Matchings and Latin Squares

Michael Simkin Supervised by: Nati Linial

Institute of Mathematics and Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Israel

Rationality 5778

Outline

(9) Motivation

- Stable Matchings
(2) High-Dimensional Permutations
- What is a High-Dimensional Permutation?
- Latin Squares
- Case Study: Monotone Subsequences in Latin Squares

Outline

(1) Motivation

- Stable Matchings
(2) High-Dimensional Permutations
- What is a High-Dimensional Permutation?
- Latin Squares
- Case Study: Monotone Subsequences in Latin Squares

A Familiar Example - Stable Matchings

Setup:

- There are n residents and n hospitals.
- Each hospital is to be assigned exactly one resident.
- Each resident has a ranking of the hospitals.
- Each hospital has a ranking of the residents.

Problem: We seek a stable matching of residents and hospitals.
A matching is stable if there is no resident-hospital pair that would prefer each other over their current assignment.

A Familiar Example - Stable Matchings

Setup:

- There are n residents and n hospitals.
- Each hospital is to be assigned exactly one resident.
- Each resident has a ranking of the hospitals.
- Each hospital has a ranking of the residents.

Problem: We seek a stable matching of residents and hospitals.
A matching is stable if there is no resident-hospital pair that would prefer each other over their current assignment.

A Familiar Example - Stable Matchings

Setup:

- There are n residents and n hospitals.
- Each hospital is to be assigned exactly one resident.
- Each resident has a ranking of the hospitals.
- Each hospital has a ranking of the residents.

Problem: We seek a stable matching of residents and hospitals.
A matching is stable if there is no resident-hospital pair that would prefer each other over their current assignment.

A Familiar Example - Stable Matchings

Setup:

- There are n residents and n hospitals.
- Each hospital is to be assigned exactly one resident.
- Each resident has a ranking of the hospitals.
- Each hospital has a ranking of the residents.

Problem: We seek a stable matching of residents and hospitals.
Solution: The Gale-Shapley algorithm efficiently finds a stable matching (Gale, Shapley, 1962).

A Recipe for Success

Matchings have numerous applications:

- Assigning residents to hospitals.
- Assigning clients to servers on the internet.
- Assigning students to mechinot.
- ...

Their success has two ingredients:
(1) Binary relations (i.e., graphs) are ubiquitous. Matchings arise naturally from graphs.
(2) There are many efficient algorithms for analysing graphs.

A Recipe for Success

Matchings have numerous applications:

- Assigning residents to hospitals.
- Assigning clients to servers on the internet.
- Assigning students to mechinot.
- ...

Their success has two ingredients:
(1) Binary relations (i.e., graphs) are ubiquitous. Matchings arise naturally from graphs.
(2) There are many efficient algorithms for analysing graphs.

Hospital/Resident/Attending Matching

Setup:

- There are n residents, n attending physicians, and n hospitals.
- Each hospital is to be assigned exactly one resident and one attending physician.
- Now the rankings are of pairs.

Problem: We seek a stable matching of residents and attendings to hospitals.
A matching is stable if there is no (resident, attending, hospital)
triple that would prefer each other over their current
assignment.

Hospital/Resident/Attending Matching

Setup:

- There are n residents, n attending physicians, and n hospitals.
- Each hospital is to be assigned exactly one resident and one attending physician.
- Now the rankings are of pairs.

Problem: We seek a stable matching of residents and attendings to hospitals.
A matching is stable if there is no (resident, attending, hospital)
triple that would prefer each other over their current
assignment.

Hospital/Resident/Attending Matching

Setup:

- There are n residents, n attending physicians, and n hospitals.
- Each hospital is to be assigned exactly one resident and one attending physician.
- Now the rankings are of pairs.

Problem: We seek a stable matching of residents and attendings to hospitals.
A matching is stable if there is no (resident, attending, hospital) triple that would prefer each other over their current assignment.

Hospital/Resident/Attending Matching

Setup:

- There are n residents, n attending physicians, and n hospitals.
- Each hospital is to be assigned exactly one resident and one attending physician.
- Now the rankings are of pairs.

Problem: We seek a stable matching of residents and attendings to hospitals.

Chaos!

- A stable matching need not exist.
- It is computationally difficult to determine if a stable matching exists (Ng, Hirschberg, 1991, Subramaniam 1994)

Hospital/Resident/Attending Matching

Setup:

- There are n residents, n attending physicians, and n hospitals.
- Each hospital is to be assigned exactly one resident and one attending physician.
- Now the rankings are of pairs.

Problem: We seek a stable matching of residents and attendings to hospitals.

Chaos!

- A stable matching need not exist.
- It is computationally difficult to determine if a stable matching exists (Ng, Hirschberg, 1991, Subramaniam 1994).

Where Should We Go from Here?

- Adding non-binary constraints makes matching difficult.
- Faced with this situation we wonder if there is an interesting theory of high-dimensional matching.

Outline

Motivation

- Stable Matchings
(2) High-Dimensional Permutations
- What is a High-Dimensional Permutation?
- Latin Squares
- Case Study: Monotone Subsequences in Latin Squares

One-Dimensional Permutations

- A matching between sets of size n can be represented by a permutation matrix - an $n \times n(0,1)$-matrix with exactly one 1 in each row and column.
- An order-n (one-dimensional) permutation is an ordering of the integers $\{1,2$,

One-Dimensional Permutations

- A matching between sets of size n can be represented by a permutation matrix - an $n \times n(0,1)$-matrix with exactly one 1 in each row and column.
- An order- n (one-dimensional) permutation is an ordering of the integers $\{1,2, \ldots, n\}$.

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{lllll}
4 & 5 & 1 & 3 & 2
\end{array}\right)
$$

High-Dimensional Permutations

- An order- n permutation is an $n \times n(0,1)$-matrix with exactly one 1 in each row and column.
- An order- n two-dimensional permutation is an $n \times n \times n$ $(0,1)$-array with exactly one 1 in each row, column, and shaft.

High-Dimensional Permutations

- An order- n permutation is an $n \times n(0,1)$-matrix with exactly one 1 in each row and column.
- An order- n two-dimensional permutation is an $n \times n \times n$ $(0,1)$-array with exactly one 1 in each row, column, and shaft.

Outline

Motivation

- Stable Matchings
(2) High-Dimensional Permutations
- What is a High-Dimensional Permutation?
- Latin Squares
- Case Study: Monotone Subsequences in Latin Squares

Two-Dimensional Permutations = Latin Squares

- An order- n two-dimensional permutation is an $n \times n \times n$ $(0,1)$-array with exactly one 1 in each row, column, and shaft.
- An order- n Latin square is an $n \times n$ matrix in which each row and column contains all the numbers $\{1,2, \ldots, n\}$.
- These are naturally equivalent:

Two-Dimensional Permutations = Latin Squares

- An order- n two-dimensional permutation is an $n \times n \times n$ $(0,1)$-array with exactly one 1 in each row, column, and shaft.
- An order- n Latin square is an $n \times n$ matrix in which each row and column contains all the numbers $\{1,2, \ldots, n\}$.
- These are naturally equivalent:

Some Questions

(How many order- n Latin squares are there?
(2) What does a typical Latin square look like?
(3) Is there a way to efficiently generate random Latin squares?
(4) What is the probability that a random array contains a Latin square?
(3) How do properties of (one-dimensional) permutations generalize to Latin squares?

Some Questions

(1) How many order- n Latin squares are there?
(2) What does a typical Latin square look like?
(3) Is there a way to efficiently generate random Latin squares?
(4) What is the probability that a random array contains a Latin square?
(6) How do properties of (one-dimensional) permutations generalize to Latin squares?

Some Questions

(1) How many order- n Latin squares are there?
(2) What does a typical Latin square look like?
(3) Is there a way to efficiently generate random Latin squares?
(4) What is the probability that a random array contains a Latin square?
(6) How do properties of (one-dimensional) permutations generalize to Latin squares?

Some Questions

(1) How many order- n Latin squares are there?
(2) What does a typical Latin square look like?
(3) Is there a way to efficiently generate random Latin squares?
(4) What is the probability that a random array contains a Latin square?
(5) How do properties of (one-dimensional) permutations generalize to Latin squares?

Some Questions

(1) How many order- n Latin squares are there?
(2) What does a typical Latin square look like?
(3) Is there a way to efficiently generate random Latin squares?
(4) What is the probability that a random array contains a Latin square?
(5) How do properties of (one-dimensional) permutations generalize to Latin squares?

Outline

Motivation

- Stable Matchings
(2) High-Dimensional Permutations
- What is a High-Dimensional Permutation?
- Latin Squares
- Case Study: Monotone Subsequences in Latin Squares

Monotone Subsequences in Permutations

Definition

A monotone subsequence in a permutation is a sequence of 1 s that either ascend from left to right or descend from left to right.

$\left(\begin{array}{lllll}4 & 5 & 1 & 3 & 2\end{array}\right),\left(\begin{array}{lllll}1 & 2 & 5 & 4 & 3\end{array}\right)$

Monotone Subsequences in Permutations

Definition

A monotone subsequence in a permutation is a sequence of 1 s that either ascend from left to right or descend from left to right.

$$
\begin{gathered}
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right), \\
\underset{\downarrow}{\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)} \\
\left(\begin{array}{lllll}
4 & 5 & 1 & 3 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 2 & 5 & 4 & 3
\end{array}\right)
\end{gathered}
$$

The Erdős-Szekeres Theorem

Theorem (Erdős, Szekeres, 1935)

Every order-n permutation contains a monotone subsequence of length at least \sqrt{n}, and this is tight.

Proof.
 "By example", on board

The Erdős-Szekeres Theorem

Theorem (Erdős, Szekeres, 1935)

Every order-n permutation contains a monotone subsequence of length at least \sqrt{n}, and this is tight.

Proof.

"By example", on board. . .

How Do We Generalize a Theorem about Permutations?

- We must first generalize the notion of "monotone subsequence" to higher dimensions.
- Here is a one-dimensional monotone subsequence:

How Do We Generalize a Theorem about Permutations?

- We must first generalize the notion of "monotone subsequence" to higher dimensions.
- Here is a one-dimensional monotone subsequence:

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{lllll}
4 & 5 & 1 & 3 & 2
\end{array}\right)
$$

Monotone Subsequences in Latin Squares

- This suggests the following:

Michael SimkinSupervised by: Nati Linial

Monotone Subsequences in Latin Squares

Definition (One dimension)

A monotone subsequence in a permutation is a sequence of 1 s that either ascend from left to right or descend from left to right.

Definition (Two dimensions)

A monotone subsequence in a Latin square is a sequence of 1s whose positions are monotone in all three coordinates.

The Erdős-Szekeres Theorem for Latin Squares

Theorem (Erdős, Szekeres, 1935)

Every order-n permutation contains a monotone subsequence of length at least \sqrt{n}, and this is tight.

Theorem (Linial, S., 2017)

Every order-n Latin square contains a monotone subsequence of length at least $\frac{1}{3} \sqrt{n}$, and this is tight up to the multiplicative constant.

What About Typical Permutations?

> Theorem (Logan, Shepp, 1977, Vershik, Kerov, 1977)
> In almost every order-n permutation the longest monotone subsequence is of length $\approx 2 \sqrt{n}$.

```
Theorem (Linial, S., 2017)
In almost every order-n Latin square the longest monotone
subsequence is of length \Theta ( n 2/3).
```


What About Typical Permutations?

Theorem (Logan, Shepp, 1977, Vershik, Kerov, 1977)
 In almost every order-n permutation the longest monotone subsequence is of length $\approx 2 \sqrt{n}$.

Theorem (Linial, S., 2017)
In almost every order-n Latin square the longest monotone subsequence is of length $\Theta\left(n^{2 / 3}\right)$

What About Typical Permutations?

Theorem (Logan, Shepp, 1977, Vershik, Kerov, 1977)
In almost every order-n permutation the longest monotone subsequence is of length $\approx 2 \sqrt{n}$.

Theorem (Linial, S., 2017)

In almost every order-n Latin square the longest monotone subsequence is of length $\Theta\left(n^{2 / 3}\right)$.

