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Abstract. This paper is part of the ongoing effort to study high-dimensional
permutations. We prove the analogue to the Erdős–Szekeres Theorem: For
every k ≥ 1, every order-n k-dimensional permutation contains a monotone
subsequence of length Ωk

(√
n
)
, and this is tight. On the other hand, and

unlike the classical case, the longest monotone subsequence in a random k-

dimensional permutation of order n is asymptotically almost surely Θk

(
n

k
k+1

)
.

The study of monotone subsequences in permutations began with the famous
Erdős–Szekeres Theorem [5]. Since then numerous proofs and generalizations have
emerged (see Steele’s survey [14]). We recall the theorem.

Theorem 1. Every permutation in Sn contains a monotone subsequence of length
at least d

√
ne, and this is tight: for every n there exists some permutation in Sn in

which all monotone subsequences are of length at most d
√
ne.

In order to derive a high-dimensional analogue of Theorem 1 we need to de-
fine high-dimensional permutations and their monotone subsequences. If we view
a permutation as a sequence of distinct real numbers, it is suggestive to consider
sequences of points in Rk, with coordinatewise monotonicity. The following ar-
gument is attributed by Kruskal [9] to de Bruijn: Repeatedly apply Theorem 1
to conclude that every sequence x1, x2, . . . , xn ∈ Rk must have a coordinatewise
monotone subsequence of length n

1

2k , and this is tight up to an additive constant.
In [9] one considers projections of the points to a line and defines the length of the
longest monotone subsequence according to the line with the longest such subse-
quence. Szabó and Tardos [15] consider sequences in Rk that avoid at least one of
the 2k coordinatewise orderings.

Here we adopt the perspective of [11] of a high-dimensional analogue of permu-
tation matrices, and monotone subsequences are defined by strict coordinatewise
monotonicity. We show (Theorem 4) that every k-dimensional permutation of or-
der n has a monotone subsequence of length Ωk (

√
n), and this is tight up to the

implicit multiplicative constant.
A related question, posed by Ulam [16] in 1961, concerns the distribution of H1

n,
the length of the longest increasing subsequence in a random member of Sn. In
1972 Hammersley [6] showed that there exists some C > 0 s.t. H1

nn
− 1

2 converges
to C in probability. In 1977 Logan and Shepp [12] showed that C ≥ 2 and Vershik
and Kerov [17] demonstrated that C ≤ 2. This yields the next theorem.
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Theorem 2. Let H1
n be the length of the longest increasing subsequence in a uni-

formly random member of Sn. Then limn→∞H1
nn
− 1

2 = 2 in probability.

This result was famously refined in 1999 by Baik, Deift, and Johansson [1] who
related the limiting distribution of H1

n to the Tracy–Widom distribution.
Using coordinatewise monotonicity Bollobás and Winkler [3] extended Theorem

2 to show that the longest increasing subsequence among n independently random
points in [0, 1]

k is typically of length ckn
1
k for some ck ∈ (0, e). We show (Theorem

13) that the longest monotone subsequence of a typical k-dimensional permutation
of order n has length Θk

(
n

k
k+1

)
. A k-dimensional permutation can be viewed as a

set of nk points in [0, 1]
k, and it is interesting to note this asymptotic match with

Bollobás and Winkler’s result.

1. Definitions and Main Results

Note: Throughout the paper all asymptotic expressions are in terms of n→∞
and k fixed.

As discussed in [11] and [10], we equate a permutation with the corresponding
permutation matrix, i.e., an n×n (0, 1)-matrix in which each row or column (hence-
forth, line) contains a single 1. We correspondingly define an order-n k-dimensional
permutation as an [n] k+1 (0, 1)-array in which each line contains precisely one 1.
A line in an [n] k+1 array is comprised of all the positions obtained by fixing k
coordinates and varying the remaining coordinate. We denote the set of order-n
k-dimensional permutations by Lkn.

For a given A ∈ Lkn and α ∈ [n]
k, there is a unique t ∈ [n] s.t. A (α, t) = 1.

Since t is uniquely defined by α, we can write t = fA(α). The function fA has the
property that if we fix k − 1 coordinates and vary the remaining coordinate, the
result is a permutation of [n]. In fact, the mapping A 7→ fA is a bijection between
Lkn and the family of [n] k arrays in which every line is a permutation of [n]. In
dimension one this is exactly the identification between permutation matrices and
permutations. This shows in particular that two-dimensional permutations, i.e.,
members of L2

n, are order-n Latin squares.
We denote by GA the support of A ∈ Lkn, i.e., the set of α ∈ [n]

k+1 s.t. A (α) = 1.
The next definition generalizes monotonicity to higher dimensions.

Definition 3. A length-mmonotone subsequence inA ∈ Lkn is a sequence α1, α2, . . . , αm ∈
GA s.t. for every 1 ≤ j ≤ k + 1 the sequence α1

j , α
2
j , . . . , α

m
j is strictly monotone.

In dimension one this clearly coincides with the definition of a monotone subse-
quence in a permutation π ∈ Sn.

We are now ready to state a high-dimensional analogue of the Erdős–Szekeres
Theorem.

Theorem 4. Every member of Lkn contains a monotone subsequence of length
Ωk (
√
n). The bound is tight up to the implicit multiplicative constant: for ev-

ery n and k there exists some A ∈ Lkn s.t. every monotone subsequence in A has
length Ok (

√
n).

The next theorem is a high dimensional analogue of Theorem 2.
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Theorem 5. Let Hk
n be the length of the longest monotone subsequence in a uni-

formly random element of Lkn. Then E
[
Hk
n

]
= Θk

(
n

k
k+1

)
and Hk

n = Θk

(
n

k
k+1

)
a.a.s.

Remark 6. Aside from strong monotonicity as in definition 3 it is interesting to
consider weak monotonicity. A sequence of pairwise distinct α1, α2, . . . , αm in [n]k+1

is called weakly monotone if it is weakly monotone in every coordinate. In the spirit
of the Hales–Jewett Theorem one may also consider the case where every coordinate
is either strictly monotone or constant.

We strive throughout to deal with the harder of the two cases, namely prove
large lower bounds for strongly monotone subsequences and small upper bounds
for the weakly monotone case. The one exception is that the proof of the upper
bound in Theorem 4, applies only to the strongly monotone case. It remains an in-
teresting open problem to determine the correct upper bound for weakly monotone
subsequences.

Remark 7. Note the following symmetries of high-dimensional permutations:

(1) Sk+1 acts on Lkn by permuting the coordinates.
(2) For each 1 ≤ i ≤ k + 1, the group Sn acts on Lkn by permuting the values

of the i-th coordinate of each A ∈ Lkn. Actions on different coordinates
commute, and so this defines an Sk+1

n -action on Lkn.
(3) A special case of (2), is reversal, i.e. applying the map a 7→ n + 1 − a on

the i-th coordinate.
Note that actions (1) and (3) preserve monotonicity.

2. A High-Dimensional Analogue of the Erdős–Szekeres Theorem

We begin by proving Theorem 4. Due to the Erdős–Szekeres Theorem it suffices
to consider the case k ≥ 2.

We define two partial orders on [n]
k+1: Let α, β ∈ [n]

k+1. We write α <1 β if
for all 1 ≤ i ≤ k + 1, αi < βi, and we write α <2 β if for all 1 ≤ i ≤ k, αi < βi and
αk+1 > βk+1. For α, β ∈ [n]

k we write α < β if for all 1 ≤ i ≤ k, αi < βi.
Recall that the height h (P ) of a poset P is the size of the largest chain in P

and its width w (P ) is the size of its largest anti-chain. The next lemma is an easy
consequence of Dilworth’s Theorem [4] or Mirsky’s Theorem [13].

Lemma 8. For every finite poset P there holds h (P ) · w (P ) ≥ |P |.

We use Lemma 8 to show that if A has no long monotone subsequences, then
there is a large S ⊆ GA that is an anti-chain in both <1 and <2. On the other
hand, the next two lemmas give an upper bound on the size of anti-chains common
to <1 and <2. This yields the theorem.

Lemma 9. Let X be an M × N matrix in which every two entries in the same
column are distinct. Let S be a set of positions in X such that Xa = Xb for every
a, b ∈ S with a to the left and above b. Then |S| ≤M + 2N .

Proof. If either M = 1 or N = 1, this is obvious. We prove the claim inductively
by showing that either S has at most two positions in the rightmost column of X
or at most one element in the topmost row of X. Indeed, if S has at least three
entries in the rightmost column, then at least two of them, say a and b, are not
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in the top row. But there are no repetitions in the same column, so Xa 6= Xb. It
follows that the only element S may have in the top row is at the top-right corner,
for any other such element must equal both Xa and Xb, which is impossible. �

We are now ready to prove Theorem 4.

Proof. For the lower bound, let A ∈ Lkn and consider the n×n matrix X defined by
Xa,b = fA (a, b, b, . . . , b). We define two partial orders on [n]

2: Let α, β ∈ [n]
2. We

write α <1 β if αi < βi, i = 1, 2 and Xα < Xβ . We write α <2 β if αi < βi, i = 1, 2
and Xα > Xβ . Clearly, a sequence α1 <1 α2 <1 . . . <1 αm corresponds to a
monotone subsequence in A, and similarly for <2.

Assume that [n]
2 contains no <1-monotone subsequences of length r =

⌊√
n
3

⌋
.

By Lemma 8 there is an <1-anti-chain S1 ⊆ [n]
2 of size at least n2

r . Order S1 by <2

and let S ⊆ S1 be an anti-chain. S is an anti-chain w.r.t. both <1 and <2, hence
if α ∈ S is above and to the left of β ∈ S we have Xα = Xβ . Every column in X is
a permutation of [n], so X and S satisfy the conditions of Lemma 9 and therefore
|S| ≤ 3n. This is true for every anti-chain in S1 and so w (S1) ≤ 3n. Applying
Lemma 8 again we conclude: h (S1) ≥ |S1|

w(S1)
≥ n2

3nr ≥ r =
⌊√

n
3

⌋
. The height of

S1 is realized by a monotone subsequence of length h (S1) in A, yielding the lower
bound.

For the second part of the theorem, for every n and k we construct A ∈ Lkn
with all monotone subsequences having length O (

√
n). We first assume n is

prime, and use a simple construction similar to one that shows the tightness of
the Erdős–Szekeres Theorem. We later modify the construction to deal with com-
posite n. Assuming n is prime, let M =

⌊√
n
k+1

⌋
, and define A as follows:

A (α1, α2, . . . , αk+1) = 1 ⇐⇒ M

k∑
i=1

αi + αk+1 = 0 (modn)

Since n is prime it follows easily that A is a k-dimensional permutation.
We’ll show that if α, β ∈ GA differ in every coordinate then ‖α− β‖1 ≥M . This

is sufficient, since if α1, α2, . . . , αm ∈ GA is a monotone subsequence, then for every
1 ≤ j < m, αj , αj+1 differ on every coordinate and soM (m− 1) ≤

∑m−1
j=1

∥∥αj+1 − αj
∥∥
1
.

On the other hand, by monotonicity we have
∑m−1
j=1

∥∥αj+1 − αj
∥∥
1

=
∥∥αm − α1

∥∥
1
≤ (k + 1)n.

It follows that m ≤
√

(k + 1)n+ 1 = O (
√
n).

Assume α, β ∈ GA differ in every coordinate. We have:

M

k∑
i=1

(αi − βi) + (αk+1 − βk+1) = 0 (modn)

Now Mx + y = 0 (modn) implies either |y| ≥ M, |x| ≥ n
M − 1 ≥ M or x = y = 0.

Setting x =
∑k
i=1 (αi − βi) and y = (αk+1 − βk+1), we have by assumption y 6= 0

and so ‖α− β‖1 ≥ |x|+ |y| ≥M .
In this construction we need M and n to be relatively prime. For composite n

this isn’t necessarily the case, and we offer two remedies: The first is an appeal
to number theory to produce M ≈

√
n
k+1 coprime to n. It is known [2] that for

large x, there is always a prime in the interval
[
x− x0.525, x

]
. Therefore, we can
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find three distinct primes in an interval
[√

n
k+1 , (1 + o (1))

√
n
k+1

]
. At least one of

these must be coprime to n, since their product exceeds n for large n. This implies
that all monotone subsequences have length ≤ (2 + o (1))

√
(k + 1)n.

The second approach is easy to generalize, as done in the proof of Theorem 12.
Take M =

⌊√
n
k+1

⌋
as before. Let g = gcd (M,n) and define the permutation

π ∈ Sn as follows (all values are taken modulo n):

π =

(
M, 2M, . . . ,

n

g
M, 1 +M, . . . , 1 +

n

g
M, . . . , g − 1 +M, . . . , g − 1 +

n

g
M

)
Set fA (α1, α2, . . . , αk) = −π

(∑k
i=1 αi

)
. Note that if gcd (M,n) = 1, this coincides

with the construction above. As before, we show that if α, β ∈ GA differ on all
coordinates then ‖α− β‖1 ≥M , which is enough.

Assume α, β ∈ GA differ on all coordinates. We then have:

M

k∑
i=1

(αi − βi) + (αk+1 − βk+1) = r (modn)

for some |r| < g ≤ M . If r = 0 we have the same situation as before and we
may conclude ‖α− β‖1 ≥ M . Otherwise, by definition of π, we must have either
‖α− β‖1 ≥

∣∣∣∑k
i=1 (αi − βi)

∣∣∣ ≥ n
g −1 ≥ n

M −1 ≥M or else |αk+1 − βk+1| ≥M . �

Most proofs of Theorem 1 actually yield the following, more general, statement.

Theorem 10. Let r, s and n be positive integers with rs < n. Then every permuta-
tion in Sn contains either an increasing subsequence of length r+1, or a decreasing
subsequence of length s+ 1. The bound is tight: if rs ≥ n then there is a permuta-
tion in Sn with neither an increasing subsequence of length r + 1 nor a decreasing
subsequence of length s+ 1.

It is possible to extend Theorem 4 in a similar fashion. To this end we refine our
notion of monotonicity. In dimension one we distinguish between ascending and
descending subsequences, and we need something similar in higher dimensions.

Definition 11. A vector ~c ∈ {0, 1}k+1 induces a partial order x <~c y on Rk+1 as
follows: x <~c y if for every 1 ≤ i ≤ k+ 1 s.t. ci = 1, xi < yi, and yi < xi otherwise.

Theorem 12. Let ~c, ~d ∈ {0, 1}k+1 differ in exactly one coordinate. Let rs < n
3(k−1) .

Then every A ∈ Lkn, contains either a <~c-monotone subsequence of length r or a
<~d-monotone subsequence of length s.

The bound is tight up to the multiplicative constants: If r, s ≥ 9 (k + 10) and
rs > 5kn, then there exists A ∈ Lkn with neither a <~c-monotone subsequence of
length r nor a <~d-monotone subsequence of length s.

Proof. Using the symmetries from Remark 7 we may assume w.l.o.g. that ~c =

(1, 1, . . . , 1) and ~d = (1, 1, . . . , 1, 0).
The proof of the lower bound is similar to the proof of the lower bound in

Theorem 4, and we provide only a sketch. As in the proof of Theorem 4, consider
the matrix X and the partial orders <1, <2. Lemma 9 gives an upper bound of 3n
on the size of any anti-chain under both <1 and <2. Two applications of Lemma 8
yield the lower bound.
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For the upper bound, assume w.l.o.g. that r ≥ s. We construct π ∈ Sn and
A ∈ Lkn as before, with M =

⌊
s
2k

⌋
. Let α1, α2, . . . , αm ∈ GA be a <~c-monotone

subsequence. Then the sequence is increasing in every coordinate. For all j, if
αj+1
k+1 − α

j
k < M then

∑k
i=1

(
αj+1
i − αji

)
≥ n

g ≥
n
M . Thus

m ≤ n

M
+
kn
n
M

+ 1 =
n

M
+ kM + 1 ≤ 2kn

s

(
1 +

2k

s

)
+
s

2
+ 1

Using the assumptions that r
5k >

n
s and r ≥ s ≥ 9 (k + 10), we have:

m ≤ r
(

2

5

(
1 +

2

9

)
+

1

2
+

1

r

)
≤ r

Now, let α1, α2, . . . , αm ∈ GA be a <~d-monotone subsequence. For 1 ≤ j ≤ m

define sj = M
∑k
i=1 α

j
i . This is an increasing sequence, and sj+1 − sj ≥ M for

all j. By definition of A, αjk+1 = sj (modn) + rj for some 0 ≤ rj < M . Because
α1
k+1, α

2
k+1, . . . , α

m
k+1 is decreasing, if for some j, sj and sj+1 fall in the same interval

of the form [dn+ 1, (d+ 1)n] (for d ∈ Z), then sj + rj > sj+1 =⇒ sj+1 − sj <
rj < M , a contradiction. Therefore the sj ’s fall into distinct intervals of the form
[dn+ 1, (d+ 1)n]. But for every j, 0 < sj ≤ Mkn. Since [0,Mkn] contains only⌈
Mkn
n

⌉
≤Mk + 1 intervals of length n, we have m ≤Mk + 1 ≤ s

2 + 1 < s. �

3. Monotone Subsequences in Random High-Dimensional Permutations

As mentioned in the introduction, the longest monotone subsequence of a random
permutation is typically of length 2

√
n. In view of the Erdős–Szekres Theorem this

means that the random case and the worst case are of the same order of magnitude
and differ by only a constant factor. In higher dimensions this is no longer the
case. The longest monotone subsequence of a typical element in Lkn has length
Θk

(
n

k
k+1

)
.

We define the random variable Hk
n - the length of the longest monotone subse-

quence in a uniformly random element of Lkn, and prove the next theorem.

Theorem 13. For every k ∈ N:

(1) For every ε > 0, Hk
nn
− k

k+1 ∈
[

1
k+1 , e+ ε

]
asymptotically almost surely.

(2) 1− ln k+1
k+1 − ok (1) ≤ E

[
Hk
nn
− k

k+1

]
≤ e+ ok (1).

There are 2k+1 distinct order types of monotone subsequences, indexed by bi-
nary vectors ~c ∈ {0, 1}k+1. By reversing some of the coordinates (operation 3 in
Remark 7) we see that the distribution of the longest <~c-monotone subsequence in
a random element of Lkn is independent of ~c. Thus it suffices to prove Theorem 13
for <(1,1,...,1)-monotone subsequences. For brevity of notation we write < in place
of <(1,1,...,1).

The following lemmas are useful in dealing with uniformly random elements of
Lkn.

Lemma 14. Given A ∈ Lkn and π = (π1, π2, . . . , πk+1) ∈ Sk+1
n , let π (A) ∈ Lkn be

the k-dimensional permutation given by

π (A) (x1, x2, . . . , xk+1) = A (π1 (x1) , π2 (x2) , . . . , πk+1 (xk+1))
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(equivalently, π (A) is obtained by permuting the ith coordinate of GA according to
π−1i ). If A is chosen uniformly at random from Lkn and π is independently chosen
from any distribution on Sk+1

n , then π (A) is uniformly distributed in Lkn.

Proof. This follows immediately from the fact that Sk+1
n acts on Lkn in the way

described. �

Lemma 15. Let α1, α2, . . . , αm ∈ [n]
k+1 be a weakly monotone sequence of posi-

tions. For a uniformly drawn A ∈ Lkn,

P
[
A
(
α1
)

= A
(
α2
)

= . . . = A (αm) = 1
]
≤ (n−m)!

n!

Proof. Assume w.l.o.g. that the sequence is weakly monotone according to <.
We define a distribution D on Sk+1

n s.t. if π ∼ D and A is drawn independently
and uniformly from Lkn, then P

[
π (A)

(
α1
)

= π (A)
(
α2
)

= . . . = π (A) (αm) = 1
]
≤

(n−m)!
n! . The conclusion follows from Lemma 14.
In order to define D we construct distributions D1,D2, . . . ,Dm on Sk+1

n , and we
let π = πmπm−1 · . . . · π1 where for each i, πi is drawn independently from Di . We
then define π (A) via

A→ A1 = π1 (A)→ A2 = π2 (A1)→ . . .→ Am = πm (Am−1) = π (A)

We’ll define the distributions Di s.t. the following properties hold:
• For all 1 ≤ i < j ≤ m, Aj

(
αi
)

= Ai
(
αi
)
, so the value at position αi

remains fixed from stage i onward.
• For 1 ≤ i ≤ m, P

[
Ai
(
α1
)

= Ai
(
α2
)

= . . . = Ai
(
αi
)

= 1
]
≤ (n−i)!

n! .

Let D1 be uniformly distributed on Sn×{I}k, where I ∈ Sn is the identity element.
There is a unique x s.t. A

(
x, α1

2, . . . , α
1
k+1

)
= 1, and therefore P

[
A1

(
α1
)

= 1
]

=

P
[
A
(
π1
(
α1
1

)
, α1

2, . . . , α
1
k+1

)
= 1
]

= P
[
π1
(
α1
1

)
= x

]
= 1

n .
Now suppose that D1,D2, . . . ,Di are already defined and have the properties

above. The sequence α1, α2, . . . , αm is weakly increasing so there exists some coor-
dinate 1 ≤ j ≤ k+1 s.t. αij < αi+1

j . Let T ⊆ Sn be the set of permutations that fix{
α1
j , α

2
j , . . . , α

i
j

}
, and let Di+1 be the uniform distribution on {I}j−1×T×{I}k+1−j .

We write πi+1 = (I, . . . , I, τ, I, . . . , I) and verify the properties above:
• For 1 ≤ ` ≤ i, by definitionAi+1

(
α`
)

= Ai
(
α`1, . . . , α

`
j−1, τ

(
α`j
)
, α`j+1, . . . , α

`
k+1

)
.

But τ fixes α`j , so Ai+1

(
α`
)

= Ai
(
α`
)

= A`
(
α`
)
where the last equality

follows by induction.
• We have:

P
[
Ai
(
α1
)

= Ai
(
α2
)

= . . . = Ai+1

(
αi+1

)
= 1
]

= P
[
Ai+1

(
αi+1

)
= 1|Ai+1

(
α1
)

= Ai+1

(
α2
)

= . . . = Ai+1

(
αi
)

= 1
]
×

×P
[
Ai+1

(
α1
)

= Ai+1

(
α2
)

= . . . = Ai+1

(
αi
)

= 1
]

By the inductive assumption:

P
[
Ai+1

(
α1
)

= Ai+1

(
α2
)

= . . . = Ai+1

(
αi
)

= 1
]

= P
[
Ai
(
α1
)

= Ai
(
α2
)

= . . . = Ai
(
αi
)

= 1
]
≤ (n− i)!

n!
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Now, αji+1 /∈
{
αj1, α

j
2, . . . , α

j
i

}
, so that τ

(
αji+1

)
is distributed uniformly on

a set of cardinality≥ n−i, and is independent ofAi+1

(
α1
)
, Ai+1

(
α2
)
, . . . , Ai+1

(
αi
)
.

Thus:

P
[
Ai+1

(
αi+1

)
= 1|Ai+1

(
α1
)

= Ai+1

(
α2
)

= . . . = Ai+1

(
αi
)

= 1
]
≤ 1

n− i
We conclude:

P
[
Ai
(
α1
)

= Ai
(
α2
)

= . . . = Ai+1

(
αi+1

)
= 1
]
≤ 1

n− i
(n− i)!
n!

=
(n− (i+ 1))!

n!

as desired.
�

We first prove the upper bounds in Theorem 13.

Proposition 16.

(1) For every ε > 0 there holds P
[
Hk
nn
− k

k+1 > e+ ε
]

= o(1).

(2) E
[
Hk
n

]
n−

k
k+1 ≤ e+ o (1).

Proof. We bound the expected number of length-m (weakly) monotone subse-
quences in a random k-dimensional permutation. For every increasing sequence
of positions α = α1, α2, . . . , αm ∈ [n]

k+1 and A ∈ Lkn we define

Xα (A) =

{
1 A

(
α1
)

= A
(
α2
)

= . . . = A (αm)

0 otherwise

By Lemma 15 E [Xα (A)] = P [Xα (A) = 1] ≤ (n−m)!
n! for a uniform A ∈ Lkn. Let

S be the set of all length-m increasing sequences of positions in [n]
k. Clearly,

|S| ≤
(
n+m− 1

m

)k+1

so by linearity of expectation:

P
[
Hk
n ≥ m

]
= P

[∑
α∈S

Xα (A) > 0

]
≤ E

[∑
α∈S

Xα (A)

]

≤
(
n+m− 1

m

)k+1
(n−m)!

n!
≤
(
e (n+m)

m

)(k+1)m
1

(n−m)
m

Let c = e+ ε for some ε > 0, and let m =
⌈
cn

k
k+1

⌉
. Then:

P
[
Hk
nn
− k

k+1 > c
]

= P
[
Hk
n ≥ m

]
≤
(

(1 + o (1)) ek+1 nk

mk+1

)m

≤
(

(1 + o (1))
e

c

)(k+1)cn
k

k+1

= o(1)

proving the first claim in the proposition. Further:

E
[
Hk
n

]
n−

k
k+1 ≤

(
mP

[
Hk
n < m

]
+ nP

[
Hk
n ≥ m

])
n−

k
k+1

≤ c+ n
1

k+1

(e
c

)(k+1)cn
k

k+1

+ o (1) = c+ o(1)

which proves the second claim. �
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The proof of the lower bounds is more intricate. Fix some C > 0 and let
m =

⌈
Cn

1
k+1

⌉
. For 1 ≤ i ≤

⌊
n
m

⌋
, let Di = [(i− 1)m+ 1, im]

k+1 be the diagonal

subcubes of [n]
k+1. For a uniformly random A ∈ Lkn let Zi be the indicator random

variable of the event that A is not all zero on Di. Clearly, Hk
n ≥

∑
1≤i≤ n

m
Zi,

since α < β if α ∈ Di, β ∈ Dj , and i < j. Indeed we prove lower bounds on Hk
n

by bounding
∑

1≤i≤ n
m
Zi. It is convenient to express everything in terms of the

random variable Yn = n−
k

k+1
∑

1≤i≤ n
m
Zi. We show that for an appropriate choice

of C (see below) Yn converges in probability to a constant in (0, 1). These are our
main steps:

(1) Note that Yn ≤ 1
C + o (1) (trivially).

(2) Prove that E [Yn] ≥ Ck

Ck+1+1
− o (1) (Proposition 18).

(3) Show that if C < 1, then P
[
Yn > Ck+1 + ε

]
= o (1) for every ε > 0 (Corol-

lary 21).
(4) By letting 1 > C > 0 be the unique solution to Ck

1+Ck+1 = Ck+1, conclude
that P

[
Yn < Ck+1 − ε

]
= o (1) for every ε > 0 (Proposition 22). Hence

limn→∞ Yn = Ck+1 in probability.

In step 1 we assume only that C > 0. The claim in step 2 applies to all C > 0, and
we optimize the bound on E [Yn] by a particular choice of C. Step 3 applies to all
1 > C > 0. Finally in step 4 we assign a value to C to derive the conclusion that
Yn converges in probability to Ck+1.

We start with step 2, a lower bound on E [Yn]:

Lemma 17. For 1 ≤ i ≤ n
m , P [Zi = 1] ≥ Ck+1

Ck+1+1
− o (1).

Proof. Let Xi =
∑
α∈Di

A (α) be the number of non-zero entries in Di. Note that
Xi > 0 ⇐⇒ Zi = 1. We prove a lower bound on the probability of this event by
a second moment argument.

Clearly, E [Xi] = |Di|
n = Ck+1 + o (1), since P [A (α) = 1] = 1

n for every α ∈
[n]

k+1.
We next seek an upper bound on E

[
X2
i

]
.

E
[
X2
i

]
=

∑
α,β∈Di

E [A (α)A (β)] =
∑

α,β∈Di

P [A (α)A (β) = 1]

There are mk+1 terms with α = β, each being 1
n . For α 6= β, Lemma 15 gives

P [A (α)A (β) = 1] ≤ 1
n(n−1) . There are fewer than m2(k+1) such pairs α, β ∈ Di,

so

E
[
X2
i

]
=

∑
α,β∈Di

P [A (α)A (β) = 1] ≤ mk+1

(
1

n
+

mk+1

n (n− 1)

)
=
mk+1

n

(
1 +

mk+1

n− 1

)

Noting that E [Xi] = mk+1

n = Ck+1 + o (1), we have:

E
[
X2
i

]
≤ E [Xi]

(
1 +

n

n− 1
E [Xi]

)
= Ck+1

(
1 +

n

n− 1
Ck+1

)
+ o (1)
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The second moment method yields:

P [Zi = 1] = P [Xi > 0] ≥ E [Xi]
2

E [X2
i ]

=
Ck+1

Ck+1 + 1 + o (1)
≥ Ck+1

Ck+1 + 1
− o (1)

�

Proposition 18.
E [Yn] ≥ Ck

Ck+1+1
− o (1), consequently E

[
n−

k
k+1Hk

n

]
≥ 1− ln k+1

k+1 − o(1).

Proof. As observed earlier:

E [Yn] = E

n− k
k+1

∑
1≤i≤ n

m

Zi

 = n−
k

k+1

⌊ n
m

⌋
P [Zi = 1]

So, by Lemma 17:

E [Yn] ≥ Ck

Ck+1 + 1
− o (1)

For all C, E
[
n−

k
k+1Hk

n

]
≥ E [Yn]. The optimal bound is attained when C = k

1
k+1 ,

yielding:

E
[
n−

k
k+1Hk

n

]
≥ k

k
k+1

k + 1
− o (1) ≥ 1− ln k + 1

k + 1
− o (1)

�

To prove the lower bound in Theorem 13 part (1), we apply a Chernoff bound
to the events {Zi = 1}1≤i≤ n

m
. To overcome the dependencies among these events

we utilize the following version of the Chernoff inequality from [7] (Theorem 1.1).

Theorem 19. Let 0 ≤ α ≤ β ≤ 1 and let {Xi}i∈[N ] be Boolean random variables
such that for all S ⊆ [N ], P

[∏
i∈X Xi = 1

]
≤ α|S|. Then

P
[∑

i∈[N ]Xi ≥ βN
]
≤ e−ND(β‖α), where D (β ‖ α) = β ln

(
β
α

)
+ (1− β) ln

(
1−β
1−α

)
is the relative entropy function.

Lemma 20. Assume C < 1. Let S ⊆
{

1, 2, . . . ,
⌊
n
m

⌋}
. Then P

[∏
i∈S Zi = 1

]
≤ α|S|

for all Ck+1 < α < 1 and large enough n.

Proof. Note that Zi = 1 for all i ∈ S iff there exist positions
{
βi
}
i∈S s.t. βi ∈ Di

for all i ∈ S and Aβi = 1 for all i. We bound the probability of this occurrence
using a union bound.

Let
{
βi
}
i∈S be positions s.t. βi ∈ Di for all i ∈ S. If the indices in S are taken in

order this is a monotone subsequence, and so by Lemma 15 P
[
∧i∈SA

(
βi
)

= 1
]
≤

(n−|S|)!
n! . There are m(k+1)|S| such coordinate sequences, and so, by a union bound:

P

[∏
i∈S

Zi = 1

]
≤ m(k+1)|S| (n− |S|)!

n!
≤
(
mk+1

n− |S|

)|S|
We have: |S| ≤ n

m = 1
Cn

k
k+1 + o (1). Thus:

P

[∏
i∈S

Zi = 1

]
≤

(
(1 + o (1))

Ck+1n

n− 1
Cn

k
k+1

)|S|
=
(
(1 + o (1))Ck+1

)|S|
and the result follows. �
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Lemma 20 allows us to apply Theorem 19 to the variables {Zi}1≤i≤ n
m

to obtain
the next corollary.

Corollary 21. For all β > Ck+1, for large enough n it holds:

P [Yn > β] ≤ exp
(
−n

k
k+1 γ

)
for some γ > 0.

We are now ready to complete the proof of Theorem 13.

Proposition 22. Let 1 > C > 0 be the unique solution to the equation C
(
1 + Ck+1

)
= 1.

Then P
[
Yn <

1
k+2

]
= o (1).

Proof. By Proposition 18

(3.1) E [Yn] ≥ Ck

Ck+1 + 1
− o (1) = Ck+1 − o (1)

For an integer n and 0 < x < Ck+1, let pn = P [Yn ≤ x]. Since Yn ≤ 1
C + o(1)

for every ε > 0:

(3.2) E [Yn] ≤ pnx+ (1− pn)
(
Ck+1 + ε

)
+

(
1

C
+ o (1)

)
P
[
Yn ≥ Ck+1 + ε

]
Corollary 21 yields:

P
[
Yn ≥ Ck+1 + ε

]
= o (1)

Combining inequalities 3.1 and 3.2 and rearranging:

pn
(
Ck+1 − x

)
≤ ε (1− pn) + o (1)

But this holds for all ε > 0, so that limn→∞ pn = 0.
The result follows by taking x = 1

k+1 < Ck+1. �

4. Concluding Remarks and Open Problems

• As mentioned in section 1, we do not know what the analogous statement
of Theorem 4 is for weakly monotone subsequences.

• What are the best constant factors in Theorems 4 and 12? For the sake
of clarity we have neglected to optimize the constants, and our bounds
can certainly be somewhat improved with some additional effort. However,
we suspect that getting the correct bounds would require some new ideas.
While we find the correct exponent of n in the problems addressed here,
we are still unable to determine the dependency of the relevant coefficients
on the dimension k. Perhaps the most pressing question of this sort is to
derive a sharp result on the existence of long monotone subsequences in
Latin squares.

• For A ∈ Lkn and ~c ∈ {0, 1}k+1, let `~c (A) be the length of the longest
<~c-monotone subsequence in A. Let ` (A) = (`~c (A))~c∈{0,1}k+1 . We seek
a better description of the set `kn =

{
` (A) : A ∈ Lkn

}
. By Theorem 4 we

know that minx∈`kn ‖x‖∞ = Θ (
√
n). Theorem 12 gives fairly tight suffi-

cient conditions under which we can conclude that x~c ≥ r ∨ x~d ≥ s for
~c, ~d ∈ {0, 1}k+1 that differ in precisely one coordinate.
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• The proof of Theorem 13 uses only a very limited amount of randomness.
Recall that Lkn splits into isotopy classes where permutations are reach-
able from each other by applications of symmetries (2) in Remark 7. That
theorem applies even when the high-dimensional permutation is drawn uni-
formly from a particular isotopy class, rather than from all of Lkn. Beyond
the randomness inherent in these symmetries, we have little insight con-
cerning the structure of random high-dimensional permutations. In our
view, it’s a major challenge in this field to understand (fully) random high-
dimensional permutations. In particular, we do not know how to uniformly
sample elements of Lkn. Even for Latin squares, the best known method
is Jacobson and Matthews’ Markov chain [8], which is not known to be
rapidly mixing.

• We believe Theorem 13 can be strengthened, and there exist constants
ck s.t. Hk

nn
− k

k+1 → ck in probability. This is borne out by numerical
experiments, which indicate that H2

nn
− 2

3 is concentrated in a small interval.
We do not know how to prove this, but perhaps an approach based on
super-additive ergodic theorems à la Hammersley [6] may apply. If these
constants ck do, in fact, exist, their dependence on k is of interest. We note
that analogous results for random points in [0, 1]

k are known [3].

Acknowledgments. The authors wish to thank the anonymous referee for her
thorough review and insightful comments.
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