized by the

following two facts:
1. For any graph G, vy € V(G) and h € Hom(G, vp), the function g : V(G) — {0, 1,2} defined by
g(v) := h(v) mod 3
belongs to Col(G, vy).
2. When G = Z%, the above correspondence defines a bijection between Hom(Z¢) and Col(Z?).

The first fact is straightforward. The second fact appears to be well-known to experts in the field.

It is a consequence of the fact that the basic 4-cycles in Z¢ span all other cycles.



Our goal in this work is to use the above correspondence to transfer known results on height
functions, proved in [15], to results on colorings, thereby obtaining Theorem 1.1. Our task is, however,
made complicated by the following obstruction. The above correspondence is not a bijection when
the graph G = T%. In other words, there exist colorings in Col(T%) which are not the modulo 3 of
any height function in Hom(T¢). For instance, the coloring 012012 of T4 provides one such example.
The source of this problem is of a topological nature, stemming from the fact that the torus has
non-contractible cycles. This poses a major difficulty, preventing a direct use of the known results
on height functions. The following theorem, whose proof occupies most of this paper, provides a way
around this difficulty. It shows that the above correspondence is, nonetheless, close to being bijective

when the dimension d is sufficiently high.

Theorem 1.2. There exist dy and ¢ > 0 such that for every integer d > dy and every even n, a

uniformly chosen proper 3-coloring of T, satisfies

P(f is not the modulo 3 of some HHF on T%) < exp(—cqnd™1),

C
dlog?d”

with cg =

In the next section we explain how Theorem 1.1 follows from the above theorem and a result
on height functions proved in [15]. In Section 1.3 we present some background. The rest of the
paper is devoted to the proof of Theorem 1.2. Section 2 contains the first part of the proof and
a proof overview. The proof is inspired by ideas from algebraic topology but the necessary tools
are developed completely in the discrete setting. We believe that some of these tools could prove
useful in other models as well, especially the trichotomy theorems of Section 3, Theorem 3.2 and
Theorem 3.4, which deal with discrete counterparts of manifolds of codimension one. The connection
between our work and algebraic topology is expounded upon in Section 2.4. Section 6 is dedicated

to remarks and open problems.

1.2 Proof of Theorem 1.1

In this section we deduce Theorem 1.1 from Theorem 1.2 and a result of [15] on the fluctuations of
typical homomorphism height functions on T‘fl.
We start with the following lemma, which states the required result on the typical behavior of

height functions.

Lemma 1.3. There exist ¢ > 0 and dy such that in all dimensions d > dy, if h is uniformly sampled
from Hom(T%) then

d
P(|h(u) — h(v)| > 3) < exp <_c—2> Yu,v € T
log®d



Proof. Theorem 2.1 in [15] gives, in particular, that there exist ¢ > 0 and dy such that in all
dimensions d > dy and for every u,v € T4, if h is uniformly sampled from Hom(T%, ), then
cd
P(lh(v)]| > 3) <exp| ——5— | .
(o) = 3) < o0 (%)
The lemma follows from this by using the fact that the mapping T,,: Hom(T%) — Hom(T¢, u) defined
by T, (h)(v) := h(v) — h(u) is a bijection. O

We are now ready to prove Theorem 1.1. First, observe that by symmetry, it suffices to prove
the theorem for a uniformly chosen coloring in Col(T¢), i.e., a coloring normalized at 0.
Let f be uniformly chosen from Col(T%). Recall that

opy() = M E =R

where V9 and V! are the partite classes of T¢. Fix k € {0,1,2} and let

X := min CP;;.
1€{0,1}

We need to show that E(X) < exp(—cd/log®d) for some ¢ > 0 and all sufficiently high d.
Fix d sufficiently high and ¢ > 0 sufficiently small for the following arguments. Define the event

A := {f is the modulo 3 of some HHF in Hom(T¢%)}.

By symmetry again, Theorem 1.2 implies that

C
P(A°) < - dl).
( )eXp< dlog2d

Hence,

E(X) =E(X1,) +E(X14) < E(X|A) + exp <_d10;2dnd_l> ' 3)

Thus we focus on estimating E(X|A). Conditioning on A, there exists some h € Hom(T¢) for which
f = h (mod 3). Moreover, since distinct functions in Hom(T%) give rise to distinct colorings in
Col(T¢) under the modulo 3 operation, it follows that, conditioned on A, A is uniformly distributed
in Hom(T?).

Now note that if u,v € T¢ are vertices in different partite classes of T¢ then h(u) and h(v) have

different parity. Thus, for such vertices, we have the following containment of events,

{f(u) = f(v)} = {h(u) = h(v) (mod 3)} € {[h(u) - h(v)| = 3}.
We conclude that X satisfies the following relation.

1 , 1
2 : i, _ 2 0 . — 1. —
X = o fain [ e Vs J(0) = KIEP < g ltv € VO J0) = K- o e VE e fl) =R <
1 1
= Tvop > Wsw=rwy < Tk > Thw-nws):
ueVo vevl ueVo vevl



Hence, we may use Lemma 1.3 to deduce that

B(Y14) < VB < [ 2 P(\h(u)—h(vnz?,)@xp( cd ) ()

log?d
ueVO veV'?! &

Together with (3), this establishes Theorem 1.1.

1.3 Background and related works

Our work is not the first to establish rigidity of proper 3-colorings in high dimensions. However, it
is the first to do so when no boundary conditions are imposed. Previously, a result analogous to
Theorem 1.1 in which the proper 3-coloring is sampled from the set of colorings with ‘zero bound-
ary conditions’ was established in [15], and also by Galvin, Kahn, Randall and Sorkin in [6]. The
restriction to such ‘zero boundary conditions’ makes the problem simpler from a topological point of
view since it essentially removes the non-trivial cycles of T¢, rendering the correspondence described
in section 1.1 into a bijection of height functions and proper 3-colorings with these boundary condi-
tions. The results of [15] and [6] imply Roman Kotecky’s conjecture (see [12] for context and [6] for
additional details), that the proper 3-coloring model admits at least 6 different Gibbs states in high
dimensions.

Other earlier works include that of Galvin and Randall [7] who established bounds on the mixing
time for Glauber dynamics in the proper 3-coloring model on T¢. In addition, Kahn [10] and Galvin
[4] established a version of Theorem 1.1 for the hypercube graph {0, 1}¢.

In statistical physics terminology, the proper 3-coloring model is the same as the zero temperature
case of the antiferromagnetic 3-state Potts model. It is expected that the analog of our result
continues to hold for small, positive temperature, but this remains unproven. In two dimensions, the
model is equivalent to the uniform six-vertex, or square ice, model (this was pointed out by Andrew
Lenard, see [14]). It is expected that the analog of Theorem 1.1 fails in two dimensions, as the square
ice model is conjectured to be in a disordered phase, in the sense that the model should have a unique
Gibbs state when d = 2. However, it may well be that multiple Gibbs states exist already for any
d > 3. Kotecky, Sokal and Swart [13] have shown that there are planar lattices for which the model
does have multiple Gibbs states. Moreover, Huang et. al. [9] have shown that multiple Gibbs states
exist for proper g-colorings with arbitrary large ¢ on suitably chosen, g-dependent, planar lattices.

It is conjectured that the rigidity phenomenon described by Theorem 1.1 has an analog for
proper colorings with more than 3 colors. Specifically, that for any ¢ > 4 there exists a dy(q)
such that a uniformly sampled proper g-coloring of T¢, d > dy(q), has the following structure with
high probability. The colors split into two sets of sizes |¢/2] and [g/2], with the even sublattice
colored predominantly by colors from one set and the odd sublattice colored predominantly by
colors from the other set. While this conjecture remains open, several related results have appeared.

Galvin and Tetali [8], following work of Kahn [11], gave approximate counts for the number of graph



homomorphisms from d-regular graphs to arbitrary finite graphs. Specializing to proper ¢-colorings
of ’]I‘fll, their results support the above conjecture. Galvin and Engbers [3] established the analog of
the above conjecture, and more general rigidity results for graph homomorphisms, in the limit when
n is fixed and d tends to infinity. Similar rigidity results on expander and tree graphs are established
in [17, 18, 19].

Of related interest is the hard-core model in T‘fl. In this model, one samples an independent
set I of T¢ with probability proportional to Al. Tt is expected that there exists some A, = A(d)
satisfying that, with high probability, if A > A. the sampled independent set resides predominantly
in one of the two sublattices, whereas if A\ < A, no such structure appears. While the existence of A.
is still open (and there are examples of graphs for which it does not exist, see [1]) one may still define
AL = A.(d) as the infimum over A for which the model admits multiple Gibbs states. Dobrushin [2]
proved that X, < oo in every dimension d > 2, with an upper bound growing to infinity with d.
Galvin and Kahn [5] significantly improved this result by showing that A, tends to zero with d. The
quantitative bound obtained in [5] was further improved in [16]. The main technical ingredient in
both [5, 16], as well as the aforementioned [15, 6], is a careful analysis of the structure of certain
special cutsets in T¢, when the dimension d is sufficiently high. This is in contrast to this work, in

which discrete analogs of topological considerations constitute the bulk of the argument.

2 Preliminaries and Overview

This section is divided into an introduction to the objects and notation of the paper, and to a
reduction of Theorem 1.2 to a statement concerning quasi-periodic functions on the integer lattice.
At the end of the section we give a glimpse into the ideas of the proof, and discuss the relation

between our work and algebraic topology.

2.1 Preliminary definitions

Lattice and Torus. We write Z? for the nearest-neighbor graph of the standard d-dimensional
integer lattice, and T¢ = (Z/nZ)? for the graph of the d-dimensional discrete torus with side length
n. We assume n is an even integer greater or equal than 4, fixing it throughout the paper. We also
assume both graphs come with a fixed coordinate system, letting e; € Z% be the ith standard basis
vector for 1 <4 < d. In both graphs, two vertices are adjacent if they differ by one in exactly one
coordinate. As n is even, both graphs are bipartite. In both we thus refer to the vertices in the
bipartition class of 0 = (0,...,0) as even, and to the rest of the vertices as odd. For a vector v € VA
and a set U € Z¢ we write U + v to denote {u+v: u € U}.

Distance and boundary. Let G be a connected graph. We write u ~ v to denote that a pair of
vertices u,v € V(G) are adjacent. For a set of vertices U C V(G) we define the boundary of U to be



the set of edges
U :={e€ E(G):enU # 0 and enU* # 0}.

We use dist(u, v) for the shortest-path distance between u and v, and extend this notion to non-empty
sets U,V C V(G), defining

dist(U, V) := min{dist(u,v) : v e Uv e V}.
If one of the sets U,V is empty, we write dist(U, V) = oo. For a set of vertices U, we denote

Ut :={uecV(G) :dist({u},U) < 1},
U™ :={ueV(G):dist({u},U°) > 1}.

Note that U~ = ((U¢)*)¢. We also abbreviate Ut := (U")" and U=~ := (U~ )~. The following
simple relations hold for any two sets U,V C V(G):

Ut CV = UCV and 9U NV = 0, (5)

dist(U™, V) = max(dist(U, V) — 1,0), (6)

UCV =YW C V(G), dist(U, W) > dist(V, W). (7)

For a set of vertices U, we define the internal vertex boundary of U to be
WU =U\U".
Similarly we define the external vertex boundary of U to be
OU :==UT\ U.

In both Z4 and T%, we call a set of vertices U odd if all the vertices of J,U have the same parity (in
[15] a different convention is used, calling a set U odd if all vertices of d,U are odd). The internal
and external vertex boundaries of an odd set of vertices U C T’ 120, as well as UT and U, are depicted

in Figure 1.

Homomorphism height functions, 3-colorings and quasi-periodic functions. A proper 3-
coloring of a graph G is a function f : V(G) — {0,1, 2} satisfying f(v) # f(w) when (v,w) € E(G).
An integer-valued function on V(G) is called a homomorphism height function on G, or simply height
function or HHF, if it differs by exactly one between adjacent vertices of G. We usually work with
Col(G,vg) and Hom(G, vg), the sets of colorings and height functions normalized to take the value 0
at the vertex g, as defined in (1) and (2). When G' = T¢ or Z? we abbreviate Col(G,0) to Col(G)
and Hom(G, 0) to Hom(G).
Let V be either Z or {0,1,2}. We say a function

f: 7% =V is periodic if f(v) = f(w) whenever v — w = ne; for some 4.



0 U .U

Figure 1: Boundary operations on some odd set U in T,

We denote by PC the set of all periodic proper 3-colorings in Col(Z%). Similarly, for m = (my1,...,mq) €
Z¢ we say that an HHF

h: 7% — 7 is quasi-periodic with slope m if f(v) = f(w) 4+ m; whenever v — w = ne; for some 1.

We write QP,,, for the set of quasi-periodic functions with slope m in Hom(Z?). Note that for an
HHF, being periodic is equivalent to being quasi-periodic with slope O.
Observe that, in fact,

QP,, = 0 if m ¢ 2Z% or if |m;| > n for some i. (8)

To see this, note that any h € Hom(Z%) must take even values on even vertices, and satisfy |h(v)| <
dist(v,0), since h changes by one between adjacent vertices. Thus, we must have that m; = h(ne;)
is even and |h(ne;)| < n for all i. The quasi-periodic functions whose slope is not a multiple of 6 will

not play a role in our work. Thus we define

QP = U QP,, . 9)

me6ZAIN[—n,n]?
Denote by m: Z? — T4 the natural projection from the integer lattice to the torus, defined by
w((x1,...,24)) = (r1 mod n, ..., x4 mod n)

(where we identify the coordinate system of the torus with {0,...,n — 1}4). Observe that 7 extends

.o . . . . . d
naturally to a bijection between periodic proper 3-colorings (of Z¢) and proper 3-colorings of T¢,



as well as to a bijection between periodic HHFs (on Z¢) and HHFs on T¢. With a slight abuse of

notation we also denote these extensions by .

Relations between HHFs and 3-colorings. It is not difficult to see that the mapping Mods,
which takes an HHF h to the function defined by

Mods(h)(v) := h(v) mod 3,

maps every HHF to a proper 3-coloring. As mentioned in the introduction, it is a known fact that
Mods defines a bijection between Hom(Z¢) and Col(Z?), that is between the set of HHFs on Z¢
normalized at 0 and the set of proper 3-colorings of Z% normalized at O.

This bijection does not extend to T¢, as there are colorings in Col(T%) which are not the image of
any HHF through Mods. Nonetheless, Col(T%) is still in bijection with a subclass of quasi-periodic

functions, as the following proposition states.
Proposition 2.1. The mapping © o Modz: QP — Col(T) is a bijection.

Proof. We first show that the mapping is well-defined. Let h € QP,, for some m € 6Z%. By quasi-
periodicity, h(v) = h(v + ne;) (mod 3), for all 1 <7 < d and v € Z?%. Consequently Mods(h) € PC
and hence m may be applied to Mods(h) to produce an element of Col(T%).

Since Mods is a bijection between Hom(Z?) and Col(Z%) and 7 is a bijection between PC and
Col(T<), we deduce that 7 o Mods is one-to-one on QP. All that remains in order to show that this
mapping is a bijection, is to prove that it is onto.

Let f € Col(T¢). Define g := 7~ !(f) € PC and an HHF h by h := Modz!(g). We need to show
that h € QP,,, for some m € 6Z¢ N [—n,n]?. We first show that for any v,w € Z% and 1 < i < d,

h(v 4+ ne;) — h(v) = h(w + ne;) — h(w).
For this it suffices to show that for any v € Z% and 1 < 4,5 < d,
h(v + ne;) — h(v) = h(v + e; + ne;) — h(v + €;). (10)

Since h(v + ej) — h(v) and h(v + e; + ne;) — h(v + ne;) are both in {—1,1} by the definition of
homomorphism height function, the equality (10) follows upon recalling that ¢ = Mods(h) and
noting that

g(v +ej) —g(v) = g(v+e; + ne;) — g(v+ ne;),

since g is periodic. Thus h € QP,, for some m € Z.
It remains to show that m € 6Z¢N[—n,n]?. By (8) it suffices to show that m € 3Z?. This follows
from the fact that

m; = h(ne;) = g(ne;) = g(0)  (mod 3). O



Proposition 2.1 enables us to define the following partition of Col(T¢),

Col,y, := (7 o Mods)(QP,,,). (11)
It also implies the important fact that Colg and Hom(T¢%) are in bijection through 7o Modz ! or L.

In other words,
Colg = {f € Col(T¢) : f is the modulo 3 of some h € Hom(T¢)}. (12)

The relations between Col(T¢%), Hom(T¢), QP and PC are summarized in Figure 2.
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Figure 2: The relations between Col(T%) and Hom(T¢%) through periodic colorings and quasi-periodic
HHFs on Z?. Notice that for PC and QP only a small region of the infinite lattice is illustrated.
All functions are normalized at 0, at the lower left corner of the displayed region. The illustrations

depicts the case n =6, d = 2.

2.2 Most elements of QP are in QP,

The following Theorem 2.2, which is the main technical statement of the paper, states that most

elements of QP have slope 0.
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Theorem 2.2. There exist dy and ¢ > 0 such that in all dimensions d > dg, for every m € 6Z%\ {0}

we have

|QP,, |

d—1
Qpl] < (e, (13)

Given (9), we observe that the above theorem is trivial in for n < 4, as in those cases | QP,,, | = 0.

Naturally we focus our attention on the non-trivial cases.

Theorem 1.2 is an immediate consequence of (and is, in fact, equivalent to) the Theorem 2.2.

Proof of Theorem 1.2 from Theorem 2.2. By symmetry, it is enough to prove Theorem 1.2 for col-
orings normalized at 0. That is, to establish that for sufficiently large d, if f is uniformly sampled
from Col(T¢) then

P (f is not the modulo 3 of some h € Hom(Tz)) < exp (— 02 nd1> . (14)
dlog”d

Suppose then that f is uniformly sampled from Col(T%). By Proposition 2.1, (9), (11) and (12),

_ ‘ Ume(ﬁzdm[—n,n]d)\{o} Col,, ‘ B
R [Col(T2)] =

P (f is not the modulo 3 of some h € Hom('ﬂ‘ﬁ))

B ‘ Unme6zini—nnjapn 0y QPm ‘
| QP |
Thus (14) follows from Theorem 2.2. O

QP,, |
<(2n+1)* max QP
( ) me6z4\{0} | QPg |

2.3 Proof overview

Most of the remainder of the paper is dedicated to proving Theorem 2.2. Our proof can be divided into
two parts. First we construct a set of one-to-one mappings, ¥,, : QP,, — QP for m € 6Z%\ {0}. We
then apply results from [15] to show that the image of QP,,, under V,,, is relatively small. Theorem 2.2
follows. In this section we present for the reader a rough sketch of the idea behind the construction
of W,,.

Let us first explain (a minor variant of) the construction of ¥,, in dimension d = 1, where it is
rather simple. Suppose that h is a 1-dimensional quasi-periodic HHF with slope 6 - £ > 0 (the case
that the slope is negative is treated analogously). One can look for the minimal w > 0 such that
h(w) = 2 and for the maximal u < 0 such that h(u) = —3¢ + 2. Since h has slope 6/ it follows that
w—u < n. Thus, we may partition Z to segments of the form (u+in,w+in] and (w+in,u+(i+1)n),
i € Z. We may then define, for v € Z,

h(v) — 6il u+in < v < w+in for some i € Z
Wee(h)(v) =
4—h(v)—6il w+in <v<u+(i+ 1)n for some i € Z.

11



An example is shown in Figure 3.

It is not difficult to check that Wge(h) is still an HHF, noting that the action of Wg, can be seen
as reversing the gradient of h between w and w4+ n and each of their translations by multiples of
n. Moreover, the resulting HHF will be periodic in the sense that Wee(h)(v + n) = Wge(h)(v) for
all v € Z. To see that Wgp is one-to-one, one may check that w is the minimal in Z, satisfying
Uee(h)(w) = 2 and u is the maximal in Z_ satisfying Wep(h)(u) = —3¢+ 2. Given ¢, one can thereby

recover u and w from Wgy(h) and use them to recover h.

1
1
1
1
1
1
1
1
1
T
I
u w U w

[-4]-3]-2[-1[o] 1 [2]8T2[8]4 567 [8]o]8 ]9 |10]11]12][13] [2]1]ol-1[o[1 2[4 2 1o -1[o[1 24 2]1]o]-1[o]1]
T T

Figure 3: On the left - an example of a one-dimensional quasi periodic HHF with n = 8 and slope 6.
The gray regions are the regions where Wg reverses the gradient of the function. On the right - the

image of the same HHF through Ws.

Generalizing this technique to higher dimensions is not immediate. The general idea is to use
the given HHF h to carefully define two sets U, W C Z? and a vector A € nZ¢ suitable for our
purposes. The set U is the analog of the interval (—oo, u] and the set W is the analog of the interval
(—oo,w]. Among the properties which these sets satisfy is the fact that if we define U; := U + iA
and W; := W + A then the sets W; \ U; and U1 \ W; form a partition Z?. We then define V,,,
analogously to the above one-dimensional case, by reversing the gradient of A in the regions U1 \ W;,
see (44). The main difficulty is to find such sets W, U, and vector A, for which this operation yields
an HHF, and, moreover, for which the operation is invertible, yields a periodic HHF, and such that
the size of the range of ¥, will be small compared to | QP |.

The sets U, W which we define are closely related to the level sets of the function A in the
sense that h is constant on 9,U, 0, W, d,U and J,W. In addition, they satisfy special topological
properties. The boundaries OU and OW, regarded as a collection of plaquettes in R?, are analogs of
continuous hypersurfaces. Furthermore, the projection of these boundaries to the torus are analogs
of hypersurfaces whose removal does not disconnect the torus.

The existence of sets U, W satisfying all the required properties is far from obvious. The intuition

for it comes from algebraic topology, specifically de Rham cohomology theory, and some of the
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connections are explained in the next section. However, our proof proceeds by developing the theory
fully in the discrete setup. This is achieved in sections 3 and 4. This theory is then applied in
Section 5 to define ¥, and prove that it satisfies the required properties.

To get a feeling of why the sets U and W exist, it may help to think first of continuous linear
functions on R?. A multidimensional linear function is always simply a projection on its gradient
vector. Such a linear function could be made periodic by periodically reversing its gradient between
two hyperplanes which are perpendicular to the gradient vector. These hyperplanes are the analogs
of OW and QU. This case is therefore very similar to the one-dimensional case. Algebraic topology
tells us that every continuous function is a deformation of a linear function. Thus, a guiding intuition
may be that for more general functions, the above hyperplanes are deformed into some hypersurfaces,

and hence should still exist.

2.4 Relation with topology

The proof of Theorem 2.2 is motivated by ideas from algebraic topology. One element of the proof
that might puzzle a reader who lacks topological background is our ability to find a domain, bounded
by two hypersurfaces, such that reversing the gradient in translated copies of this domain suffices to
make our HHF periodic. We dedicate this short section to highlight some of the analogies between
concepts of the proof and their continuous topological counterparts and shed some light over this
particular point.

We begin with a brief review of concepts from de Rham cohomology theory. A O-form on a
manifold is simply a smooth function. A 1-form is a differential form which can be integrated
against paths. On Riemannian manifolds a 1-form can be identified with a vector field through the
Riemannian metric. A 1-form is called closed if it satisfies that its integral over contractible loops is
0. The gradient of a 0-form is always a closed 1-form, and, locally, the converse is also true. Globally,
however, on non-contractible manifolds such as the torus, there are many closed 1-forms which are
not the gradient of any O-form. The group of closed 1-forms modulo the gradients of the O-forms is
called the first de Rham cohomology group of the manifold.

In the context of our work, O-forms correspond to HHFs on the torus. Closed 1-forms correspond
to proper 3-colorings of the torus, in the sense that, locally, they describe the discrete gradient of an
HHF. In the continuous torus every closed 1-form is locally the gradient of a 0-form. Similarly, in
the discrete torus, every 3-coloring is locally the gradient of an HHF. However, the local information
does not always add up to form the global structure of an HHF.

Algebraic topology tells us that the first de Rham cohomology measures this global obstruction,
in the sense that a 1-form corresponds to the zero class of the cohomology group if and only if it is
globally the gradient of a O-form. The first de Rham cohomology of the d-dimensional torus is R
The class of a particular 1-form can be identified by the integral of the form over a loop in each of

the standard basis directions. In the terminology of this paper, this vector of integrals is called the

13



slope of the form. Another way to represent the slope of a 1-form is to look at what is called the
universal cover of our space. In the case of the torus we look at quasi-periodic functions over R
Taking this point of view, the slope is the vector of differences between the quasi-periodic function
at standard basis points and at 0.

Poincaré duality identifies H', the first cohomology group of the torus, with H,_1, the (n —1)th
homology group of the torus, which corresponds, if the slope consists of integers, to a class of
hypersurfaces of codimension 1. The duality further tells us that for every nice enough 1-form in a
class of H', there exist hypersurfaces in the dual class in H,_1, orthogonal to the gradient of the
form and with the following property. Cutting the torus along such a hypersurface leaves the torus
connected, but nullifies the cohomology class, i.e., on the cut torus the 1-form becomes the gradient
of a O-form.

Much of the above description carries over to the discrete case. Here too, we match proper
3-colorings with quasi-periodic HHFs, and classify them according to their slope. We find “level
sets”, corresponding to the above hypersurfaces, along which one may cut the torus, that is, remove
the corresponding edges, to make the coloring the gradient of an HHF. We consider two such level
sets with a specific height difference. Deleting the edges of these level sets splits the torus into two
connected components such that on each component, the coloring is the gradient of an HHF. Since
the height of the HHF is constant along each boundary of the cut torus (as we have cut along level
sets), we may reverse the gradient of the coloring on one of the connected components of the cut
torus to obtain a coloring which is globally the gradient of an HHF (here, our specific choice of
the height difference of the level sets enters). This illustrates the operation of W,,. In practice, we
transfer most of the topological part of the proof to statements involving HHFs on Z¢, the universal
cover of the torus. This gives us more direct access to the level sets.

The main difficulties in our task are to define the level sets in the discrete setup and to do so
in such a way that would allow their recovery after applying the gradient-reversal operation. As
mentioned above, the topological arguments are applicable to nice functions, with nice level sets. In
the discrete setting the level sets are made out of plaquettes that can have complicated intersections,
of various dimensions. Proving that discrete level sets still possess a nice structure requires the
theory developed in sections 3 and 4.

It remains unclear whether it is possible to avoid any combinatorial argument in our proof, and
use only topology. One can hope to achieve this either by defining a clever discrete variant of the
de Rham cohomology, or by mapping the discrete problem to an analogous question in R? with the

hope of tackling it there. This, however, is a path we did not pursue.

3 Closed Hypersurfaces in Z*

In this section we introduce a class of subsets of Z? and discuss the topological properties of its

members. The definitions and results are inspired by continuous topological analogs in R% but are
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given directly in the discrete setting without requiring knowledge of the continuous notions (but
see Section 2.4 for more on the connection). We make no mention of neither colorings nor height
functions here and thus the section may be read using only the definitions regarding set operations
in Section 2. The tools developed here are applied to the study of colorings and height functions in
the following section, but we believe that they are also of independent interest and may be of use for
other purposes.

The ultimate conclusion of the discussion here, Theorem 3.4 below, is a certain trichotomy for
systems of translates in Z%. This trichotomy is later applied to level sets of quasi-periodic HHFs.

We remind the reader that in the beginning of section 2 we fixed an even integer n for the
remainder of the paper. This integer plays the role of the side length of the torus ’]I“flZ in later
sections. In this section n will also play a role, though the torus T¢ will not be explicitly mentioned.
However, unlike the rest of the paper, the results and proofs presented in this section remain valid
regardless of whether n is even or odd.

The structure of the section is as follows. In Section 3.1 we present the fundamental properties
of the sets that we investigate and state our two main results, in the form of certain trichotomies.
Section 3.2 describes corollaries of the main results, which will be of use in our application. The

proofs of the main results are given in Sections 3.3 and 3.4.

3.1 Topology of Z¢

We begin by defining three properties of sets in Z%: co-connectedness, boundary disjointness, and

translation respecting. These are repeatedly used throughout the paper.

Co-connectedness. A set U C Z% is called co-connected if U # (), U # Z¢ and U and U°® are
connected.

A useful property of co-connected sets is that their boundaries are, in a sense, connected. Namely,

Proposition 3.1. If A is a co-connected set in Z then 0sA U 0, A, AYT\ A and A\ A=~ are all

connected sets.

We delay the proof of this proposition to Section 3.3, as it requires the tools developed there.

In order to get a more intuitive grasp of the theorems and definitions of this section the reader
might find it useful to regard Z¢ as a lattice of d-dimensional cubes where the edges between adjacent
vertices represent plaquettes of codimension 1. Taking this continuous view, co-connected sets are
analogous to continuous sets whose boundary is a connected, oriented, closed hypersurface. A set

and its complement should be thought of as defining opposite orientations on the same surface.

Boundary disjointness. Two sets Uy, Uy C Z% are called boundary disjoint if

1. OU1 NOoU; = 0,
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2. there is no 4-cycle in Z¢ whose vertices, in order, are (vgg, vo1, 11, v10) such that vgy € Urnus,
Vo1 € UlcﬂUQ, v11 € U3y NUy and vig € Uq ﬁUQC.

Here and below, by a cycle in Z¢ we mean a finite set {(uy,v1),..., (ug,vx)} of distinct edges of Z9
satisfying that w;41 = v;, 1 < i < k—1, and u; = vg. A 4-cycle is a cycle with k = 4, and by its
vertices, in order, we mean (uy, ug, U3, uyq).

Continuing the analogy with hypersurfaces, two sets are boundary disjoint if their boundaries
neither overlap nor intersect transversally.

When both U; and Uy are odd, as will always be the case from Section 4 and on, the second

condition for boundary disjointness is trivially fulfilled, yielding the simpler relation:
odd Uy, U, are boundary disjoint iff U, N Uy = 0. (15)

Observe that by definition, boundary disjointness is preserved under taking complements, i.e., if
Ui, Uy are boundary disjoint sets, then U} and U; are also boundary disjoint.
The containment relations between two co-connected boundary disjoint sets are restricted by the

following theorem.

Theorem 3.2. (Pair trichotomy) If Uy, Us C Z% are co-connected and boundary disjoint sets, then

exactly one of the following alternatives hold:
e UiNU; =0,
o USNUS =10,
e Uy C Uy orUs C UL

The proof of this theorem is postponed to Section 3.3.
The following proposition relates containment of boundary disjoint sets and their distance from
a third set.

Proposition 3.3. If Uy, U, C Z% are non-empty, boundary disjoint sets satisfying Uy C Uy then for
every non-empty set V' satisfying V N Us = 0 we have dist(Uy, V') > dist(Us, V).

Proof. Using boundary disjointness and (5), we have U;” C Us. By (6) and (7) we thus have
dist(Uy, V) > dist(Ua, V') as required. O

Translation respecting sets. For a set U C Z?, we define Tyy = T, {7» the set of translates of U by

multiples of n in each of the coordinate directions, as
Ty :={U +z: x €nZ%.

Recalling that U + v := {u+v : u € U}. We note that it may well be the case that different

translations of U yield the same set.
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A set U C Z% is called translation respecting if U is co-connected and every distinct Uy, Us € Ty
are boundary disjoint. Observe that by definition, if U is translation respecting, then so is U°.

Continuing the analogy with hypersurfaces, a set is translation respecting if the image of its
boundary through 7 is a connected, closed hypersurface on the torus.

The main result of this section, is that the trichotomy of Theorem 3.2 extends to translation

respecting sets in the following strong sense.

Theorem 3.4. (Translation trichotomy) If U C Z% is translation respecting and |Ty| > 1, then

exactly one of the following alternatives holds:
o [Type 1] If U1, Us € Ty and Uy # Uy then Uy NU; = 0.
e [Type-1] If U1,Uy € Ty and Uy # Us then U NUS = ().
o [Type 0] If Uy,Uy € Tyy then Uy C Uy or Uy C Uj.

Moreover, if U satisfies the Type O alternative of the theorem, then there exists an order-preserving
bijection o: Ty — Z. Here, order preserving means that o(U;) < o(Us) if and only if Uy € Us.
Furthermore, there exists a A € nZ® such that 0= '(i + 1) = 0=1(i) + A for all i € Z. We call any

such A @ minimal translation of U.

The proof of this theorem is postponed to Section 3.4. Observe that in dimension d > 2 the
requirement that |Ty;| > 1 is not equivalent to U ¢ {Z%,0} (e.g., the set U of vertices in Z¢ having
at most one coordinate which is not a multiple of n is a translation respecting set which satisfies
Tu| = 1).

Theorem 3.4 allows us to assign a type to every translation respecting set U satisfying |Ty7| > 1.
For i € {—1,0,1}, we write Type(U) = i if U satisfies the Type ¢ alternative of the theorem. The
case |Ty| = 1 does not play a role in our application. However, for completeness, we say in this case,
with a slight abuse of notation, that both Type(U) = 1 and Type(U) = —1 hold. An illustration of

sets of the various types is given in Figure 4.

3.2 Corollaries of the trichotomy

In this section we state several useful corollaries of Theorem 3.4. The next proposition discusses how

the type of translation respecting sets is affected by taking complements.
Proposition 3.5. If U is translation respecting of type i then:
o U° is translation respecting of type —i.

o If U is of type 0 with minimal translation A, then —A is a minimal translation of U°.
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Figure 4: Examples of translation respecting sets of the three types. In each image a portion of the
plane is depicted, on which a set U and its translation U+ne; are emphasized in light gray and in dark
gray respectively. Vertices contained in both sets are striped. In each image a different alternative
of Theorem 3.4 holds: At the top type 0, at the bottom-left type —1 and at the bottom-right type 1.

The proof of this proposition is straightforward from Theorem 3.4.
The following proposition investigates the possible containment relations between translation

respecting sets.

Proposition 3.6. Let U,V be two translation respecting sets satisfying that |Ty|,|Tv| > 1 and
U C V. Then Type(U) > Type(V).

Proof. Checking the possible cases we see that it suffices to prove that if Type(U) = —1 then also
Type(V) = —1, and that if Type(V') =1 then also Type(U) = 1.

Suppose Type(U) = —1. Let A € nZ¢ be such that U + A # U, using that [Ty7| > 1. Since
Type(U) = —1, U¢ C U + A. Thus,

VECUSCU+ACV +A.

It follows that V<N (V + A)¢ = () and hence Type(V) = —1.
The case that Type(V) = 1 follows similarly. U

Translation respecting sets of type 0. These have a unique structure, as the following proposition

indicates.
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Proposition 3.7. If U is translation respecting of type O then:

. U v =174

Vely

e There exists 1 <1i < d such that for everyv € Z¢, {v+ke; : k € Z} intersects both U and U°.

Proof. Let v € Z% and let A be a minimal translation of U. Observe that by definition, U C
U+ A, and U,U + A are co-connected and boundary disjoint. Applying Proposition 3.3 we get
dist(U + A, {v}) < max(dist(U,{v}) — 1,0). Iterating, we obtain that there exists some k such that
v € U + kA. We deduce the first item of the proposition.

Towards proving the second item, observe that there exists some 1 <4 < d such that U +ne; # U
(otherwise we would have U + A = U, contradicting the fact that U is of type 0). By the last part
of Theorem 3.4, there exists some ¢ € Z \ {0} such that U + ne; = U + ¢A. Notice that both
U and U°€ are translation respecting of type 0 with —A being a minimal translation for U¢ (by
Proposition 3.5). Thus, the first item of the proposition and the last part of Theorem 3.4 show that
there exist ki, ko € Z such that

v € (U~ kol A) N (U + ki LA).
Equivalently v — kone; € U while v — kyne; ¢ U, as required. O

3.3 Proof of the pair trichotomy

In this section we prove Proposition 3.1 and Theorem 3.2 using the approach of Timar in [20]. To

do so, we make use of the well-known fact that 4-cycles span the cycles of Z¢, i.e., every cycle ¢ in

=3 e (16)

ceC

7% can be written as

where C is a set of 4-cycles, and we interpret the sum as meaning that an edge is in o if it appears
in an odd number of cycles in C.

To aid our proof we introduce the following family of graphs.

Definition 3.8. Given U C Z%, a set of vertices, we define a graph Gy as follows. The vertices
of Gy are the vertices of Z¢. Two vertices u,v are adjacent in Gy if there exist ey, e, € OU and a

4-cycle ¢, such that v € ey, u € ey, and ey, e, € C.
The following lemma connects this definition with co-connected sets.
Lemma 3.9. If U C Z% is a co-connected set of vertices, then 0,U is connected in Gy;.

Proof. The proof is heavily based on ideas developed in [20]. It suffices to show that for any non-

trivial partition Sp,.S5 of 9,U there exists an edge of Gy connecting S; and S,. Here, a non-trivial
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partition means that Si,Sy # 0, S1 NSy = and S; U Sy = d,U. Let S, S5 be such a partition. We

set

Ey:={e€dU : en Sy # 0},
Ey:={e€dU : enSy #0}.

By the connectedness of U and U¢ in Z¢, there exists some cycle o in Z¢ which contains exactly
one edge of E; and one edge of Es (in fact, we can even pick those boundary edges arbitrarily). As

4-cycles span the cycles of Z%, we write o as a sum of such cycles

o= Zc, (17)

ceC

as in (16). We notice that as o contains an odd number of E; edges (in fact, just one), there must
also be a 4-cycle ¢y € C containing an odd number of F; edges. However as every cycle contains an
even number of edges from the boundary U = E1 W Fs, ¢y must contain an edge of Fs as well. Thus

S1 and Sy are connected by an edge of Gy, concluding the proof. O

Lemma 3.9 allows us to prove Proposition 3.1 and Theorem 3.2. In this proof we will make use
of [20, Theorem 4]. For convenience, we state a special case of this theorem in the context of our

work.

Theorem (Timér). For any co-connected A C 7, the set
{y € A° : y differs from some point in A by £1 in each of exactly one or two coordinates}

is connected in 7.2

To see that this is a special case of [20, Theorem 4], take G = 7%, and let Gt be G with an edge
between every two vertices who differ by 4+1 on each of exactly one or two coordinates. Also, take

C = A, and let = be some arbitrary point in A°.

Proof of Proposition 3.1. Let A be a co-connected set in Z¢. The first part of the proposition is an
immediate result of Lemma 3.9, as connectivity of oA U 0, A in 7% is weaker than connectivity of
0sA in G4. The proof of the second part uses the above stated version of [20, Theorem 4]. By the

theorem,
B :={y € A° . y differs from some point in A by +1 in each of exactly one or two coordinates}

is connected in Z¢. In addition B satisfies that B ¢ AT*\ A and that every vertex in AT+ \ A has a
neighbor in B. We therefore have that At \ A is connected in Z? as required. To get the third part
of the proposition, we recall that if A is co-connected, then so is A¢, and that A\ A=~ = (A¢)*T\ A°.
We can therefore derive the third part of the proposition by applying the second part to A€. O
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Figure 5: Illustration accompanying the proof of Theorem 3.2. On the left the roles of ugg, 110,
w11 and wgp are illustrated, as well as these of ug, u1, vg; and v11. On the right, all the possible
configurations of the 4-cycles ¢, up to rotation and reflection, are illustrated. When the boundary
disjointness is ruled out due to the existence of an edge violating OU; N QU = (), this edge is marked.
When no edge is marked, the alternative is ruled out due to the existence of a “forbidden cycle” (as

in the definition of boundary disjointness).

Proof of Theorem 3.2. We accompany the proof with Figure 5. Assume to the contrary all the
alternatives in the theorem do not hold. We can therefore pick u1; € Uy N Uz, uip € Uy NUS,
uor € Uf MUz and upy € Uf NUS. As U, is connected, there exists a path inside U; between wg
and wu11. This path must contain a vertex uy € Uy N Q¢Us. Similarly there exists a path outside Uy
between gy and ug; which contains a vertex ug € U N 0 Us.

By Lemma 3.9, 0,U; is connected in Gy,. In particular, if we partition d,Us into Uy N GeUs
and Uf N 0,Uz, we must have an edge in Gy, crossing this partition. In other words, there exists a
4-cycle ¢ which contains two edges eg,e; € U, and two vertices vg1 € ey and v1; € e; such that
vo1 € Uf N OUz and v1; € Up NOUa. A careful case study of all the possible configurations of such
a cycle (see Figure 5) yields that its existence must contradict the boundary disjointness for U; and
U,. The theorem follows. O

3.4 Proof of the translation trichotomy

This section is dedicated to the proof of Theorem 3.4.

We begin by showing the trichotomy itself. The pair intersection trichotomy, Theorem 3.2,
guarantees that every two sets Uy, Uy € Ty satisfy one of the three alternatives of the theorem. Thus
it is sufficient to show that for any three distinct sets Uy, Us, Us € Ty, the same alternative holds
for both pairs Uy, Us and Uy,Us. In particular, the theorem is immediate if |Ty7| = 2. Fix distinct
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Ui,Us, U3 € Tyy. We shall rule out three cases.

1. Alternatives 0 and 1 cannot coexist. Let 6, A € nZ% be such that Uy = Uy +6 and Us = U; + A.
Assume, WLOG, that Uy N Uz = () and U; C Us. As U; and Uy are boundary disjoint, by

=

Proposition 3.3 we get that dist(Uy, Us) > dist(Usa, Us). We note that, Uy + A C Uy + A + 9,
as Uy C Uy + 6. We deduce, using (7), that dist(Uy + 0, Uy + A) > dist(Uy + 6,U1 + A +9).
Putting all of this together, we get:

diSt(Ul, Ui + A) > diSt(Ul +6,U1 + A) > diSt(Ul +0,U; + A+ (5) = diSt(Ul, Ui + A),
which is a contradiction.

2. Alternatives 0 and -1 cannot coexist. The argument follows similarly to the previous part by
passing from Uy, Us, Uz to UT, Us, Us.

3. Alternatives 1 and -1 cannot coexist. To see this, assume, WLOG, that U; N Us = 0 and
UfNUS = 0. It follows that Uy UUs = Z% and hence Uy C Us. A contradiction follows since

alternatives 0 and 1 cannot coexist.

Next, we show the second part of the theorem, i.e., that if Type(U) = 0, then there exists a translation
A € nZ% and an order-preserving bijection o: Ty — Z, such that o~ 1(i + 1) = o=!(i) + A for all
i € Z. Assume Type(U) = 0. Define o(U) := 0 and for any V € Ty let

{WeTy : UCWCVY UCV

o(V) = .
—-{WeTy : VCWCU} VCU

To see that this is well defined, let us explain why {W € Ty : U C W C V} is finite. A similar
argument will show that {W € Ty : V C W C U} is finite. Since Ty is ordered by inclusion, applying
Proposition 3.3 to the complements of two distinct sets {W € Ty : U C W C V}, taking the V of the
proposition to be our U, shows that each set Win {W € Ty : V C W C U} is uniquely characterized
by dist(W¢ U). Since dist(W¢,U) < dist(V¢,U) we conclude that {W € Ty : U C W C V}is
finite, as we wanted to show.

To show that o is one-to-one, suppose Vi, Vs, € Ty satisfy o(Vy) = o(V3). Assume WLOG that
o(V1) > 0 and V5 C V5. This implies that

Wely : UCWCWC{Wely : UCWC W}
However, as o(V1) = o(Va), we get
{WETUZUQWQVl}:{WETUZUgWQVQ}

and, in particular, Vo C V;. Thus V; = Vs.
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Finally, we show that there is a A € nZ? such that o™ '(i + 1) = 0=(i) + A for all i € Z. We
begin by observing that 0~ !(1) is nonempty. To see this recall that |Ty;| > 1 and therefore U C U + 2
for some z € nZ?. This implies that o(U + z) > 1 and therefore there must exist some A € nZ<
such that o(U + A) = 1. Equivalently, there is no W € Ty for which U C W C U 4+ A. Since this

situation is preserved under translations it follows that o~!(i) = U + A for all i € Z. O

4 Level Sets of HHF's

In this section we establish the theoretical basis for dealing with quasi-periodic HHFs. Much of the
intuition behind the theorems of this section stems from algebraic topology, viewing quasi-periodic
HHF's as a discrete analogue of co-cycles on the torus, and periodic HHF's as a discrete analogue of
co-boundaries. Nonetheless, we avoid making any direct reference to topology, and restrict ourselves
to purely combinatorial proofs.

We begin by introducing the notions of sublevel sets and sublevel components. Roughly, these
are discrete analogues of continuous sublevel sets, and of regions bounded by a single connected
component of a level set.

Formally, let G be either Z¢ or T%. Let k € Z, h € Hom(G) and let u,v € V(G) satisfy

h(u) < k < h(v). (18)
We define the k-sublevel set of u,
LCT—(U) is the connected component of u in G\ {w € V(G) : h(w) =k + 1}.

While the sublevel set is itself connected, by definition, its complement may be disconnected. We
wish to isolate a single connected component of the complement and do this by enlarging the sublevel

set. Precisely, we define the k-sublevel component from u to v,
LCiJr(u, v) is the complement of the connected component of v in G\ LCfLJr(u).

Figure 6 illustrates a sublevel component and a sublevel set in Z¢. In our applications sublevel sets
are mostly used as a part of the definition of sublevel components, without a significant role of their
own. To simplify our notation we write LC} (u) for LCZ(UH(U) and LC} (u,v) for LCZ(uH(u, v).

4.1 Basic properties of level components

Let G be either Z¢ or T¢. Let h € Hom(G) and suppose u,v € G satisfy (18). Let
U:= LCT—(U, v).

The next proposition collects several basic properties of sublevel components of h.
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Figure 6: An illustration of sublevel components for a certain periodic h € Hom(Z%), with respect to
the two vertices u,v € Z%. On the left: a portion of LC}lf(u) is highlighted. on the right: a portion
of LC, ™ (u,v). Observe that LC;™ (u,v) is co-connected while LC} ¥ (u) is not.

Proposition 4.1. The sublevel component U satisfies:
1.ueUandv ¢ U.
2. h(z) =k for all x € 0,U, and h(x) =k + 1 for all x € ,U. In particular, U is odd.
3. U is co-connected.
4. 8,U C LCS (u) C U

All of these properties are straightforward from the definition and we omit their proof.

In view of the second item of the proposition, we write, with a slight abuse of notation, h(9sU)
and h(9,U) for the common height of all vertices in 9oU and 9,U, respectively.

In the next corollary, we give a criterion for a set to have certain containment relations with a

sublevel component.

Corollary 4.2. The sublevel component U satisfies:
o IfV is a connected set satisfying v € V, u ¢ V and h(w) > k for all w € 04V, then V. C U°.
o IfV is a connected set satisfying V NU # 0, O.U C V€, then V C U.

Proof. To get the first item, observe that every path between a vertex of height smaller than k + 1
and a vertex of height greater or equal to k + 1 must contain a vertex of height k + 1. Therefore,
h(z) < k for all x € LCiJr(u) and in particular 0,V C LCiJr(u)c. Every connected set containing

C

a vertex in V and a vertex outside V must contain a vertex in 9oV. Since 0,V C LC;“L+ (u)¢ and
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u € LCF* (u) N Ve, we deduce that V € LCF T (u)¢. Together with the fact that V' is a connected set
containing v, the first item follows.

The second item is straightforward and we omit its proof. O

4.2 Level components on Z¢

Until the end of Section 4 we discuss the structure of the set of level components of a single HHF
on Z%. Throughout the rest of Section 4, we denote by h an arbitrary function in Hom(Z9). In the
beginning of Sections 4.3 we shall impose additional restrictions on h. Note that dependence on h

will often be implicit in our notation.

Boundary disjointness. The following proposition relates sublevel components to the theory

developed in Section 3.
Proposition 4.3. Distinct sublevel components of a function h € Hom(Z%) are boundary disjoint.

Proof. Consider U := LCfLJr(u,v) and V := LCfLJr(x,y), where k,¢ € 7Z and u,v,z,y € Z% satisfy
h(u) <k < h(v) and h(z) < ¢ < h(y). Observe that if k # ¢, the proposition holds trivially, by the
second item of Proposition 4.1 and (15). We thus assume k = ¢. Suppose U and V' are not boundary
disjoint and let us show that this implies them being equal. From the second item of Proposition 4.1,
and using (15), we get that there exists e = (w1, wz) € OU NIV, such that w1 € 9sU NI, V. By the
fourth item of Proposition 4.1 we have w; € LC%Jr (u)ﬂLCfLJr () and thus LC%Jr (u) = LC%Jr (x), by the
definition of sublevel sets. Since wsy is in the connected component of both v and y in Z%\ LCiJr (u),

then these connected components are equal and we get LCZ+ (u,v) = LCZ+ (z,y), as required. O

From Proposition 4.3 we derive the following corollary.
Corollary 4.4. Every edge (u,v) € Z% is contained in the boundary of a unique sublevel component.

Proof. Assume WLOG that h(v) = h(u) + 1. By definition, (u,v) € LC; (u,v). By Proposition 4.3

no other sublevel component has (u,v) in its edge boundary. O

The next proposition shows that in Z¢, the fact that A is a sublevel component of h depends

only on a certain neighborhood of the boundary of A.

Proposition 4.5. Let hy, ho € Hom(Z%) be two HHFs. Let A be a sublevel component of hy and let
u € 0o A. Suppose there exists S O 0o AU DA satisfying that hi(w) = ha(w) for all w € S and that
LC;l (u) NS is a connected set. Then A is also a level component of hs.

Proof. By our assumption hj(w) = ha(w) for all w € S, and by definition h;(w) < h(u) for all
w e LC}J{1 (u). We get that ho(w) < h(u) for all w € LCZ1 (u) N S. Putting this together with our
assumptions that v € 9¢A C S, and that LCZ1 (u) N S is connected, we get that

LC; (u) NS C LG} (u), (19)
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by the definition of sublevel sets.

Next, let v € 0,A be such that u ~ v. Observe that by Corollary 4.4, we have A = LCZ1 (u,v).
Let U := LCZ2 (u,v). We shall show that A = U, establishing the proposition. By the fourth item of
Proposition 4.1 we have that 0e A C LC?{1 (u) so that, using (19) and our assumption that d, A C S,
we get that 9,4 C LC;ZF2 (u). Thus, using the fourth item of Proposition 4.1 again yields that

0,ACU. (20)

By our assumptions and Proposition 4.1, A€ is connected and satisfies v € A° u ¢ A° and
h2(0,A) = h1(0,A) = h(u) + 1. Thus, the first item of Corollary 4.2 implies that A C U¢. Thus,
using (20) and the fact that U€ is connected by Proposition 4.1, shows that A° = U¢. Hence U = A

as we wanted to show. O

Expressing height differences via level components. Here we develop a formula expressing the
difference between the height assigned to a pair of vertices u and v in terms of sublevel components.

Let u,v € Z%. We define the set of sublevel components separating u from v by
Loy ={A : W 0k st h(v) <k <h(v) and A= LC’}]er(u’,v/) satisfies u € A, v ¢ A}. (21)

Proposition 4.6. Let u,v € Z%. L () @8 finite and ordered by inclusion. Furthermore, the following
formula holds:
h(v) = h(w) = |Luw)| = [Lww)-

Proof. Let U,V be distinct elements of L, ,,). We begin by showing that L, ,) is ordered by inclusion.
By Proposition 4.1, U and V are co-connected and by Proposition 4.3 they are boundary disjoint.
Thus, U and V satisfy the conditions of Theorem 3.2. By the definition of L, ), we have u € UNV
and v € U NV We deduce that either U CV or V C U. As containment relations are transitive
we deduce that L, ,) is ordered by inclusion.

To prove the remaining claims we use induction on the distance between v and v. Indeed, the
case u = v is trivial. Assume the proposition holds for every pair of vertices exactly at distance p and
suppose u, v satisfy dist(u,v) = p + 1. Next, let w be a vertex satisfying w ~ u and dist(w,v) = p.
By our assumption

h(v) = h(w) = [Liww)| = [Lww)l;
and thus
h(v) — h(u) = !C(w,vﬂ — !E(uw)‘ + h(w) — h(u). (22)

Suppose that h(w) = h(u) 4+ 1. Thus U = LC} (u,w) is well defined. By Corollary 4.4, it is the
only sublevel component containing u and not containing w, and there is no sublevel component which
contains w and does not contain u. If v € U, we get that L, ) = L) and that L, ) = L) E{U}.
If v g U, we get that L, ) = Lww) W{U} and that L, ) = L(yw)- In either case, by (22),

h(v) = h(w) = [Lw)| = [Liw)-
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The case h(u) = h(w) + 1 follows similar lines. O

4.3 Level components of quasi-periodic HHF's

In this section we require h to satisfy h € QP,,, for some m € Z%. We show that sublevel components
of such functions have a special structure.

The first property we observe is that the set of sublevel components of h is itself periodic.

Proposition 4.7. Let k € Z and u,v € Z¢ be such that h(u) < k < h(v). For any x € nZ¢ we have
LC;HCS“”H(U +a,v+1x) = LC¥ (u,v) + = where &, := h(z) — h(0).

The proposition follows directly from the definition of sublevel component and quasi-periodic
function and we omit its proof. Combining this with the third item of Proposition 4.1, Proposition 4.3,
and recalling the definition of translation respecting sets from Section 3.1, we get the following

corollary.
Corollary 4.8. FEvery sublevel component of h is translation respecting.

Corollary 4.8 tells us that sublevel components of quasi-periodic HHF's may be assigned a type,
as in Section 3.1.

The next proposition establishes a duality between L, ,y and L, ) when u —v € nZ2.

Proposition 4.9. Let u,z € Z¢ with z #0. If A € L(uutnz) has Type(A) # 0 then
A+ Type(A) - nz € Liyjnzu)-

Proof. Suppose A € L, 1nz) satisfies Type(A) # 0, ie., Type(4) € {—1,1}. Recall that by
definition, u € A and u+nz ¢ A. Since A is a sublevel component then, by Proposition 4.7, A £ nz
are also sublevel components. Both are distinct from A since u +nz € A+nz and u ¢ A —nz. If
Type(A) = 1, then by the trichotomy of Theorem 3.4, u € A implies that u ¢ A + nz. Similarly if
Type(A) = —1, then by the same trichotomy v+ nz ¢ A implies u+nz € A—nz. In either case the
proposition holds. O

An important corollary of the above proposition is the following:

Corollary 4.10. If h € QP,, for m satisfying m; > 0, then there exists a sublevel component of

type 0 which contains 0 and does not contain ne;.

Proof. Suppose to the contrary that every sublevel component in Lg ) is either of type 1 or of
type —1. By Proposition 4.9 we get that [Lgne,)| < [L(ney,0)/- By Proposition 4.6 this implies
h(nei) < h(0), in contradiction to our premise. Here, we have also used the fact that the type of
a level component is preserved under translation, thus distinct level components A € L(g p.,) are

mapped to distinct level components in Ly, oy by the mapping A +— A + Type(A) - ne;. O
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4.4 Superlevel components and level components of type 0

In the construction of our embedding (in Section 5) we make use of superlevel components. These are
counterparts of sublevel components, in which the role of the sublevel set is replaced by a superlevel
set. While these could be defined in an analogous way to that of sublevel components, as given at

the beginning of Section 4, we rather define them through a duality.

Definition 4.11. For any u,v € Z% and k € 7Z satisfying h(v) < k < h(u), we define
LC;T (u,v) :== LC(:hk)Jr(u,v).

This definition allows us to apply propositions dealing with sublevel components to superlevel
components. For instance, combining the definition with Corollary 4.8 and Theorem 3.4 we can
assign a type to every superlevel component. In addition, by Proposition 4.1, a superlevel component
U = LCi_(u,v) satisfies h(z) = k for all x € Q,U, and h(zx) = k — 1 for all € 9,U. However,
to avoid confusion, we remark that the complement of a superlevel component is not necessarily a
sublevel component.

The next lemma shows that certain sublevel and superlevel components which are “sandwiched”

between two type 0 sublevel components must also be of type 0.

Lemma 4.12. Let U C W be a pair of type 0 sublevel components, such that h(0,U) < h(0,W') and
let u € 0U, w € OW and k € Z. Then:

o If h(u) < k < h(w) then V4 = LCff(u,w) is a sublevel component of type 0, satisfying
UCV,CW.

o Ifh(u) <k < h(w) then V_ := (LCﬁ_ (w,u))¢ satisfies that (V_)¢ is a superlevel component of
type 0 and U CV_ C W.

Proof. We start by proving the first item and let V. be as in the proposition. We first show that
U = LC; (u, w). (23)

By our assumptions, U = LCZ(uH(u’,v’) for some u/,v’. By the fourth item of Proposition 4.1 we
have LG} (u) = LCZ(uH(u’). Next, w ¢ U since U C W and U and W are boundary disjoint by
Proposition 4.3. Hence (23) follows.

Now observe that by applying (23), Proposition 4.1 and the first item of Corollary 4.2 to U and
(V1) we get that (V)¢ C U ie., U C V4. Similarly, by Proposition 3.1,

0sW U Do W is a connected set containing w, whose vertices are of height greater than k,  (24)

and hence u ¢ 0oW U 9, W. Thus, applying (24), the first item of Corollary 4.2, we deduce that
(OW U O, W) C V. We can now use the second item of Corollary 4.2 to deduce that V, C W.
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Consequently, U C V; C W, where we have used also that w € W \ V. It remains to show that
V, is of type 0. All that we need in order to draw this conclusion from Proposition 3.6 is to show
that |Tw |, [Tv, |, |Ty| > 1. To see this first observe that since Type(U) = Type(W) = 0, we have by
definition |Tyy |, |Ty7| > 1. By Proposition 3.7 there exists some A € nZ? satisfying (U+A)N(V, )¢ # ()
while U + A C V + A. We deduce that [Ty, | > 1, so that V. is of type 0.

The second item is proved similarly. Let V_ be as in the proposition. By the definition of
superlevel component and Proposition 4.1, we have that (V_)¢ is connected, u ¢ (V_)¢, w € (V_)¢
and h(0,V_) > h(u). Applying (23) and the first item of Corollary 4.2 to (V_)¢ we deduce that
(Vo)e CUS ie.,, U CV_.

Applying (24), the definition of a superlevel component, and the fourth item of Proposition 4.1
we get that W U, W C (V_)¢, as it is contained in the corresponding superlevel set. We deduce
that V_ is a connected set satisfying v € V_ and d,W C (V_)¢. Therefore by the second item
of Corollary 4.2, we have V_ C W. Consequently, U C V_ C W, where we have used also that
w € W\ V_. It remains to show that V_ is of type 0. All that we need in order to draw this
conclusion from Proposition 3.6 is to show that |7y, | > 1. This is done in exactly the same way as

in the proof of the first part of the lemma. O

We conclude this section with a criterion for applying Proposition 4.5.

Proposition 4.13. Let hy, hy € Hom(Z?) be two HHFs and let A be a sublevel component of hy.
Suppose that

hi(w) = ho(w) for allw € AT\ B™, (25)
for some B C A which is either a sublevel component of hy or the complement of a superlevel

component of hi. Then A is also a sublevel component of hs.

Proof. Let u € 0o A. Let v € 0, A be such that u ~ v. By Corollary 4.4,
A =LC} (u,v). (26)

Let us show that u ¢ B. Suppose to the contrary that uw € B. Hence u € 0o B by our assumption
that B C A. Then, by Proposition 4.1 and the definition of superlevel component, B¢ is a connected
set satisfying v € B¢ and satisfying hi(0.B) = hi(u) + 1 > hj(0sA). Thus, by the first item of
Corollary 4.2, we have that B¢ C A°. However, this contradicts the fact that B C A.

We continue by considering separately two cases. First, assume that
either hy(0eB) > hi(u) or h1(0oB) > hi(u). (27)

Since u ¢ B, the definition of LC,J{1 (u) and the assumption (27) imply that LC?{1 ()N B = 0.
Now, Proposition 4.1 and (26) imply that LC}J{I(U) C A. Thus, by (25), h1(w) = ho(w) for all
w e (LCZl (u))™. Hence the definition of sublevel set yields that LCZl (u) = LCZ2 (u), which, in turn,
implies that LC;l (u,v) = LC;2 (u,v). Thus, recalling (26), A is also a sublevel component of hs.
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Second, let us assume that (27) does not hold. That is, that
h(0.B) < hi(w) and hy(9.B) < b (u). (28)
Denote S := A"\ B~. Recalling (25) and observing that
AT\ A” =0,AN0,AC S,
all that we need to show in order to apply Proposition 4.5 and derive the proposition, is that
LC?{1 (u) NS is connected. (29)
Observe that, by Proposition 4.1, LC;ZF1 (u) C LC;ZF1 (u,v) = A we have
LC; (u) NS =LC; (u)\ B™.

Let HyW Hy be a non-trivial partition of LC;l (u) \ B~. Assume for the sake of obtaining a contra-
diction that there is no edge in Z? connecting Hy and H; (that is an edge between a vertex in H
and a vertex in Hy). Since Hyw Hy ¥ (LC;{I (uyNB™) = LC;{I (u), and LC;{I (u) is a connected set,
there must be an edge of Z¢ connecting Hy and LCZl (u) N B~, and an edge of Z? connecting H; and
LC;l (u) N B~. The existence of these edges implies that

(BF\B")NHy#0 and

(30)
(BY\B7)NHi #0.
In particular,
(BT\B™)N(LC;, (w)\ B7) #0. (31)
By Proposition 3.1, we have that
B*\ B is a connected set. (32)

Observe that LCZ1 (u) is a connected component of {w : hi(w) < hy(u)}, and, by (28), Bt \ B~ C
{w : hi(w) < hi(uw)}. Thus, using (31) and (32) we may deduce that

(B*¥\ B7) CLC; (u)\ B~ = HoU H;. (33)

Putting together (33) and (30) we get that HoW H; induces a non-trivial partition on B*\ B~ that
is not crossed by any edge. Since this contradicts (32), we deduce that (29) holds. O

5 Proof of the Embedding Theorem

In this section we use the theory developed in the previous sections to prove Theorem 2.2. In
Section 5.1 we present a one-to-one mapping from QP,,, the set of quasi-periodic HHFs with slope
m, to QPy, the set of periodic HHFs. In Section 5.2 we prove Theorem 2.2 using a probabilistic
bound taken from [15] and an auxiliary lemma. This lemma, which relates the boundaries of level
components in QP with the boundaries of level components of HHF's on Hom(’]I‘fl), is then proved

in Section 5.3.
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5.1 Mapping quasi-periodic to periodic functions

Throughout this section we fix some m € 6Z¢ such that
my > 0 and QP,, # 0.

We also fix h € QP,,,. With the structural results of Sections 3 and 4 in our toolkit, we are ready to
construct ¥,,, our one-to-one mapping from QP,, into QPy. We start by defining three sets, Uy, Wy
and V. The definition relies on the fact that by Corollary 4.8, sublevel and superlevel components
of h are translation respecting and can therefore be assigned a type by Theorem 3.4. The first and
the third sets will be used to construct ¥,,. The second set will be used in Section 5.2 to show that
the image of W, is small. Proposition 5.1 below shows that the three sets are well-defined.

In the following definition, and throughout the entire section, we say that a set S C Z% is the

minimal set with a given property, if S is contained in every other set with that property.
e Wy = Wy(h) is the minimal type 0 sublevel component satisfying
0 € Wy and ne; ¢ W. (34)

We let A be a minimal translation of Wy as in Theorem 3.4. We choose A in some prescribed
manner, e.g., as the minimal translation which is first in lexicographic order among the minimal

translations with smallest /1 norm. Write

d = h(A).

e Vo = Vy(h) is the minimal type 0 sublevel component satisfying

h(a.Vo) = h(a.W()) -1, Wy — ACV, C Wg, O ¢ Vo and —ne; € Vj. (35)

o Uy = Uy(h,0) is defined by the property that its complement U is the minimal type 0 superlevel

component such that
h(0eUy) = h(0.Wy) —6/2, Wy — A C Uy € Wy, 0 ¢ Uy and —ne; € Uy. (36)
Uy, Vo and Wy of a certain h € QP(&O) are illustrated in Figure 7.
Proposition 5.1. Wy, Vi and Uy are well-defined, and satisfy
Wo—-AC Uy C Vo S Wp. (37)

Proof. For brevity we write U, V and W, for Uy, Vi and Wy respectively. We begin by showing that
W is well defined. Write W for the set of type 0 sublevel components which contain 0 and do not
contain nej. Recalling (21) we observe that W C L g e,). Thus, by Proposition 4.6, W is ordered
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by inclusion and finite. By Corollary 4.10, W # (), and thus W, the minimal element of W, is well
defined.

Next, towards showing that V is well defined, we write V for the set of type 0 sublevel components
V' satisfying h(0sV') = h(0W) =1, W = A C V' C W, 0 ¢ V' and —ne; € V'. We observe that
V C L(_pey,0), and thus by Proposition 4.6, V is ordered by inclusion and finite. To derive the
existence of V, all that remains is to show that V # ().

To see that V # (), we make some observations about A and 6. Since h € QP, ., m € 6Z¢ and

m?
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A € nZ4, it follows that
=0 (mod 6). (38)

Since W is of type 0, 0 € W and ne; ¢ W we get that W C W 4 ne; and therefore, by Theorem 3.4,
W +mne; = W + kA for some positive k. (39)

We deduce, using Proposition 4.7, that h(OeW + nep) = h(0eW) + h(ney) = h(0eW) + m1, and

therefore that my = kd. In particular, since my > 0, we see that
0 > 6. (40)

By subtracting ne; and kA from both sides of (39) we have that W —ne; = W —kA. Thus, recalling
that 0 € W and W — kA C W — A, we obtain that

—ne; € W — A. (41)

By Proposition 4.7 and (40) we get that W — A is a sublevel component satisfying h(do (W —A)) =
h(0W) — 6 < h(0,W) — 6. Thus, the first item of Lemma 4.12 guarantees the existence of a type 0
sublevel component V' satisfying h(9e V') = h(0eW) — 1, W — A C V' C W. Since —ne; € W — A
by (41) we get that —ne; € V'. By the minimality of W, we get that 0 ¢ V' implying that V' € V
so that V # ().

To show that U is well defined, we write U for the set containing all U’ such that (U’)¢ is a type 0
superlevel component such that h(9sU’) = h(0.W)—0/2, W —A CU' CW,0 ¢ U’ and —ne; € U'".
Recalling Definition 4.11 of superlevel sets we use Proposition 4.6 to deduce that the set of superlevel
sets containing 0 and not containing —ne; is finite and ordered by inclusion, and therefore U is also
finite and ordered by inclusion. All that remains in order to deduce the existence of U is to show
that U # 0.

This time we apply (40) and the second item of Lemma 4.12, to h, V and W — A, to show the
existence of U’ satisfying that (U’)¢ is a superlevel component of type 0, W — A C U’ C V and
h(0sU") = h(0, W) — §/2. Since 0 ¢ V by definition and —ne; € W — A by (41) we get that 0 ¢ U’
and —ne; € U'. Thus U’ € U, U # () so that U is well defined. The definition of & and the fact that
U C U’ imply that W — A CU C V. In fact, by (40) we have h(0e(U)) > h(0e(W — A)) so that

W-ACUCV.
This relation and the definition of V imply (37). O
For ¢ € Z, we write
U; :=Uy+iA, V; := Vo +iA and W, := Wy + iA. (42)

Proposition 5.2. For every z € nZ® and i € Z the following are equivalent:
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e Up+z=U;,
.VE)—I—Z:V;,
.W0+Z:Wi.

Proof. We begin by showing that Uy, Vo and Wy all have A as a minimal translation. For Wy, this
is the case by the definition of A. We now show this for V. The proof for Uy is similar. Let Ay be

a minimal translation of V. Since
V- ACWy—ACV, CWW
by (37), we have Vy — kAy =V — A for some integer & > 1. By Proposition 3.3, we have
dist(Vp — Ay, W) > dist(Vy, W) = dist(Vo — Ay, W5 — Ay).

We deduce that Wy — Ay C Wy, and thus Wy — Ay € Wy — A (by the minimality of A). Suppose
to the contrary that Wy — Ay C Wy — A. Since A is a minimal translation of Wy, we get that

Vo—Ay CWo— Ay CWo—2AC Vy— A,

contradicting the minimality of Ay . We conclude that Wy — A = Wy — Ay.
Fix z € nZ% Since Uy, Vp and Wy are of type 0 with A as a minimal translation, there exist
i, 7,k for which Uy + 2z =U;, Vo + 2z =V}, Wy + z = Wy, Translating (37) by z, we have

Wi QU CV; C Wy (43)
However, (37) and (42) imply that
W_1CUy C Vo C Wy CU C V.
Hence we conclude from (43) and the fact that (U;), (Vi) and (W;) are ordered by inclusion that
k—1<i:<j3<k
and therefore that ¢ = j = k. O

We define the mapping ¥,,,: QP,, = QPq by

h(v — iA) = h(v) — id, v e W; \ U; for some i € Z

21 (8 Wo) — h(v — iA) = 2h(8 Wo) — h(v) + 8, v € Upsy \ W; for some i € Z
(44)

The remainder of the section is dedicated to showing that W,, is well defined and has the required

Ui (h)(v) :=

properties.
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By Theorem 3.4, for every ¢ € Z we have W; C W, 1. Thus, applying Proposition 3.7 to Wy, we
have that every v € Z? belongs to exactly one set of the form W; 1 \ W;. Hence ¥,,(h)(v) is defined
for every v € Z?. The image through ¥ of the HHF illustrated in Figure 7 is depicted in Figure 8.

By definition, ¥,,(h) is A-periodic , i.e., it satisfies W,,(h)(v) = ¥,,,(h)(v + A) for every v € Z4.
Thus to understand ¥, (h) it suffices to understand its values on v € Wy \ W_1. As a first step to
this end we point out that on the region Wy \ Uy, ¥, is the identity while on the region Uy \ W_; it
is a reflection with respect to height h(0,Wy) — /2 = h(0eUp).

Proposition 5.3. U, is a one-to-one mapping from QP,, to QPq.
Proof. Write t := W,,,(h). We need to show is that t is periodic in ne; for every 1 < i < d, that it is
a height function, and that ¥, is one-to-one.

t is Periodic. First we show that for every A’ € nZ¢, a € Z such that Wy + A’ = W,, we have
h(v) = h(v + A’ — aA) for all v € Z%. (45)

By quasi-periodicity, for all v € Z4, we have h(v + A’ — aA) = h(v) + (h(A’ — aA) — h(0)). Hence it
suffices to prove (45) for a single v € Z?. Next, note that since Wy = W, — A/ = Wy+aA — A’ we have
that if v € 04 Wy, then v + A’ — aA is also a member of 9, Wy, implying that h(v) = h(v + A’ — aA).
This establishes (45).

Now, let 1 < j < d, and suppose that ow,(Wy + ne;) = a € Z where oy, is the order function
of Wy given by Theorem 3.4. Observe that Wy + ne; = W,. Note that if v € W; \ U; then, by
Proposition 5.2, v + ne; € Wiy, \ Uitq. Thus, using (45), if v € W; \ U; then

t(v) = h(v —iA) = h(v + nej — (i + a)A) = t(v + ne;j).
Similarly, if v € U; 41 \ W; then, using Proposition 5.2, we have
t(v) = 2h(0.Wp) — h(v — iA) = 2h(0 W) — h(v + nej — (i + a)A) = t(v + nej).

t is an HHF. We claim that ¢ € Hom(Z%), i.e., that the values which ¢ assigns to adjacent vertices
differ by exactly 1. Let u,v be adjacent vertices in Z%. We need to show that

[t(u) = t(v)] = 1. (46)

Since t is A-periodic, for every vertex w € Z% there exists j € Z such that w + jA € Uy \ Uy and
t(w) = t(w + jA). We may therefore assume WLOG u € U; \ Uy, and v € U;. We consider three
cases separately.

First, if both u,v € Uy \ Wy or both u,v € Wy \ Uy then (46) follows directly from the definition
of U,,.
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Second, note that
t(OoWh) — t(0eWo) = 2h(0sWy) — h(0e W) — h(0eWy) = h(0-Wy) — h(0eWp) = 1.

Hence (46) holds if either u € 9,Wj and v € 94 W) or vice versa.
Third,
t(0oUp) — t(0eUp) = h(0sUp) — (2h(0sWy) — h(0eUy) — 9),

and plugging the relation h(9,Wy) = h(9sUp) + /2 from (36) yields
t(0sUp) — t(0aUp) = h(8:Up) — h(dsUp) = 1.

Thus (46) holds if u € .Uy and v € 9Uj.

V,, is one-to-one. To show that V¥, is one-to-one, we explain how to construct an inverse for it.
Suppose that we are able to recover Uy, Wy, A and § from ¢t and m. Then we may define U; = Uy+iA,
W; = Wy + ¢A and the mapping

t(v) + 9, v e W; \ U; for some i € Z

ULt (v) = . . .
2t(0Wy) — t(v) + 140, v € Ujpr \ W; for some i € Z

It is simple to check that this Ul is indeed an inverse to W,,. It is therefore sufficient to show that
Up, Wy, A and § may be recovered from t and m.

We begin by recovering Wy. To do this we follow the lines of the proof of proposition 5.1. Write
W; for the set of type 0 sublevel components of ¢ which contain 0 and do not contain ne;. Again
we recall (21) and observe that Wy C Lo pe,), where L is defined with respect to t. Thus, by
Proposition 4.6, W, is ordered by inclusion and finite. We now argue that W, is a non-empty set

whose minimal element is Wj,.
The definition (44) of ¥,, and the relation h(9.Wy) = h(0eUp) + /2 from (36) imply that

t(z) = h(xz) forxe Wi \U;. (47)
We can therefore apply Proposition 4.13 with Ay = h, ho =t, A = Wy and B = Uy to get that
Wo € Wy (48)
Applying the same proposition with A = V{ yields that
W is a sublevel component of ¢. (49)
Let us write W; for the minimal element of W;. Since Wy € W; we conclude that

W, C W,. (50)
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To obtain the opposite inclusion we now show that W} is also a sublevel component of h. Observe that
since Wy is of type 0, and since 0 € W, and ne; ¢ Wy we have by Theorem 3.4 that W; — ne; C W;.
We deduce that —ne; € W; N V. In addition, our definitions imply that ne; € (Wy)¢ N (Vp)¢ and
0 € (W;\Vp). By Theorem 3.2, using that distinct sublevel components of ¢ are boundary disjoint by
Proposition 4.3, we deduce that Vj C W;. Applying Proposition 4.13 with h; =t, ho = h, A =W,
and B = V), using (47) and (50) to check the condition (25), we get that W; is a sublevel component
of h. Together with (50), the minimality of Wy now implies that W; = W), allowing the recovery
of Wy from t. After recovering Wy, we can recover A and § using the fact that A is a minimal
translation of Wy chosen in a prescribed manner and the fact that § - oy, (Wp + ne1) = mq, where
ow, is the order function on translations of Wy, given by Theorem 3.4.

All that remains is to recover Uy. Following again the lines of the proof of Proposition 5.1, we
write U; for the set containing all U’ such that (U’) is a type 0 superlevel component of ¢ and
t(DeU") = t(0Wy) — /2, Wy — A C U C Wy, 0 ¢ U" and —ne; € U'. Recalling Definition 4.11
of superlevel sets we again use Proposition 4.6 to deduce that the set of superlevel components
containing 0 and not containing —ne; is finite and ordered by inclusion, implying that U; is also
finite and ordered by inclusion. We now use (47) and Proposition 4.13, with hy = —h, hy = —t,
A = (Up)° and B = (Wy)¢, to get that U is a superlevel component of ¢ (again, using Definition 4.11
of superlevel components). It follows from (47) that Uy € U;. Write U, for the maximal element of
Uy, that is, the complement of the minimal element amongst complements of elements in ;. Since
Uy € U; we conclude that

Us C U§. (51)
Recall that, by the definition of U;, we have (W) C (Uy)€ and that, by (48), W) is also a sublevel
component of . Applying Proposition 4.13 to h; = —t, ho = —h, A = (U;)¢ and B = (W)€, using
(47) and (51) to check the condition (25), we get that Uf is also a superlevel component of h. We
also have h(0sU;) = h(0.Wy) — /2 by (47). Thus, together with (51), the minimality of U§ now
implies that Uy = U;. As Wy, Up, A and é can be recovered from ¢ and m, we deduce that ¥, is

one-to-one. O

5.2 Proof of Theorem 2.2

In this section we prove Theorem 2.2 using a bound on the probability for a uniformly chosen HHF
on the torus to have a level component with long boundary. Here, for the first time, we use level
components on T¢ (defined in Section 4). To clarify our proof we will always denote HHFs in
Hom(T%) by r, HHFs in QPq by t and HHFs in QP,,, for arbitrary m, by h.

Recall that for u € T¢ we denoted by Hom(T%, ) the set of all homomorphism height functions on

T¢ which are zero at u. We use the following theorem of [15] to derive the estimates of Theorem 2.2.

Theorem 5.4 ([15, special case of Theorem 2.8]). There exist ¢ > 0 and dy such that in all dimen-
sions d > do, for all even n, all u,v € T and all L > 1, if h is uniformly sampled from Hom(T¢, )
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then
P (|0 LC)" (u,v)| > L) < dexp <—#§2d> ,
where we mean that LC)' (u,v) = 0 if h(v) < 0.
We adapt Theorem 5.4 to our setting through the following corollary.

Corollary 5.5. There exist ¢ > 0 and dgy such that in all dimensions d > dgy, for all even n and all
L > 1, denoting

A= {T‘ € Hom(T%) : there exists a sublevel component A such that |DA| > L} ,

the following holds,

Al 2 d cL
AL gy - .
[Hom(Td)] = “* " “P\ " q10g24d

Proof. Fix L > 1 and let B := {r € Hom(T¢) : Jv € T¢,v ~ 0, s.t. [0LCS(0,v)] > L}. By

Theorem 5.4 with v = 0, and using a union bound on all v ~ 0, we have

cL
dlog?d

|B| < 2d-dexp (— > ‘Hom(Tz) for all d greater then some fixed dj.

Now, for every w € T¢ define the mapping 7,, : Hom(T%) — Hom(T¢) by

Nw(r)(v) :=r(v+w) — r(w).

It is not difficult to check that this mapping is well defined and is a bijection. Moreover, for every
r € A there exists a w € T? such that 7, (r) € B. The corollary follows. O

In order to apply Corollary 5.5, we must show that HHF's in the image of ¥,,, when projected
to the torus, contain a sublevel component with a long boundary. We proceed in two steps. First,
we claim that the projection of the boundary of the set Vj from Proposition 5.1 is contained in the
boundary of a level component of the projection of W,,(h). Then we claim that this boundary is long.
This strategy is expressed in the following two lemmata. Recall that 7 was defined in Section 2.1 to

be the natural projection from Z? to T¢. Here we use also the natural extension of 7 to edges of Z.

Lemma 5.6. Let h € QP,, for m € 6Z¢ satisfying m1 > 0. Let r = 7o WV, (h) and Vp be as in
Proposition 5.1. There exists a sublevel component R of r such that w(0Vy) C OR.

We delay the proof of this lemma to Section 5.3.

Lemma 5.7. Let t € QPqy. Let u,v € Z* and k € Z satisfy t(u) < k < t(v). Suppose V :=
LCer(u,v) C 74 is a sublevel component of type 0. Then

max, {(wo, w1) € T(AV) : wp — wy = e;}] > ndL.
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Proof. By Proposition 3.7, there exists 1 < i < d such that for every z € Z? there exists ¢ € Z such
that
(x 4+ Lej,xz + (04 1)e;) € OV. (52)

We deduce that w(x + le;,x + ({4 1)e;) € m(0V). Using (52) for all x in
{z€Z: 2=0 and Vj#1, 0 <z <n}
yields that |[{(z,z + e;) € 7(OV)}| > n?"1, as required. O
At last we are ready to prove the theorem.

Proof of Theorem 2.2. Let m € 6Z%\ {0}. Using the appropriate rotation we may assume without
loss of generality that my > 0. Fixing h € QP,,, and applying Lemma 5.6 and Lemma 5.7, we obtain
the existence of a sublevel component R of 7o W,,(h) such that [OR| > n?!. Thus

7(¥,,(QP,,)) C {r € Hom(T%) : there exists a sublevel component A of 7 such that [9A] > n® ! }.

Recall that 7 is a bijection from QP to Hom(T%). Thus, applying Corollary 5.5, we get that for
large enough d,

5 4 Cnd—l 4 Clnd—l
U P <2d°n“exp | ———— | | Hom(T%)| < exp | ————— P
9P| < 2t exp (— ) [ Hom(T2)] < exp (~Sa ) [ QP
for some ¢, ¢ > 0. Thus, since ¥,, is one-to-one, the theorem follows. ]

5.3 Projecting type 0 level components to the torus

In this section we prove Lemma 5.6 connecting level components on QP with those on Hom(T¢).
While the relation between sublevel components of HHFs on the integer lattice and those of HHF's
on the torus is non-trivial, the relation between sublevel sets of the two spaces is much simpler. In
particular,

W(LC:_l(T) (u)) = LCH (m(u)) for all € Hom(T%) and u € Z%. (53)
This can be easily verified from the definition of sublevel sets.

Next, we prove a proposition relating the boundaries of level components on Z¢ to level compo-
nents on ']Tfll. We then show that this proposition applies to the set V{ from Proposition 5.1, and
use this fact to prove Lemma 5.6. We remind the reader that A™ and AT were introduced in
Section 2.1.

Proposition 5.8. Let r € Hom(T%) and t = 77 (r) € QPq. Suppose V := LC} (u,v) for adjacent
vertices u,v € 74 satisfying t(v) = t(u) + 1. If

T(VI\V)Na(LC; (u) =0 (54)
then
7(0V) C OLC! (n(u), m(v)). (55)
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Proof. Let R := LC; (r(u),n(v)). We first note that (55) follows from the following two claims,

We begin by showing (56). Indeed, we have:
(0. V) C w(LC/ (u)) = LC; (7(u)) C R,

where the equality follows from (53), and the two containment relations follow from Proposition 4.1.

Next we show (57). By Proposition 3.1, using the fact that V' is co-connected by Proposition 4.1,
we get that m(V T+ \ V) is a connected set which contains v (recall that u ~ v). By (53) and (54),
(VT \ V) is disjoint from LC (7 (u)). By the definition of sublevel component this implies that
m(VTT\ V) C RC. Since m(0,V) C n(V*tTt\ V), we deduce (57). O

At last, we prove Lemma 5.6. Let h € QP,, for m € 6Z satisfying m; > 0. Let U = Uy, V = Vj,
W = Wy and A be as in Proposition 5.1. Let also t := ¥,,,(h) and r := 7(t). Our goal is to show
that V satisfies the conditions of Proposition 5.8, from which Lemma 5.6 will follow.

Write T for the set of type 0 sublevel components T” satisfying h(9eT") = h(0,W) — § + 1 and
WA CT C V. Recall that W—A C V by (37), h(0e(W —A)) = h(BeW) =8, h(BeV) = h(8aW)—1
by (35) and that § > 6 by (40). Hence, by Lemma 4.12, we conclude that 7 is non-empty. Write T’
for the minimal element of 7.

Let us show that T'C U. By Lemma 4.12 applied to T'C V', using that h(9eT") = h(O.W)—0+1
and h(0sV) = h(0sW) — 1, there exists a U’ satisfying that (U’)¢ is a type 0 superlevel component
such that h(0sU’) = h(0.W) —6/2 and T C U’ C V. Next, observe that 0 ¢ U’, since 0 ¢ V by
(35), and that —ne; € U’, since —ne; € W — A C T by (41). Thus, (37) and the definition of U (in
particular, the fact that U¢ is minimal), imply that U’ C U. We conclude that

W—-ACTCU. (58)
Next, the definition (44) of ¥,,, (58) and the definition of 7" imply that
t(0eT') = 2h(0 W) — h(0eT') — § = h(O W) — 1.
Now, since U C V C W by (37), the definition of ¥,,, implies that
h(0,V) = t(9,V).

Thus, by (35),
t(0eT) = (D V). (59)
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We now check that V' satisfies the conditions of Proposition 5.8. Recall that by (49), V is a
sublevel component of t. Let u € 3,V , v € 0,V be two adjacent vertices. By Corollary 4.4 we have
V = LC; (u,v). Observe that the condition (54) is equivalent to

(VIFP\V) +2)NLC (u) =0 for all 2z € nZ%,

Since (VT \ V) + 2= (VtT +2)\ (V + 2) and since V is of type 0 having, by Proposition 5.2, A

as a minimal translation, this is equivalent to
(VI + A\ (V+EA))NLC (u) =0 for all k € Z. (60)

We note that T C V by the definition of 7. It follows from (59) that the set S := V' \ T satisfies
t(s) = t(0,V) for all s € 0,S. This implies that LCS (u) € S. Thus, to check condition (60) it
suffices to show that

(VI +EA)\ (V+EA)NS =0 forall k €Z,

which, since S =V '\ T, is itself implied by

(VI +kA)CT forall k < —1,

(61)
(V+EkA)DV for all £ > 0.

Since A is a minimal translation for V', the second part of (61) follows trivially and it suffices to
check the first part for k = —1. Finally, the condition that (VT — A) C T follows from the fact
that V. — A C W — A C T, a consequence of (37) and the definition of 7. Thus the condition of
Proposition 5.8 is satisfied. Lemma 5.6 follows from (55). O

6 Remarks and Open Problems

In this section we discuss a few open problems and make a remark.

1. (Tori with odd side length) In this work we consider a uniformly sampled proper 3-coloring
of a high-dimensional discrete torus with even side length. Our main result is that for such a
coloring, with high probability, one of the two bipartition classes is dominated by a single color.
How will this result change if we take the side length of the torus to be odd? Since tori with odd
side length are no longer bipartite, some change must occur. We expect that in this situation,
a typical coloring will exhibit two ‘pure phases’, regions in which one of the bipartition classes

is dominated by a single color, separated by a single, roughly straight, interface.

2. (Positive temperature) In physical terminology, the proper 3-coloring model is the zero-temperature
case of the antiferromagnetic 3-state Potts model. The positive temperature version of this

model is defined as follows. A 3-coloring f, not necessarily proper, of the underlying graph is
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sampled with probability proportional to exp(—BH(f)), where 8 > 0 is a parameter propor-
tional to the inverse temperature and H (f) is the number of edges (u, v) for which f(u) = f(v).
We expect that the analog of Theorem 1.1 continues to hold when the temperature is small,
but positive (that is, when S is sufficiently large). Proving this is complicated by the fact that

non-proper 3-colorings are no longer related to height functions.

3. (Larger amount of colors) As explained in Section 1.3, it is expected that Theorem 1.1 has a
natural extension to proper colorings of the torus with more than 3 colors. Specifically, that
for each ¢ there is some dg(q) such that if d > do(q) then a typical proper g-coloring of T¢ has
the property that the g colors split into two sets of sizes |g/2]| and [¢/2] with each bipartition
class dominated by colors from one of the two sets. Proving this is wide open even for the case
g = 4. A result of Vigoda [21] implies that dy(q) > %q. In [3, Conjecture 5.3] it is conjectured
that do(q) = ¢/2, at least in the sense that certain “long range influences” exist if and only if

d > q/2. However, any result showing that dy(g) < oo will constitute a major advance.

We end with the following remark. Our work extends certain results from [15]. The results in
[15] were proven in greater generality than simply for the torus T¢. There, also tori with non-equal
side lengths were considered, of the form ’]I‘,l11 X T}m X - x Tk ,- These include, in particular, “two-
dimensional” tori of the form T2 x ’]I‘g for d a fixed large constant. In our work, for simplicity, we
considered only the case of the torus T¢. However, it seems that our results can be adopted with no

difficulty to the more general tori for which results were obtained in [15].
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