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THEORY OF ITERATIONS OF POLYNOMIAL FAMILIES IN THE wi
COMPLEX PLANE o
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1. Introduction. 1.1. The significant advances, achieved recently in the theory of 4

one-dimensional dynamical systems, are connected to a great extent with the investigation
of concrete families of mappings. In the first place, this refers to the quadratic family:

ferz—>22—¢. (1.1) %

Ty

For complex values of the parameter c one has observed a continual variety in the be-
havior of the iterations of the mappings f.: C » C. The boundary separating the stable map- o,
pings from each other is the boundary of the so-called Mandelbrot set M [1]. It consists ) ’
of those c € C, for which the iterations fg(O) = 0(1) when n » ». A special role is played

e

by the iterations of the point z = 0, since this is the unique critical point of the function al
fo. One of the properties of M consists in the fact that each point of the boundary of M isa} -
limit point for the superstable values of ¢ (a value of the parameter c is said to be super- °j ¢
stable if f. has a superstable cycle, i.e., a cycle which contains the critical point). It is3fg kS
proved in [2] that the superstable values of c are asymptotically distributed with respect B i
to some measure with support on 38M. In this paper we give a generalization of this statement 3 <
to the family i g
2> —c(p€EN, p>2). (1.2) 3 ot
We give the properties of this measure and we also consider some series connected with
the set M and with its generalization to the family (1.2). Finally, we describe a linear P#
algorithm for the computation of the moments of the measure (for p = 2).
1.2. We recall the basic definitions. The successive application of the mapping f: U-+U4 4
generates the iterates f:U—U;['= f, iy = f(fr), (Xa)a»0, %n =["(X,)- is the orbit of the point
Xo; if Xp = X¢, then x, is a periodic point of period n; the smallest of the periods of x, is- kg Wi
some m > 1 and m|n; the points {Xqo, X1, «-:» Xp-1} form a cycle; if f is differentiable, then ;
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the multiplier of this cycle is A = (/") (X)) = [1F(x); the cycle is said to be stable, neutral,
i=0

or unstable, according to whether XA lies inside, on the boundary, or outside the unit circle,
respectively; a cycle containing the critical point is said to be superstable (for it X = 0):

2. Measure on the Bifurcation Set. 2.1. We fix p €N, p > 2, and we consider the family

ferz—2°—c. _ (z.1)
We denote by Mp (or simply by M) the set of those c € € for which [7(0)=0 (1) (n— o).
The boundary of Mp consists of those ¢ for which the family (2.1) ceases to be stable (31, [1].
Let qp(c) = f2(0) be the iterates of zero: q, is a polynomial of degree pn~!. The set of

all of its zeros will be denoted by Pp; P= U P- consists of the superstable values of c.

2% We have P c¢ M and the set of the limit pointé“%f P is oM [3]. It is easy to show that M is

bounded, closed, perfect, and each component of its interior is simply connected. The Douady—

¢ qubbard theorem [1] asserts that for p = 2 M, is connected. With obvious modifications, this
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§ proof goes through also for p > 2.

2.2. We consider a somewhat more general situation. Let fo(z) = 2P + a;(c)zP ™t + ... +
2 (c) be a polynomial of degree p 2 2, whose coefficients aj(c) are holomorphic functions in

a domain D < C.

Let a € D and let q, be a critical point of f,(z). Passing to a local coordinate £:U > V,
vhere V is a neighborhood of the point a, T = 0 € U, we can assume that q, extends to a func-
tion q, holomorphic in U. We denote qp = fg(q).

LEMMA. If for some m 2 1 q, # q and T = 0 is a zero of multiplicity 2 of the function

qu — 9, then 0 is a zero of the same multiplicity of the function qpm — 9 b= 2 35 wumds

Proof. We apply induction on n. By assumption, g,—¢=1'-Q (7, Q. (0)=~0. We assume that
“.'um_"q:‘cl Qu (1), Qll (0)7&0- Since f'(q) =0, we have

- L 1 lk m s ‘
Qubim — 4 = "0+ o Q) — g = (F" (@) — ) + I 5 Tk @ - (7 Q) = T Q +0(*) =¥ Qa1 (9. Q1 OV 0.
k=2
2.3. We return to the family (2.1) and we introduce the functions
q, ()
0 ) = gigem - "N

ag(c) is holomorphic in C\M since gu(€) 7= 0, c€ CN\M.
LEMMA. There exists lima,(c) =0(c), c€C\M. +The function o(c) is holomorphic in C\M,

um~%@+wl
Proof. We make use of Bottcher's theorem [1]: if £(z) = 2P + ... + ap is a polynomial,

then (£9(z))P™™ = z + ... converges uniformly in the neighborhood of z == for n > » to a

function that is holomorphic at «. From here there follows the convergence of the sequence

(qe)P™™ at each point of C\ M. This sequence is separated from 0 and = in the neighborhood

of each point ¢ € C\M. Taking the logarithmic derivative, we obtain the required convergence.

2.4. We recall that P, is the set of the zeros of qn(c) (taking into account multipli-
cities).

LEMMA. Assume that the function F(c) is holomorphic in some neighborhood of the com-
pactum M. Then there exists :

dmed

1n=-o0 r

€Pn

O(F) = lim 7= Y, FO — L (F@e@,

vhere I' is a smooth contour containing M.

Proof. By the residue theorem, we have

n-oco P

n .l E
g‘F(C)U(C)dC-:llm %(Fm—dc-:llmﬂ F(C)
‘r‘ -0 ’F n CQP"
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2.5. THEOREM. Let F:C—>R- be a continuous function. Then there exists

OF) = lim = Y, F @

pll“l A
CEPn

- o0

Proof. If F = Re(u), where u is a polynomial, then the assertion follows from Subsection
2.4. 1f, however, F is an arbitrary continuous function, then by the Walsh—Lebesgue theorem
(4], on the boundary of M the function F is the uniform 1imit of harmonic polynomials. Mak-
ing use of Subsec. 2.2 and of what has been proved, we obtain the desired result.

2.6. Let up be the probability measure, uniformly distributed at the zeros of the poly-

nomial gqn(c). We have proved that i, is weakly convergent for n + « to the measure u with I8
support on 9M; u is defined by a linear functional dic CGLE)Y™. *E
f

3. The Kernel of the Measure. The'nonlinearity of the mappings f¢ leads to the fastcon-}a
vergence of the functions o at «, which allows us, in particular, to describe the kernel of
the measure p (of the functional 6).

3.1. LEMMA. a(c) = a.(c) + 0(c?"), c—>oo.

Proof. The relation qp4i1 = qg — c implies

N Gner __ liﬂg o O(C"“’"'_”).

p" pn—l

from where by differentiation we obtain the required result.

3.2. LEMMA. Let F(c) be a polynomial of degree ¢ and let 2 < pt — p"~ ! — 2. Then

~

qu,,du:-.O.

Proof. By virtue of Subsec. 2.4, we have

o - QO 1 ; n (¢) —pmy ) .
[ Fandp = g | Fanode = o) F(6)9a(0) | g + O™ de =
!

|
1

! 4 | i it =1 n
= E'S‘F(c)qn (c) dc -+ ﬁ\ O (c!+o"~'—r") dc = 0.

r L
3.3. COROLLARY. Let l>0mn>Ll<r<p—4,0<f<“p—nw4_d,uHQl“”,p—n,
==l 2wy dy B2 L Then .
Sclq,’,‘qf,:+l- et Qe dp =0,
Proof. We make use of Subsec. 3.2 and of the fact that deg (¢/ g " PP . g7l < prti—

pm+1-l _2.

3.4. LEMMA. For £ 20, 1 Sr<p—1, j¢ 0, and

itl<@—rp'—2

g: SCI qf:+rdl»‘-=0- !

Proof. By induction on & we roveéthe formula qip= ¢ + ... (3.1), where the dots in-
—— p . m

dicate a linear combination of terms of the form clgipr s <ot Gmak  (3.2) (€10, 1,..., p—1}, 0
<«j=<l—1). Indeed, (3.1) is obvious for ¢ = 0. Further,

¢ = (Gmt + ) G = Gm1 4 + cq'®,

and qm+laq2+|-... .q%s is a linear combination of terms of the form (3.2) with j < &. :

(3.1) is proved. It remains to multiply both sides by qf and to make use of Subsec. 3.3. Hy

13
i
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4. Functions Connected with a Bifurcation Set. We recall that to a given fixed natural
number p 2 2 there is associated the bifurcation set M of the family (2.1). For p = 2 this
is the Mandelbrot set.

4.1. We consider the following functions, defined and holomorphic at =: @u=(qa)""", P
is uniquely distinguished by the condition Pl __ (c_,ooﬁ by Bottcher's theorem, @ = limq,
c

n-co

is defined. Let % =¢* be the inverse mapping. We notéfthat

:
¢ ' /
3 0n=‘?‘:l.0=(£~.
Pn Y
§
j We define a sequence of numbers (Cg)g>g by the Laurent series, converging at o:
i (o c
i Y@ =0+ Cot 2ot
s

4.2. Remarks. (1) Of course, the numbers Cy depend also on the fixed p; (2) since M is
connected, it follows that ¢, and ¢ can be continued in a unique manner into €C\M and, more-
over, ¢ maps C\M univalently onto D = {w:lwl > 1}, while ¢:D » C\M is the inverse mapping.

i 4.3. We show that among the numbers Cy there are many zeros. For the proof we need the
1 following
LEMMA. Let l<r<p—1, m>1, O0<l<(p—r)p"'—2. Then,

1
(@ ()Ue+nPm=r = qlf* £ N} R;(e) g™ + Qe rTTTIE), e 00,

=1

where Rj(c) is a polynomial of degree at most j.

Proof. Multiplying the equality

e B

¢ _ I

() 0"‘l an

+ 0"

by k and integrating, we obtain

o= 0.

Assume now that kL= (lp+r)pn, O<l<(p—r)p"'—2, n—m =a, where a is such that p*<lp-
r< pott, Then

!

|

i ; RO q('{it/)p—“ s O(c—‘”""*""""‘“’"‘”""""—”).
l 1

By induction we conclude that the a-th iterate of (2.1) is

()

fE@) =2+ p¥ (@270 4 -+ pT @ ey

where pgu) is a polynomial of degree i. Therefore,

Qs )+ = ([ (@aUo+ ™% = (g 4 = e o pl® PRl e Yo

(@) (p+rp—% SN1 R-(C)) Ip+r § : (I=ip+r
p; = lp+r ol 44 = 4 i 4n ’
—q"’*’(l £ b ) SAED) r A R

S m
j=| [=1

where R;(c) is a polynomial of degree at most j (it does not depend on a, since o is uniquely

determined by %, r, p). It remains to note that for j = 2 + 1 we have
R
q;n‘“’ Rl+l = O(C—(D”‘"(n-rl-——l—l))_
)
4.4. THEOREM. mewq=0,rEU,Zuwp—JL0<[<@}4ww4_&

Proof. For sufficiently large p we have

T
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s gl
%

Cr= 5= g m"“*P(w)dw=2—,‘17 Y ¢ ¢* () o (c) de.

.
lol=p @(ol=p)

et

PR

ot

Now we make use of Subsections 4.3 and 3.4. .

4.5. Remark. The proved theorem means that for each p 2 2 the zeros in the correspond-
ing sequences (Cg)¢>, are partitioned into p — 1 subsequences, the indices in which are al-
most periodic with almost-period p", n€N.

4.6. In particular, for p = 2 one obtains the sequence.of numbers (Ci)i>.. in which
C(Q[+])'}:ll-' = O. m>=> 3. = O. l, o ey 2m_| '—3.

e et

3%

1

S. Arithmetic Properties of the Coefficients. We consider the case of a quadratic family
and we fix p = 2. :

We recall that ¢(c) maps univalently the exterior of the Mandelbrot set onto the exterior

of the unit circle, g=% y=¢L
f‘]

Together with the sequence (Cy)g>, we consider also two sequences, determined by the ex-
pansions of ¢ and o at o:

+ B+ g T

‘ c!

G 2 A’.{-...+£’+...).

¢ ct

.{._...Y

The numbers Ay are the moments of the measure p:

-
C‘dp=2—m~.'\ clo(c)de = A;.
r

2n-1

Let P, = (brn)e=t be the set of all the zeros of qn(c). Since

o n=-1

qp (0) AR W
g = 51 Jam ) el 0> oo,
(=0 k=

from the lémma of Subsec. 3.1 for p = 2 we obtain

2n-1

Al=ga Y (o), n>1, 02l < 2" 2.

k=l
5.1. We compute the exact binary order of the numbers Ay, By, and Cy94;.

By the binary order ord,m of a nonzero integer m we mean the largest integer % such that
2% divides m; the binary order of a quotient is ord,(m/n) = ord,m — ord,n; ord,0 = +w,

5.2. For convenience we set ¢ = —t and let

91—t

qnw)=’2 a(i, n)t.
i=1
The coefficients a(i, n) are natural numbers (for example, a(l, n) = a(20"!, n) = 1).
Therefore, also the coefficients of the expansion of qn'qn at = are integers; taking into

account 3.1, we obtain that Ay, and also By and Cy expand into finite binary quotients (for
p = 2).

5.3. We denote by S(n) the sum of the digits in the binary expansion of the natural num-
ber n. It is well known that S(n)=n—ord,(nl), a€N. From here S(n)+ S(m)—S(n+ m)=ord,Coyn>
0 (m +n)1

et et is the number of combinations of m + n objects taken n at a time.

In the sequel we need several statements, the proofs of which, in view of their element-
ary nature, are not given. ;

0, where

3516
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5.4. LEMMA. Let 2 2 3. The sum

&

2

Y, Ci

k=1

is odd if 2 is not a power of two and even in the opposite case.

5.5. LEMMA. For | < [=2"'—2, n>2, the sum
42011

\'\

k=l

C?.Hn—x

is odd.
5.6. LEMMA. For on—l<=[/=2—2 n>2, the sum

n-1
S

L Con-ipi1—p
k=1

is odd.
5.7. THEOREM. ord,a(i, m=S@®—1, i=1,2 3...., 27"
5.7. THEOREM. ,

Proof. First we note that if D= Y D, 1is the sum of % nonzero integers, ord,Dy = pg 2
k=]

po for all k and ord,Dy = p, for an odd number of indices k, then D # 0 and ord,D = p,.

We shall prove the assertion of the theorem by induction on n. Since a(l, 1) = a(l, 2) =
a(2, 2) =1, it follows that the theorem holds for n = 1, 2. We assume that ord,a(%, n) =
S(2) — 1, 1 £ ¢ <2071 and we prove that dya(/, n4+1)=S({)—1, | =l<2n We examine the
case when 1 is even. In the case of an odd % the proof is similar.

1)1 s ¢ %< 2n3,

Since qp4y = q2 + t, for & £ 3 we have

]

a1
¥ 2
a(l, n-+1)y=2 }: a(k, nya(l —k, n)+/a(-l2 , n.>> (5.1)

k=
We have

ord, 2a(k, n)a(l—k&, n) =1+ ord,a(k, n) +

torda(l—k y=1+SE—1+SU—B—1 =SE+SUt—~H—=1>3N—1

by virtue of Subsec. 5.3 and, moreover, equality holds when le is odd;

ord3<a(12-,n>)2=2(5(—l2~)—1j=2-S(-12)——2 =2.5(h—2>Sih—1;

equality holds if % is a power of two.

Thus, the number of terms in the sum (5.1) with the least order p, = S(2) — 1 is equal
to the number of odd terms in the sum

I
e

2

. R
\,'_J Cl )
k=l

if 2 is not a power of 2, and one unit greater if & is a power of 2. By virtue of 5.4, in
both cases this number is odd; this proves the statement:-for 1 < & < y Lo

2) ol el

3517
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For | — 21 ord,a (2", n+ I)=ord, 1 = 82" —1.
For =24/ l2r<2n—1_ 1, we reason similarly to 1) and we make use of 5.5.

5.8. Now we can compute the binary orders of the moments Ag. We recall Newton's formula
[5]: if 8¢ is the sum of the L-th powers of the zeros of the polynomial

£t agxt =t wn e gy,
then for ¢ < n we have
l=n 6,+6,_,a,+51_7a,+---+6,a,_,+(—l)’la,=(),
while for £ > n we have
6+ 6i—1a, +8—ay,+ -+ + 81_na,=0. 3
5.9 THEOREM. -

ord, (A) =—S (), L=1, 2,....

Proof. We denote

9M=1

R m = ¥ (—br.), neN, I =0, |, 2,.
k=]

=1

(br.ni= are the roots of the equation qn = 0).

Then

R ny=(—IY .24, |l ele9n_9 (5.2)

Therefore, the assertion of the theorem is equivalent to the fact that

ord, R(l, n)=n--1—8(), 1 =l =<9—9 (5.3)

We assume that (5.3) has been proved for some n 2 2 and for all ¢ = 1, 2, 3, ..., 2071 o
2, and we prove it for g = n-1 _ p 207k AN g Then, by virtue of (5.2), equality
(5.3) will be proved for n + land 2= 1, 2, 3, ..., 20 = 2. Pean here, by induction, the g i

validity of the theorem will follow for all g.

Since

9 _ %—1 | 1 1 \
272~2(c’—c)_?(l+2-c‘+2—c2+"'/'

we have A, = 1/2, hy = 1/2, i.8., (5.3) holds for n =2, 3and ¢ =1, 2. Let ord,R(2, n) =
n — 1 - 5(2) for some n 2 3 and all ¢ =1, 2, 3, ,,,, 20°1L _ 5. We show that ord,R(%, n)
=n — 1 — 8(2) for ¢ = 2n-1 — 1 | 2n — 2,

’

i TR Ay e

Since deg q, = 20-1 apg qn(0) = 0, by Newton's formulas we have

B

m?”—Lm=-4mm4_Jmmahu_hm+.” i ]

+RIE—Ln)a(i,n) + -+ + R(1,n) a(2,7) + @1 —l)a(l, n)), (5.4)

R(l,n)=—(R(U—1,n)a@"'—1,n)+ --. : ',
+R(l-—-[,n)a(2”*‘—i,n)+---+R(l—-—2"—'—I—l,n)a(l,/z))‘ (5.5) ¥ -

=270, On_9 B

According to what has been proved, ovd,a(i, m) = S(i) — 1; by the induction hypothesis, i
ordzR(l,n) =n—1 ___S([)' | =1 < 9n—1 —9

Let ¢ =2n-1 — | ye prove that in the right-hand side of (5.4) all the terms, excepti
the last one, equal to 2n-1! — 1, are even: Y
ordy R(i —1,n)a(é, n)) = (n — 1 —S@—1)+ T (A

3518




+S@)—1>1,

since Sii—1)en—2,ie2=—1.
Thus, the assertion is proved for & = 207! — 1.
Assume now that the assertion is proved for all indices smaller than %, where 2=l < 9 <
20 — 2, and we prove it for &. In (5.5) the order of each term is
ord,(R (I —i,n)a(2"—'—i, n)) = (n—1— SU—i)+(S@—'—i)—1)>n—1—=S8(),
since S(2'—i)+ S())> S( —i) + |, and, moreover, equality is equivalent to the fact that the
number Cli—1y, 1is odd. It remains to make use of 5.6. The theorem is proved.

5.10. Remark. Making use of the proved theorem and of the expression of the discriminant

of a polynomial in terms of its power sums (5], it is easy to show that the discriminant

D, =

l<i<k<2®—!

(bl. n bk, n)?'

of the polynomial q, for n 2 2 is an odd number.

5.11. We give one more statement concerning the numbers Ag. For this we note that, ac-
cording to what has been proved, ord, 2% Ag = ¢ — S(2) = ord,(2!) 20, i.e., Ny = 22A1 is
an integer (2 € N).

THEOREM. For any natural numbers k, r and prime number m > 2 we have

Ny” = Ny =" (mod n7).

Remark. Since N, = 1, it follows, in particular, that Nj = l(mod m) for all prime num-
bers m > 2.

The assertion of the theorem follows from the congruence (a particular case of Euler's
theorem): otm/-tm’=' = |(mod m’) and from the following statement [6]: if 89 is the sum of the
t-th powers of the roots of the equation x"+4 gx*~!'+4-.--4+a,=0 with integer coefficients,
ap, * 0, then for any natural k, r and any prime number m we have §, = §;nr—1 (modm).

5.12. After the model of the proved Theorem 5.9, it is easy to compute the binary orders
also of the coefficients By of the expansion of the function ¢, mapping univalently the ex-
terior of the set M onto the exterior of the unit circle. '

THEOREM.
ordy By = =18 + | 4oty (f 4 D) = S + 1) — 20— 2, (=0, 1, 2......

Proof. Since B, = 1/2, the formula holds for & = 0. We assume that it holds for all
indices less than ¢ and we prove it for &. We rewrite the identity o = ¢'/¢ in the form:

oo oo

S‘ (B, | \_‘ Ay S‘ By
l—.—l L T 4 <C+ i ol ’
l=1 =0 (=0

from where

Bz=—-—l—-_l*-_—l (Aepr+ ByAr 4+ +Bi1 4y).

For i =0, 1, ..., 2 — 2 we have:

ord, (BiAi—) = — (i + 1 +ord,(i + N)— S —i)=— (i +1)—
ord, (i + ) — (! — i)+ ordy (! — i)l = —( 4 1) + ord, (! — i)l —
ord, (i + )1 > — (! 4 1) — ord, (!!) = ord, (A, Bi—1).

Similarly, ordy Ay = — (I 4+ 1) +ord, ({ + DI > ordy (4, Bi—y). Therefore, ord,B;= — ord, (I +1) + ord,
(A Bi—t) = — (! +1 4 ord,(/ + 11). The theorem is proved.

3519
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COROLLARY. By # 0, £ =0, 1, 2,
5.13. In a similar manner one proves the following

THEOREM.

Ofd CQ[+) = ord, 82[+| = S([ -+ 1) — 41 — 4,

)
]
o
-
=
-
D Bt

In particular, C,q4; # O. Apparently, all the zero terms of the sequence (Cy) are given:f
by the formula from Subsec. 4.6. i

6. A Linear Method for the Computation of the Moments. 6.1. We continue to consider the
case P = 2. We recall that Ay is the 2-th moment of the measure u.

5

The sequence (Ag)g>, can be determined by computing first the coefficients a(k, n) oftheé'

polynomial q, and then making use of the formula from Subsec. 3.1. The corresponding recur-
rence formulas are nonlinear.

Here we describe a linear algorithm for the computation of Ay, which can be easily im-
plemented on a computer.

6.2. Definition. Let n € N and let ngN, n-—<§:e,2‘ g€{0, 1} be the binary expansion of n;

(=)

by the n-th elementary polynomial dp(c) we mean the product

]

dn (C) = eil——-]l f:(C) = kl:JO (fﬁ (C))ah' (6. 1)
In addition, we set dy(c) = 1.
6.3. Since degfcw)-— deggry1(c) = 2%, we have degd, =n, n=20, 1, 2, ... . Therefore,

each polynomial F(c) is a finite linear comblnatlon of the system (d (C))n>o- In particular,
for each n € N there exists a vector (a(i, m))1 o such that

o= i a(i,m)d; (c); (6.2)

i=o

since d;(0) = 0(i 2 1), we have a(0, m) =

m

Am={omdn=T a(im) | di@dp. (6.3)
(=1
6.4. LEMMA. Let k € N.
(a) If n = 2k — 1, then
{da@du=0.
(b) If n = 2k — 1, then .

Sdn(c)dp=1_7

Proof. (a) follows from Subsec. 3.2 (for p = 2). (b) Let n = 2Kk — 1. Then dy(c) =
q;(e) ... qgle).

By virtue of Subsecs. 2.3, 3.1, we have

Sqr e Qedp = '1

gq.- 'Q/,-(mﬁ-‘;‘ﬁ'"')dc =_|_._S:(C'Zk'"'+ ...)(CDT:_*_...‘)dc:D,‘,

We find Dy:
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i.e.y, Dp=—73—

6.5. Thus, in (6.3) it remains to find the recurrence relations for a(t, m).

6.6. For the convenience of the notations, instead of dn(c) we shall write sometimes
d(n), omitting c.

LEMMA. For n 2 0 we have

ord, (n-+1)
cdin)= 3 d@a+2—2".
re=0
The proof is carried out by induction on the number k = ord, (n + 1), which is the num-
ber of ones up to the first zero in the binary expansion of the number n.

6.7. To each sequence a = (a(n)a>0 a(n)€eC we assdqiate the formal series

2 a(n)d(c).
LEMMA. Assume that the series

co

Ya@—1)

k=1

converges. Then

c § a(n)d.(c) = Z. b (m) dm(c),

n=0

where

oo

b(l)y= Y a(2x—1),
k=0
ord, (m—1)

b(m) = éo a(m+ 28—2), m>2.

Proof. We make use of Subsec. 6.7:

- o “ord, (nb1)

Y b(mdn@=Y a(m L d+2—2.

m==1 n=
Llet n + 2 — 2Kk = m, where 0 £ k ¢ ord,(n +1). Then n =m + 2k — 2. n+1=(m—1)+ 2k,
<

and, therefore, k < ord,(m — 1). Consequently,

ord, (m—1) .
b(m)= a(m+28—2).
. k=0
It remains to note that for m = 1 we have ord,(m — 1) = +.

6.8. COROLLARY. We set «(l,1)=1, a(l, =0, 1>2.

ordy (1 —1)
al, m+ )= ¥ al+2*—2 my m LEN.

k=0




m_

Ay = }: (1—515)%1(2"—-1,"1).

2k<m+l

6.9. From here there follows at once that 0 < Ap < Apy:-

The computer calculations allow us to presuppose that in the considered case (p = 2) we
have, asymptotically,

b s P

A, ~ const - 27 . m~v;, B,, ~ const - 2" . m—'=v, y~ 048.
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A NEW PROOF OF DRASIN'S THEOREM ON MEROMORPHIC FUNCTIONS
OF FINITE ORDER WITH MAXIMAL DEFICIENCY SUM. I ' ﬁ‘

A. E. Eremenko ‘ UDC 517.53 ;

1. Introduction. For a function f, meromorphic in the plane @, we make use of the stand- @
ard notations of the R. Nevanlinna theory: T(r, £f), N(r, a), m(r, a), N(r, ) N,(r), 8(a). In ad- 5
dition, we set D(z,, R)=|z€T:|z—z|<<R}. In this paper we investigate meromorphic functions
of finite lower order with maximal deficiency sum:

Y 8(a)=2. : (1.1)

a€T

For a function f of finite order, R. Nevanlinna's second fundamental theorem can be formulated
in the following form: for each finite collection a,, ..., aq we have

T™Me

lm(f, a)+N,(r)<2T(r, )+0o(T(r, ) r—o0.
From here and from (1.1) there follows that

N, (r)=o(T(r, /), r—>oo. (1:2)
In order to elucidate what consequences can (l1.1) imply, we assume first that a stronger con-

dition than (1.2) is satisfied, namely, N;(r) = 0, i.e., f does not have multiple points.
We consider the Schwarzian derivative

F=f"1f — @2 IF)?. ’ (1.3)

A simple computation shows that the Schwarzian derivative has poles only at the multiple points
of the function f and, therefore, F is an entire function. Taking into account that f is of

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 51, pp.
107-116, 1989. Original article submitted September 11, 1987.
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