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3/2 firefighters are not enough
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Abstract

The firefighter problem is a monotone dynamic process in graphs that can be viewed as modeling the

use of a limited supply of vaccinations to stop the spread of an epidemic. In more detail, a fire spreads

through a graph, from burning vertices to their unprotected neighbors. In every round, a small amount

of unburnt vertices can be protected by firefighters. How many firefighters per turn, on average, are

needed to stop the fire from advancing?

We prove tight lower and upper bounds on the amount of firefighters needed to control a fire in the

Cartesian planar grid and in the strong planar grid, resolving two conjectures of Ng and Raff.

1 Introduction

The firefighter problem is the following dynamic problem introduced by Hartnell [8]. Given an undirected
graph G = (V,E), a fire initially breaks out at a nonempty subset of vertices ∅ ⊂ S ⊂ V . In every round t,
f (t) firefighters are available to be positioned at vacant and unburnt vertices of G. These firefighters remain
on their assigned vertices for the entire process, protecting them from the fire. At the end of each round,
the fire spreads to all unprotected vertices adjacent to at least one burnt vertex.

For infinite graphs, two scenarios are possible:

(i) In finite time, the fire is controlled (i.e., is unable to spread further) and thus all but a finite number
of vertices remain unburnt and unprotected.

(ii) The fire spreads indefinitely.

Natural questions that can be asked are whether the fire can be controlled, and, if so, how fast; a related
question is how many vertices can we save: absolute number for finite graphs, measure (defined properly)
for infinite graphs.

The firefighter problem was considered for a variety of families of graphs, including infinite grids [3, 5,
15, 16, 17, 19], finite grids [13, 19], and trees [6, 8].

In this paper we focus on two infinite grids: the Cartesian grid Z�Z, which is the 4-regular graph on
the vertex set Z× Z in which the neighbors of every vertex form a sphere of radius 1 with respect to the ℓ1
metric, and the strong grid Z⊠Z, which is the 8-regular graph on the vertex set Z×Z in which the neighbors
of every vertex form a sphere of radius 1 with respect to the ℓ∞ metric. A third infinite grid, which we only
briefly mention, is the 6-regular triangular grid Z△Z satisfying Z�Z ⊂ Z△Z ⊂ Z⊠ Z.

We refer henceforth to vertices of these grids as points.
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1.1 Previous results

Wang and Moeller [19] proved that when f ≡ 1, a single-source fire cannot be controlled even in the non-
negative quadrant N�N of Z�Z. With an additional firefighter (f ≡ 2) a single-source fire in Z�Z can
be controlled within 8 turns and 18 burnt points. Fogarty [5] proved that with f ≡ 2 firefighters, any finite-
source fire in Z�Z can be controlled. Messinger [16] proved that for any n ∈ N, a single-source fire in Z�Z

can be controlled using the periodic function

f (t) =

{

2, t mod (2n+ 1) is zero or odd;

1, t mod (2n+ 1) is even and nonzero,

whose average is (3n+ 2) / (2n+ 1) = 3/2 +O (1/n). Ng and Raff [18] proved that any periodic function f
whose average exceeds 3/2 allows the firefighters to control any finite-source fire in Z�Z.

Develin and Hartke [3] proved that, for d ≥ 3, a single-source fire in Z
�d = Z� · · · �Z cannot be

controlled using f ≡ 2d− 2 firefighters (and is controlled by f ≡ 2d − 1 firefighters within just two turns).
Moreover, they showed that for any fixed m, f ≡ m firefighters cannot control an m2-source fire in Z

�d.
Fogarty [5] claimed that f ≡ 2 firefighters cannot control a single-source fire in the triangular grid Z△Z

but her proof is not complete. Messinger [15] proved that slightly more firefighters can control it; namely,

for any n ∈ N she describes a strategy using f (t) =

{

3, t = 0 mod n;

2, t 6= 0 mod n
firefighters.

Messinger [17] claimed that f ≡ 3 firefighters cannot control a single-source fire in the strong grid Z⊠Z,
or even to restrain it to a single quadrant, but here, too, the proof is not complete. She proved that slightly

more firefighters can control it; that is, for any n ∈ N her scheme needs only f (t) =

{

4, t = 0 mod n;

3, t 6= 0 mod n

firefighters.

1.2 Our results

All of our results depend on properties of the cumulative sum f∗ (t) =
∑t

τ=1
f (τ) of the function f .

We show the following lower bound for the Cartesian grid Z�Z, closing the gap between the existing
lower bound 1 and the upper bound 3/2 + ǫ.

Theorem 1. If f∗ (t) never exceeds (3t+ 1) /2 then no strategy using f firefighters can control a single-source

fire in Z�Z.

Theorem 1 settles [18, Conjecture 1] when applied to the function f (t) = 1 + (t mod 2) — that is, the
sequence 2, 1, 2, 1, . . .. Moreover, Theorem 1 implies the lower bound 3 for the strong grid Z⊠ Z.

Corollary 2. If f∗ (t) never exceeds 3t+ 1 then no strategy using f firefighters can control a single-source

fire in Z⊠ Z.

We show a essentially matching upper bound for the strong grid.

Theorem 3. If lim inf f∗ (t) /t > 3 then for any finite-source fire in Z ⊠ Z, there exists a strategy using f
firefighters that can control it.

Theorem 3 yields the following generalization of the known upper bound for the Cartesian grid Z�Z,
which allows for non-periodic functions. This settles [18, Conjecture 2].

Corollary 4. If lim inf f∗ (t) /t > 3/2 then for any finite-source fire in Z�Z, there exists a strategy using

f firefighters that can control it.

Note that lim inf is the correct measure for f∗ (t) /t rather than lim sup, since it is easy to build, for any
ǫ > 0, an example of a function f satisfying lim sup f∗ (t) /t = 4 − ǫ (resp., 8 − ǫ) such that a single-source
fire in Z�Z (resp., Z⊠ Z) cannot be controlled by f firefighters.

Our proofs can be easily adapted to show analoguous upper and lower bound for the triangular grid
Z△Z, in which the threshold is 2.
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1.3 Related work

The firefighter problem is loosely connected with Conway’s angel problem [1]. This is a game of pursuit
in Z ⊠ Z, in which the angel can move to any point within ℓ∞-distance k and the devil can destroy one
unoccupied point per turn, bearing similarities to the f ≡ 1/k case of the firefighter problem. The two main
differences between the angel problem and the firefighter problem are

1. The fire is non-deterministic, that is, it needs not choose its path in advance;

2. The firefighters play a predetermined strategy, that is, they cannot adapt their strategy to the fire’s
advancement.

It is known that for 1 ≤ k < 2, where the fractional version is defined appropriately, the devil wins [12], and
that for k ≥ 2 the angel wins [2, 7, 11, 14]. Our results, when presented as a variant of the angel problem in
which the fire is more powerful, show that the threshold is 1/3 instead of 2.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1, in Section 3 we prove
Theorem 3, and in Section 4 we show how these two theorems imply Corollaries 2 and 4.

Throughout the paper we denote the set of non-negative integers by N and the set of integers by Z. For
a sequence s (t) we define lim inf s (t) = limt0→∞ inf {s (t) : t ≥ t0}. By ⌈x⌉ (resp., ⌊x⌋) we denote the real
number x rounded up (resp., down) to the closest integer.

2 Proof of Theorem 1

2.1 Time-line

Our proof of Theorem 1 makes use of several sequences, all of which are represented as some function
measured at integer times t. To circumvent ambiguity that can arise due to timing subtleties, we define a
time-line for the process as follows (here n is a positive integer).

Time t What happens?

0 The grid is created, empty and void.
1/3 The initial set of points S is set on fire.
n− 1/3 The nth squad consisting of f (n) firefighters is placed on the grid.
n Nothing. Crickets chirp.
n+ 1/3 The fire spreads to adjacent unprotected points.

2.2 Definitions and simple claims

Fix a strategy using f firefighters. In the following definitions t is a natural number representing time and
i, j ∈ {±1} represent together a direction: north-east, north-west, south-west or south-east.

Although all objects we define are a function of time, we may omit t from the notation when the context
allows.

Fire fronts, lengths and perimeter. The fire front Li,j = Li,j (t) is the line

Li,j = {(x, y) ∈ Z× Z : xi + yj = ci,j} ,

where ci,j = ci,j (t) is the minimal natural number for which no point on Li,j is burning at time t.
The length ρi,j = ρi,j (t) of a fire front Li,j is defined as the ℓ∞ distance between Li,j ∩ Li,−j and

Li,j ∩ L−i,j .
The sum of the lengths of all four fire fronts is the fire perimeter at time t, which we denote by ρ = ρ (t).

Note that ρi,j = ρ−i,−j =
1

2
(ci,−j + c−i,j) and thus ρ =

∑

i,j∈{±1} ci,j .
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Total and front potential. A point is endangered if it is unprotected and adjacent to burning point. We
define the total potential φ = φ (t) at time t as the number of endangered points on L (t) =

⋃

i,j∈{±1} Li,j (t);

that is, the difference between the total number of points in L (t) adjacent to burning points and the amount
of firefighters protecting such points. For consistency, we define φ (0) = 1 (that is, the fire source is the single
endangered point).

Note that our choice of time-line dictates that all these φ endangered points catch fire at time t+ 1/3.
Moreover, we define the potential φi,j = φi,j (t) of a fire front Li,j as the contribution of points on Li,j to

the potential. More precisely, an endangered point on a single Li,j contributes one to φi,j and an endangered
point that belongs to two adjacent fire fronts contributes 1/2 to the potential of each.1

Note that φ =
∑

i,j∈{±1} φi,j .

Claim 5. For all t ∈ N and i, j ∈ {±1} we have φi,j (t) ≤ ρi,j (t).

Proof. The length ρi,j of the fire front Li,j must be able to accomodate all φi,j endangered points on Li,j ,
which catch fire immediately.

Active and frozen fronts. The fire front Li,j is active at time t ≥ 0 if Li,j (t+ 1) 6= Li,j (t) and is frozen

otherwise. Let ai,j (t) = ci,j (t+ 1)− ci,j (t); that is, the indicator variable ai,j (t) takes the value 1 if Li,j (t)
is active and the value 0 if it is frozen.

We denote the number of active fire fronts at time t by a (t) =
∑

i,j∈{±1} ai,j (t) ∈ {0, 1, 2, 3, 4}. Note

that by definition a (t) = ρ (t+ 1)− ρ (t).

Claim 6. For all t ∈ N and i, j ∈ {±1} we have ai,j (t) = 0 if and only if φi,j (t) = 0.

Proof. Exactly φi,j (t) endangered points on Li,j (t) caught fire between time t and t+1 (specifically, at time
t+ 1/3). The fire front is active if and only if this number is positive.

Note that a reactivation of a frozen front can only occur when an adjacent active fire front endangers its
corner, giving it a potential of 1/2.

2.3 Bounding the potential

The following lemma bounds the potential from below by bounding the change in potential between consec-
utive times. Denote by fi,j (t) the number of firefighters placed on Li,j (t) until time t that were not counted
in any fi′,j′ (τ) for τ < t (this distinction is needed in order to avoid double-counting of firefighters on a

frozen fire front) and let f∗
i,j (t) =

∑t

τ=1
fi,j (τ).

Lemma 7. For all t ∈ N and i, j ∈ {±1} we have φi,j (t) ≥ 1/4 + ci,j (t)− f∗
i,j (t).

Proof. If Li,j is active at time τ , then the φi,j (τ) burning points on it have at least 1 + φi,j (τ) neighbors
in Li,j (τ + 1), of which at most fi,j (τ + 1) are protected by time τ + 1. If Li,j is frozen at time τ , then all
points on Li,j (τ + 1) adjacent to burning points are protected by time τ + 1. In any case, we have

φi,j (τ + 1) ≥ φi,j (τ) + ai,j (τ) − fi,j (τ + 1) .

Summing this for τ = 0, 1, . . . , t− 1 yields

φi,j (t) ≥ φi,j (0)− f∗
i,j (t) +

t−1
∑

τ=0

ai,j (τ) = φi,j (t) ≥ φi,j (0) + ci,j (t)− f∗
i,j (t) ,

as stated by the lemma.

The next two lemmata lay the foundations for the proof of Proposition 10.

1As a special case, at time t = 0 we have φi,j (0) = 1/4.
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Lemma 8. If ρ (t) ≥ 2f∗ (t)− 1 then φ (t) > ρ (t) /2.

Proof. Summed over all directions i, j ∈ {±1}, Lemma 7 yields φ (t) ≥ 1+ ρ (t)− f∗ (t) ≥ 1/2+ ρ (t) /2.

Lemma 9. If ρ (t) ≥ 2f∗ (t)− 1 then φi,j (t) + φ−i,−j (t) > 0.

Proof. We have ci,j (t) + ci,−j (t) + c−i,j (t) + c−i,−j (t) = ρ (t) so at least one of the following cases is
guaranteed to hold.

Case 1. If ci,j (t) + c−i,−j (t) > ρ (t) /2, then by applying Lemma 7 twice we get

φi,j (t) + φ−i,−j (t) ≥ 1/2 + ci,j (t) + c−i,−j (t)− f∗ (t) > 1/2 + ρ (t) /2− f∗ (t) ≥ 0.

Case 2. If ρi,j (t) + ρ−i,−j (t) = ci,−j (t) + c−i,j (t) ≥ ρ (t) /2 then by Claim 5 we have

φi,−j (t) + φ−i,j (t) ≤ ρi,−j (t) + ρ−i,j (t) = ρ (t)− ρi,j (t)− ρ−i,−j (t) ≤ ρ (t) /2

and by Lemma 8 we get

φi,j (t) + φ−i,−j (t) = φ (t)− φi,−j (t)− φ−i,j (t) ≥ φ (t)− ρ (t) /2 > 0.

The following proposition concludes the proof by showing that the fire expands indefinitely and thus
cannot be controlled.

Proposition 10. Assume that f∗ (t) ≤ (3t+ 1) /2 for all t ∈ N. Then ρ (t) ≥ 3t for all t ∈ N.

Proof. We prove this by induction on t. For t = 0 we have ρ (0) = 0. Assume ρ (t) ≥ 3t ≥ 2f∗ (t) − 1.
By Lemma 8 no two adjacent fire fronts can be frozen at time t, since the sum of the potential of the two
others cannot exceed the sum of their lengths, which is the semi-perimeter. By Lemma 9 no two opposing
fire fronts can be frozen at time t. Thus, a (t) ≥ 3 and ρ (t+ 1) = ρ (t) + a (t) ≥ 3t+ 3.

3 Proof of Theorem 3

To make the proof easier, we make the following assumptions without loss of generality.

1. The fire breaks out in an ℓ∞-ball of radius r ≥ 0, i.e., an axes-parallel (2r + 1) × (2r + 1) square,
centered at the origin.

2. There exist some t0 ∈ N and ǫ > 0 such that f∗ (t) ≥ (3 + ǫ) t for all t ≥ t0. This is because
lim inf f∗ (t) /t > 3 implies the existence of such t0 and ǫ for which inf {f∗ (t) /t : t ≥ t0} ≥ 3 + ǫ.

3. We may assume t0 = 1 since we may enlarge the initial fire by adding t0 to r.

The only property of f we will use, which is a strengthened form of f∗ (t) > 3t, is the following. Set
m = ⌈1/ǫ⌉. Then for all k ∈ N we have

f∗ (mk + 1) ≥ 3 (mk + 1) + ǫ (mk + 1) > 3mk + 3m+ k.

Now we describe a strategy S = S (m, r) that allows f firefighters to control a fire that breaks out in an
ℓ∞-ball of radius r ≥ 1 centered at the origin.

Our strategy has four phases. In a terminology similar to the one used in Section 2, we are guaranteed
to have at least k − 1 frozen fronts during the kth phase, hence when the fourth phase ends, all four fronts
are frozen and the fire is controlled.

The following invariants are maintained:

• The shape of the fire at all times is an ℓ∞-ellipse (that is, an axes-parallel rectangle).

• The firefighters are placed on the perimeter of an ℓ∞-ellipse.

• Each firefighter is placed next to an already positioned firefighter (except for the first one, of course).
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Time Fire width Fire height Available firefighters Frozen

1 2r + 1 2r + 1 ≥ 4 -
2r 6r − 1 6r − 1 ≥ 6r + 1 North

6rm+ 1 12rm+ 2r + 1 6rm+ 4r ≥ 18rm+ 6r + 4 North, East
6rm2 + 10rm 6rm2 + 16rm+ 2r 6rm2 + 10rm+ 3r − 1 ≥ 18rm2 + 36rm+ 10r N, E, W
12rm2 + 30rm 6rm2 + 16rm+ 2r 12rm2 + 30rm+ 3r − 1 ≥ 36rm2 + 102rm+ 30r All

Table 1: Key times for the strategy S (m, r)

First phase: northern front. This phase begins at time t = 1 and ends at time t = 2r. All firefighters
are placed on the horizontal line y = 3r between xmin = 1−3r and xmax = 3r−1. Note that f∗ (2r) ≥ 6r+1
and thus by the end of the phase, when the fire has grown to an ℓ∞-ball of radius 3r − 1 and has reached
the northern front, the front is just long enough so that the fire is not able to spread north anymore.

Second phase: eastern front. This phase begins at time t = 2r + 1 and ends at time t = 6rm + 1.
While maintaining the west end of the northern front just out of the fire’s reach, the firefighters continue the
northern front eastwards until xmax = 6rm+ r + 1 and build an eastern front on this vertical line, starting
at the corner ymax = 3r and going south until ymin = −r − 6rm. Note that f∗ (6rm+ 1) ≥ 18rm+ 6r + 4
and thus by the end of the phase, when the fire has grown to an ℓ∞-ellipse of height 6rm + 4r and width
12rm+ 2r+ 1 and has reached the eastern front, the front is just long enough so that the fire is not able to
spread east anymore.

Third phase: western front. This phase begins at time t = 6rm + 2 and ends at time t = 6rm2 +
10rm. While maintaining the south end of the eastern front just out of the fire’s reach, the firefighters
continue the northern front westwards until xmin = 1− r − 10rm− 6rm2 and build a western front on this
vertical line, starting at the corner ymax = 3r and going south until ymin = 1 − 10rm − 6rm2. Note that
f∗

(

6rm2 + 10rm
)

≥ 18rm2 + 36rm+ 10r and thus by the end of the phase, when the fire has grown to an
ℓ∞-ellipse of height 6rm2 + 10rm+ 3r− 1 and width 6rm2 + 16rm+ 2r and has reached the western front,
the front is long enough (by 2r or so) so that the fire is not able to spread east anymore.

Fourth phase: southen front. This phase begins at time t = 6rm2 + 10rm + 1 and ends at time
t = 12rm2 + 30rm. While maintaining the south end of the eastern front just out of the fire’s reach, the
firefighters continue the western front southwards until ymin = 1− 30rm− 12rm2 and build a southern front
on this horizontal line, starting at the corner xmin = 1 − r − 10rm− 6rm2 and going east until the eastern
front is met at the corner xmax = 6rm + r + 1. This actually happens about 20r rounds before the end of
the phase, since f∗

(

12rm2 + 30rm
)

≥ 36rm2 + 102rm + 30r and thus by the end of the phase, when the
fire has grown to an ℓ∞-ellipse of height 12rm2 + 30rm + 3r − 1 and width 6rm2 + 16rm + 2r, it is fully
surrounded.

4 Proof of Corollaries 2 and 4

Using the following proposition, Theorem 1 implies Corollary 2 and Theorem 3 implies Corollary 4.

Proposition 11. If f firefighters can control a fire that breaks out in a ball of radius r ≥ 0 in the strong

grid Z ⊠ Z, then g firefighters can control a fire that breaks out in a ball of radius 2r in the Cartesian grid

Z�Z, where the function g is defined by g (t) =

{

⌊f (k) /2⌋ , if t = 2k − 1;

⌈f (k) /2⌉ , if t = 2k.

Proof. Without loss of generality, the fire center is the origin in both grids. Let S be the strategy used by
the firefighters in Z ⊠ Z to control the fire, and assume that at time t, firefighters are placed in a set Pt of
|Pt| = f (t) points.
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We exploit the connection between the metrics ℓ1 and ℓ∞ on the plane R
2 to convert S to a strategy S ′

for Z�Z. Specifically, we use the injective mapping �: Z × Z → Z × Z defined by � (x, y) = (x+ y, x− y).
Partition the set Pt arbitrarily to two sets P ′

t and P
′′

t of respective sizes g (2t− 1) and g (2t). It is possible
as |Pt| = f (t) = g (2t− 1) + g (2t). The strategy S ′ places firefighters in � (P ′

t ) at time 2t− 1 and in � (P ′′
t )

at time 2t− 1.
Note that S ′ only places firefighters at even points; that is, points (x, y) such that x + y is even. Recall

that the graph Z�Z is bipartite, and the initial fire boundary consists of even points only. Therefore, at
odd times the fire can only spreads to odd points (which are never protected) and at even times the fire can
spread only to unprotected even points. It makes sense thus to consider the state of the process only at even
times t = 2k. But behold — the square of the graph Z�Z restricted to even points is isomorphic to Z⊠ Z

using the isomorphism �, and the initial fire, the ℓ1-ball of radius r, is mapped by � to an ℓ∞-ball of radius
2r.

Since the strategy S is able to control the fire in Z⊠Z in some finite time T , the strategy S ′ will control
the fire in the even part of Z�Z. This establishes the result as Z�Z is bipartite.
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