Dan Mangoubi
Einstein Institute of Mathematics,
Edmond J. Safra campus,
The Hebrew University,
Jerusalem 9190401,
Israel
Email: firstname.lastname AT mail.huji.ac.il
Tel: +972-2-6584145
Fax: +972-2-5630702
Research Interests
Spectral Geometry, Geometry of Eigenfunctions, Harmonic functions - continuous and discrete, Analysis & PDEs.
Papers published or accepted
(with A. Weller-Weiser)
Harmonic functions vanishing on a cone,
Israel J. Math., to appear,
arxiv:1703.09905
.
(with
G. Lippner
)
On the sharpness of a three circles theorem for discrete harmonic functions,
Int. Math. Res. Not. IMRN 2017
, no. 5, 1487-1503,
arXiv:1512.03732
.
(with
G. Lippner
)
Harmonic functions on the lattice: Absolute monotonicity and propagation of smallness,
Duke Math. J.
164
(2015), no. 13, 2577-2595
,
arXiv:1312.4550
.
(with F. Bauer, P. Horn, Y. Lin, G. Lippner, S.-T. Yau)
Li-Yau inequality on graphs,
J. Differential Geom.
99
(2015), no. 3, 359-405
,
arXiv:1306.2561
.
A gradient estimate for harmonic functions sharing the same zeros,
Electron. Res. Announc. Math. Sci.
21
(2014), 62-71
,
arXiv:1306.0565
.
The effect of curvature on convexity properties of harmonic functions and eigenfunctions,
J. Lond. Math. Soc.
87
(2013), no. 3, 645-662
,
arXiv:1112.4352
.
A remark on recent lower bounds for nodal sets,
Comm. Partial Differential Equations
36
(2011), no. 12, 2208-2212
,
arXiv:1010.4579
.
(with Y. Lin, G. Lippner and S.-T. Yau)
Nodal geometry of graphs on surfaces,
Discrete Contin. Dyn. Syst. Ser. A
28
(2010), no. 3, 1291-1298
,
arXiv:1307.3226
.
The volume of a local nodal domain,
J. Topol. Anal.
2
(2010), no. 2, 259-275
,
arXiv:0806.3327
.
(with
D. Jakobson
)
Tubular neighborhoods of nodal sets and Diophantine approximation,
Amer. J. Math.
131
(2009), no. 4, 1109-1135
,
arXiv:0707.4045
.
Local asymmetry and the inner radius of nodal domains,
Comm. Partial Differential Equations
33
(2008), no. 9, 1611-1621
,
arXiv:math/0703663
.
On the inner radius of a nodal domain,
Canad. Math. Bull.
51
(2008), no. 2, 249-260,
arXiv:math/0511329
.
Spectral flexibility of symplectic manifolds T
^{2}
x M,
Math. Ann.
341
(2008), no. 1, 1-13
,
arXiv:math/0508128
.
Conformal extension of metrics of negative curvature,
J. Anal. Math.
91
(2003), 193-209,
arXiv:math/0202249
.
Thesis
On the Geometry of the Laplace-Beltrami Operator,
Ph.D. Thesis (Technion, 2006) under the direction of
Leonid Polterovich
and
Michael Entov
.
Riemann Surfaces and 3-regular Graphs,
M.Sc. Thesis (Technion, 2001) under the direction of
Robert Brooks
,
arXiv:math/0202156
.