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ESTIMATING THE CHARACTERISTIC EXPONENTS OF POLYNOMIALS

A. E. Eremenko and G. M. Levin

1. We consider a polynomial f of degree d > 2, and we denote its n-th iteration by f". The results of the theory
of iterations that are used in the present article may be found in [1, 2].

A root of the equation f®z = z is called a periodic point (with period n). The quantity x(z) = % log|(f™)'(z)| is
the characteristic exponent of this point. When the Julia set of the polynomial f is connected, we have

x(2) < 2logd, (1.1)

for any periodic point z, and this bound is sharp only when the Julia set is a line segment with z for its end [3]. In
the present paper we obtain an upper bound for x(z) for arbitrary polynomials, as well as a lower bound for x(z) for
the case in which the Julia set is totally disconnected.

We set

w(2) = Jim, 7log* (2) (12)

This limit exists and is a subharmonic function in C ([4] is a standard reference for the theory of subharmonic
functions). The function uy is nonnegative and continuous on C. It is harmonic and positive in the domain D = {z:
f"z = 00, n — oo}, and uy(z) =0 in C\ D = K. We have the functional equation

ug o f = duy. (1.3)

The Riesz measure p; of the function uy is concentrated in the Juliaset J = D = 8K. This is the only probability
measure in C that has the following property: For any Borel set E C C on which the function f is univalent, we have

dpy(E) = ps (fE). (1.4)

The measure py is called the equilibrium measure or the measure of maximum entropy.
Let c1,¢a, .. .,cd—1 be all of the critical points (with zero derivative) of the polynomial f. We set

a =max{u(c;):1 < j<d-1}, (1.5)

b = min{u(c;): 1< j<d-1}. (1.6)

The numbers a and b are natural parameters characterizing the degree of disconnection of the Julia set: a =0 if and
only if J is connected; on the other hand, J is a Cantor set (totally disconnected) if b > 0. We should also note the
connection between the number a and mean of the characteristic exponent

xs = [[1og171duy.

We have
d-1

X5 = logd + Zuj(cj),

j=1

so a < xy —logd < (d - 1)a. In particular, x; = logd if and only if a = 0, i.e., J is connected.
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Theorem 1.1. If f(z) = z° 4+ ¢, c € C, then
x(z) < (d—1)a+2logd < 2x; (1.7)

for any periodic point z.

Let u be a subharmonic function, let 4 be its Riesz measure, and let zo be some point at which u(zg) = 0. We set
" dt
n(r,u,20) = p({z: |z = 20| < 7}), N(r,u,v0) =/ n(t,u, u,) =+
0
Because u(z9) = 0, the Jensen formula yields
1 2x .
N(r,u,z0) = —/ u(zo + re'?) do.
2 0

We define the order of the measure p at the point zo as follows:

o=lim log N(r,u, z0) = fii logn(r,u,zo).
rw0  logr rs0  logr

It is easy to see that the order of the measure y is the same as the quantity
p(u, z0) = lim(log moaxu(zo +re'®))/ logr,
r—0

so it can also be called the order of the function u at the point zo.
Theorem 1.2. For any polynomial f and any point 2o € J(f) we have

1 ad
plug,20) > ~arcctg =,

where the number a is given by formula (1.5).

Corollary 1.3. For any periodic point we have

wlogd
< —. 1.8
x(z) < arcctg “{- (1.8)
If ¢ = 0, then (1.7) and (1.8) become precisely bound (1.1). For small a we have
mlogd 4adlogd
m:?logd+ ”2 +O(G), a—)O

Thus, for d < 8 and small a inequality (1.8) provides a stronger result than Theorem 1.1.
For an arbitrary point zo € J we define the (upper) characterstic exponent according to the formula

X(z0) = T ~log (/") (20l

Recall that a polynomial is said to be hyperbolic if the trajectories of all of its critical points are attracted to
attracting cycles.

Corollary 1.4. If f is a hyperbolic polynomial, then (1.8) is satisfied for any point z € J (f)-

The proof of Theorem 1.2 uses the following result from the theory of subharmonic functions; this result is also of
independent interest. We set

A(r,u, 20) = ixolf u(zo + re'?).

Theorem 1.5. Let u be a subharmonic function in the neighborhood of a point zg, u(z0) = 0, and assume that the
order of the function u at the point zo is p. Then
m A(T, u, Zo)

> wctg mp.
,,_»on(r,u,zo) - grp

This theorem is overshadowed by the so-called cos mp inequalities of the theory of entire and subharmonic functions
(see, for example, [5-7]). Its proof is a modification of arguments of (6]

We now consider the case of a totally disconnected Julia set in which it is possible to obtain a uniform lower bound
for the characteristic exponent.
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Theorem 1.6. Let a and b be given by formulas (1.5) and (1.6), and assume that k is determined from the conditions
a < d*b < da. Then .
+ d*(d-2)b
xo) 2 > - (19)

for any periodic point z.
Corollary 1.7. The Hausdorff dimension of the Julia set satisfies the inequality

(d—1)*logd logd
HD() < STar@—2p S @- e

In §2 we will prove the following asymptotic expressions for ¢ = oo for the family of functions fc(z) = z294¢, ceC:

b -‘lzlog|c|+o(1), (1.10)
x() = L= loglel + (1), (L11)

for any periodic point z = zo. It then follows immediately that bounds (1.7) and (1.9) are asymptotically sharp when
¢ —= oo, while (1.8) in the case under consideration differs from sharp by the factor logd.

2. Proof of Theorem 1.1. We first prove (1.10) and (1.11). The polynomial f. has a unique critical point 0 of
multiplicity d — 1. Thus,

sinea B SR AN il — 1 .l e
ac = b = lim —log*|f7(0)| = 21<)g|c|+"Z:—12;‘-;1-1o@; 1+ IOy
When we let ¢ go to oo we obtain (1.10).
If z; = z is a periodic point with period n, then
=2 ,+c, i=2,...,m 7 =28 +ec. (2.1)

It follows that z; = 0o as ¢ — co. As a result,

f‘[l+c e s, o
28) (z21-...-29)9"} ! .

i=1 '

so the modulus of at least one factor (1+c/z;‘), j = j(c), is small. We now find from (2.1) that z;/z;_1 = 1, za/21 = 1,
80 |2i|? ~ |e], ¢ & 00, 1 <i < n. As a result,

n 1/n
Olmum) ~ Jef @174, ¢ oo,
=1

which proves (1.11).
We can now complete the proof of Theorem 1.
We have

M
ac = lim —log™ |f2(0)]

The function ¢ ~ a, is continuous [8) and subharmonic in C. It is equal to zero on the set M = {c: J(fc) is connected }.
The complement U = C\ M is connected (by the principle of the maximum), and the function a. is positive and
harmonic in U. Thus, da. is a Green’s function for the domain U with a pole at co.

Fix a natural number n. It is easy to see that

xn(c) = max{x(z): fi'z = z}

is a subharmonic function in C. In virtue of (1.1), we have xn(c) < 2logd on the set M, and in the neighborhood of
o0, by (1.10) and (1.11), we have xna(c) < (d — 1)ac + o(1).
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Application of the principle of harmonic majorants to the domain U yields xn(c) < 2logd + (d — 1)ac, i.e., (1.7).
3. Proof of Theorem 1.5. Without loss of generality, we assume that zp = 0. Furthermore, we assume that u

is a subbarmonic function in C and we have

u(z) = O(log|z|), z— o0

(3.1)

(any function that is subharmonic on a compactum of C can be continued in C with property (3.1)). The function (1.2),
to which we are preparing to apply Theorem 1.5, already has property (3.1). We obtain the following representation

from (3.1) and u(0) = 0:
u(z) = /log 1- é duc.

We set A(r,u) = A(r,u,0), n(r,u) = n(r,u,0), N(r,u) = N(r,u,0). Let

v(z) = /log 1- % de,

(3.2)

where v is a measure that is concentrated on a negative ray and has the computational function n(r,v) = n(r,u). It
follows from the inequality log|1 — |u|| < log |l — u| < log(1 + |u|), u € C, that A(r,u) > A(r,v) = v(~r). Itis

therefore sufficient to prove the theorem for the function v instead of u. We will need the following

Lemma 3.1 (on Polya peaks). Let ® be an increasing function, ®(0) = 0,

roo0 logr

Then there exist sequences rx —+ 0, €x — 0, such that

P
o(r) < <»(rk>(?r:) (L+e), en <r<epine.

(3.3).

If we substitute r — oo, rx — oo for r = 0, rx — 0 in (3.3) and reverse the inequality, we obtain a well-known
proposition that is frequently used in number theory and the theory of meromorphic functions of finite order (for the
proof, see, for example, [9]). Our formulation can be reduced to the standard statement by using the substitution

¥(r) = 1/®(1/r). Setting ®(r) = N(r,v) in the lemma, we obtain a sequence of Polya peaks rx — 0 such that

P
N(rv) < N(r;,,v)(;'i-) (1+ek), exrk <r<eg'ne

We now consecutively examine the subharmonic functions

_ v(rkz)
vk(z) = N(Tk,v).
It is obvious that
vk(2) = /log 1- -z— dvk,
where the measures v, are defined thus: ()
= Y\TkZ)
v (E) = N(rk,v)’
We have the relations
AT n(rrg,v)
y Uk) — N(rk,v) 1
N N(rrg,v)
N(?‘, vk) = N(rk,v) .

(3.4)

(3.7)

(3.8)

It now follows from the bound n(r, vk) < N(re,vx) and (3.4) that the measures v, are uniformly bounded on compacta.
Choosing a subsequence, we assume that v, — vo (convergence in the space conjugate to the space of continuous finite

functions).
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Then vk — wp, where wp(z) = [ log‘l - -Z-l dvg. The convergence vy — wp occurs in mean with respect to area in
each compactum in C, and also in mean with respect to the 1-measure on each compactum of R. We have

n(r,vg) = n(r,wo), N(r,vx) = N(r,wo). (3.9)
It follows from (3.4) and (3.8) that
N(r,wp) <r?, 0<r<oo, N(l,wg)=1 (3.10)
The theorem will be proved if we prove that
:(L_l(,:v% > mctg mp. (3.11)

For this we consider the auxilliary function

i0 2 [T ref
= log|l + —
wy(re’’) =p ./o og|l + : g

»
tr~ldt = ;prpcospe, 6| < w

(the equation follows from Jensen’s formula). We have

n(r,wy) = pr’, (3.12)
N(r,w) =r*, (3.13)
wy(=1) = wpctg mp. (3.14)

Note that the function N (r,wp) is convex with respect to logarithms. As a result, it follows from (3.10) that N (r,wo)
is differentiable at the point 1 and

_ da(r)
~ dlogr

= p. (3.15)

r=]

d
n(l, wo) = m—rN(T, wo)

r=1

We will now show that wo(—1) > w;(~1). Both of the functions wo and w; are harmonic in the plane cut along
a negative ray. We set

0
w;-(re“) = -1—/ wi(re®)dp, 0<f<m j=0,L
2r -
It is easy to see that the functions w} are harmonic in the upper halfplane (w] is a trivial special case of Baernstein’s
*_function; see, for example, [10, 11]).
We have wg(r) = wi(r) =0, r >0,
wy(—r) = N(r,wo) <r? = N(r,w) = wi(-r), r>0, (3.16)
in virtue of (3.10) and (3.13). It follows, by the Phragmen-Lindelof theorem, that
wy(z) < wi(z), Imz>0. (3.17)
Furthermore, in virtue of (3.10) and (3.13), we have w§(—1) = wj(—1), which, together with (3.17), yields

dwj (')

owy (e”)
a6 “

= 0

8=n f=n
. 16
But —“";"_L—w = Lyw;(-1), so wo(=1) > wy(-1) = mpctgmp, which, together with (3.15), yields (3.11).
The theorem is proved.
4. Proof of Theorem 1.2 and Corollaries 1.3 and 1.4. To prove Theorem 1.2 we consider two cases:
a) the point zp is contained in a connected Julia-set component with more than one point. Then A(r,u,z0) =0
for a subharmonic function u and sufficiently small r; by Theorem 1.5, we now have p > % > Larcctg "—"‘1;
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b) the point zq is a comnnected component of the Julia set J. We set Eg = {2: u(z) < a}. The set Ey is connected,
so a is the largest critical value of the function u. Let Ej be the connected component of the set f""(Eo) containing
the point zg. In other words, Ej is the connected component of the set {z: u(z) < ad~*} containing the point zo (see
(1.3)). It follows from (1.4) that

p(Ex) > d* (4.1)
(#(Eo) = 1, since supp g = J C Ey). Since zq is the connected component of the set J, we have
() Ex = {z}. (4.2)
k=0

Let D, be a circle with center at the point zo and radius r small enough for C, = 8D, to intersect Eq. Let k(r) be
the smallest natural number such that Ej(,) C D; (the existence of such a number is implied by (4.2)). It follows from
(4.1) that

B(Dy) > p(Ex(r)) 2 d7*. (4.3)
By the definition of the number k(r), the set Ex(r)-1 is not contained in D,. Since Ej(r)- is connected and contains

29, it must intersect C,, so
A(r,u, 20) < ad™F+1, (4.4)

It follows from (4.3) that n(r,u, 20) > d=*. Thus, for all sufficiently small r > 0,

A(r) u! ZO) <
n(r,u,z0) ~

ad.

Application of Theorem 1.5 finishes the proof of Theorem 1.2.
To prove the corollaries we will need

Proposition 4.1. Let zy € J(f), and use r,(2p) to denote the radius of the largest disk centered at f™ zo that contains
a univalent branch g, of the function f~" with the property gn(f"z0) = zo. We assume that

7‘(20) = ll_____m Tn(Zo) >0, (45)
n-+00
Then oy log d
P = X(z0)

(the upper characteristic exponent x(zo) for any point zo € J(f) is defined in §1).

Proof. The function g, is univalent in the disk {z: |z — f®z| < r(20)}. According to the “distortion the-
orem,” half the disk {z: |z = f"20| < }r(z0)} can be mapped onto an oval with bounded distortion E,, where

tn = diam E, X |(f*)'z0|~* (the symbol X indicates that a variable is bounded above and below by positive absolute
constants). By the definition of the characteristic exponent,

logt,
lim —2-2 = —x(z0).
n—co N
On the other hand,
p(Ep) xXd™",
___logprfE,.) — —logd.

It follows that
m logtn _ x(20)
n—00 |0g;t(En) logd '

Because the function n(t, u, zo) is monotonic and log p(En41) — log u(En) = O(1), it follows that

T log r _ x(zo0)
r=+0 logn(r,u,20) logd
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or

. logn(r,u,z) logd
,20) =1 - = .
P, 20) ;‘I_L,na logr x(z0)

We should note that condition (4.5) is satisfied in two cases:

a) f is an arbitrary polynomial and zg is a periodic point;

b) f is a hyperbolic polynomial and zo € J(f) is any point.

Thus, Corollaries 1.3 and 1.4 follow from Theorem 1.2 and Proposition 4.1.

5. Proof of Theorem 1.6 and Corollary 1.7.

We will use the method of extremal lengths [12], and we denote the modulus of a family of curves I' by M(T) =
A(T)~!, where X is the extremal length. An immediate consequence of the definition of modulus is

Lemma 5.1. Let T be a family of pairwise disjoint curves filling a domain U, and let g: U — g(U) be a holomorphic
mapping with two properties:

(i) if y1,92 €T, 11 # 72, them g(m1) N g(72) = B;

(ii) g: ¥ — g(7) is a covering of degree no greater than N.

Then M(T) > M(g(T'))/N.

We label the critical points c1,c¢2, ..., c4—1 of the polynomial f so that u; > uz > -+ > ug_1, where u; = uy(ci),
and, in particular, uy = a, u4-; =b.

We can assume that d'u; # uj, i # j, | € Z. If we can prove the theorem for this case, we can obtain the general
case from the continuity of the mappings (z, f) = uy(2) and (z, f) = x(2).

It follows from this assumption that each component of the level curve L(p) = {z: u(z) = p} is either a simple
closed real analytic curve, or a figure-eight shaped curve (which occurs when p = wd™', 1€ Z,).

: The Batcher function [2, 8] conformally maps the annulus {z: u; < u(z) < du;} onto the annulus {z: "' < |z| <

e} s0
} (d - l)u1

M(To) = =———,

(5.1)
where Iy = {L(p): u1 < p < duy}.

Let z € J and n € N. We use ', = I',(z) to denote the set of components of the level lines L(p), u;/d" <
p < uy/d*"1, that include the point z. We now find a lower bound for M(I's(2)). Note that for any singly-connected
domain V bounded by a component of the level line L(p), the mapping f: V — f(V) is an N-sheeted branching
covering, where N — 1 is equal to the number of critical points of the function f in V. As a result, the M(T,) are
equal when n > k, where k € IV is given by the condition

uld'k < ug-y < llld-k+l

(i.e., k is consistent with the conditions of Theorem 1.6).

The family 'k splits into two parts: the curves 7y, C L, that include the critical point ¢z (if ua—1 < p < upd=k+1),
and the curves that do not include critical points (if u1d™* < p < u4-1). The function f¥ maps I'x onto I'. It follows
from (5.1), Lemma 5.1, and the properties of extremal lines that

1 dkud_1 - Uy dul = dk“d-—-l
M(Fk)_)_‘2‘< @-1=1 T @= 1 ) (5.2)
Now, let zo be a periodic point with period m, A = (f™)' x (), x(z0) = = log ||,
m-1
T= |J Tas1(20). (5.3)

i=0

The curves of the family I' separate boundary components of the annulus K, which is bounded by certain curves
v1 C L(ad~"~™) and v, C L(ad~"). Since the family T; is pairwise disjoint, we have, in view of (5.2),

M) > M(T) 3 ma+d*(d—2)b

=2 (d-—1)* (54)

(M(K) is the modulus of the annulus K [12]).
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We now obtain an upper bound for M(K). If n is large, the annulus K lies in a small neighborhood of the
point zo. By Schroder’s theorem [2], there exists a holomorphic change of coordinates in the neighborhood of the
point z9, { = ¥(z),¥(z0) = 0, that linearizes the transformation f™. We set K* = ¢(K). The mapping ¢ — A
transforms the outer boundary component of the annulus K* into the inner. If we choose a conformal metric with
density p(¢) = (2m|¢[)~? in the annulus, we find that the length of closed curves separating the boundary components
is no less than 1, and the area of the annulus in this metric is no more than (27)~'log|A|. As a result, the extremal
length is larger than or equal to 2x(log |A])~! and

. ]
M(K) = M(K") < 5-log Al

Together with (5.4), this relation proves Theorem 1.6.

In order to derive Corollary 1.7, we note that the polynomial f is hyperbolic if & > 0. In order to compute the
Hausdorff dimension of the Julia set of a hyperbolic polynmial, we can use a thermodynamic formalism [13, 14].

We set

P(t) = lim %log S YT, teR, (5.5)

n—00
z€Per,

where Per,, is the set of points with period n. The limit in (5.5) exists and is called pressure. The function t — P(t)
is a strictly decreasing function and has a unique zero at the point ¢t = HD(J) > 0. It follows from Theorem 1.7 that
[(f*)'(z)| > € for any point z € Pery, where x satsifies (1.9). It thus follows that P(t) < logd — tx, which implies
the desired bound for HD(J).

References

1. H. BrROLIN, “Invariant sets under iteration of rational functions,” Ark. Mat., 6, 103-144 (1965).

2. A.E. EREMENKO and M. Yu. LyusicH, “The dynamics of analytic transformations,” Algebra i Analiz, 1, No.
3, 1-70 (1989).

3. A.E. EREMENKO and G. M. LEVIN, “On the periodic points of polynomials,” Ukr. Mat. Zhurn., 41, No. 11,
1467-1471 (1989).

4. W. HymaN and P. KENNEDY, Subharmonic Functions [Russian translation], Moscow (1980).

5. M. EssEN, The cos 7\ Theorem, Springer-Verlag, 1975.

6. A.E. EREMENKO, M. L. SoDIN, and D. F. SHUA, ”On the minmum modulus of an entire function on a sequence
of Polya peaks,” Teoriya Funktsii, Funktsional. Analiz, i Ikh Prilozh., No. 45, 26-40 (1986).

7. 1. V. OsTRoVsKII, “On some asymptotic properties of entire functions with real negative zeros,” Uch. Zap.
Khar’k. Univ., 120, 23-32 (1986).

8. A. DouADY and J. HUBBARD, “Etude dinamique des polynomes complexes,” Publ. Math. d’Orsay, 1984-02,

9. ll)g.sggi'sm and D. SHEA, “Polya peaks and oscillation of positive functions,” Proc. Am. Math. Soc., 34, 403-411
1972).

10. S\ BZERNSTEIN, “Proof of Edrei’s spread conjecture,,” Proc. London Math. Soc., 26, 418-419 (1973).

11. J. M. ANDERSON and A. BAERNSTEIN, “The size of the set on which a meromorphic function is large,” Proc.
London Math. Soc., 26, 518-539 (1978).

12. L. AHLFORS, Conformal Invariants, McGraw-Hill, New York (1973).

13. R. BowkN, “Hausdorff dimension of quasi-circles,” Publ. Math. IHES, 50, 259-273 (1979).

14. D. RUELLE, “Repellers for real analytic maps,” Ergodic Theory and Dynamical Systems, 2, No. 1, 99-107 (1982).

2171



