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ABSTRACT. We prove that, for generic systems of polynomial differential
equations, the dependence of the solution on the initial conditions is not
differentially algebraic. This answers, in the negative, a question posed
by L.A. Rubel.

1. INTRODUCTION

This work answers a question posed by L.A. Rubel in [9], a paper which
presents many research problems on differentially algebraic functions (see also
[6]). We recall that an analytic function f(z) (defined on some open subset
of either R or C) is called Differentially Algebraic (DA) if it satisfies some
differential equation of the form

(1) Qz, f(2), f'(2)s - [ (2)) = 0,

for all z in its domain, where Q is a nonzero polynomial of n 4 2 variables.
A function of several variables is DA if it is DA in each variable separately
when fixing the other variables. It is known that a function is DA precisely
when it is computable by a general-purpose analog computer [4].

Problem 31 of [9] asks:

Given a ‘nice’ initial value problem for a system of algebraic
equations in the dependent variables yi, ..., yn, must y(xo)
be differentially algebraic as a function of the initial condi-
tions, for each xo?

Rubel adds: “we won’t say more about what ‘nice’ means except that the
problem should have a unique solution for each initial condition in a suitable
open set”.
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In other words, let

(P) v =pkW1, - ym), k=1.m

be a system of differential equations, with py polynomials. Denote by yx(r1, ..., 7m; x)
the solutions of (P) with initial conditions

(2) ye(0) =15, k=1..m.

The question is whether it is true that the dependence of y; on r; (fixing
x and the other initial conditions ry, k # j) is DA.

Here we first answer the question in the negative by constructing an initial
value problem:

(3) Yvi=v2—v1, y1(0)=r
(4) Yo =y2(y2 — y1), y2(0) =rg

and proving that, for most 2 € R, both y1 (0, r2; ) and y5(0, ro; ) are not DA
with respect to ro.

Moreover, we prove that this phenomenon is in fact generic in the class of
nonlinear polynomial differential systems (P) (and thus the answer to Rubel’s
question is very negative). To state this precisely, let S(m, d) denote the set of
all polynomial systems (P) of size m, where the polynomials p; are of degree
at most d. By identifying the coefficients of the various monomials occurring
in the p;’s with coordinates, S(m, d) is a finite dimensional vector-space, so it
inherits the standard topology and measure.

In all our statements the term generic will have the following meaning:
when U C RY is an open set and V C U, we will say that V is generic in U
if its complement in U is both of measure 0 and of first Baire category.

For each system P € S(m,d) and initial conditions r = (rq,...,7,,) € R™,
let I(P,r) denote the largest interval containing 0 for which the solutions of
the initial-value problem (P),(2) are defined. Let

() AP) =A{(z,r) [r e R™, w € I(P,r)}

(A(P) is the domain of definition of the functions y;(r1,...,7mm;x) - we note
that standard existence theory of ODE’s implies that it is an open set; it is
also easy to see that it is connected). For each 1 < j < m let

A;(P)={(z,r1,...,7j—1,7j41, ..., ") | T such that (z,71,...,7m) € A(P)}.

Theorem 1. Assume m > 2 and d > 2. For generic P € S(m,d), we have:
For any 1 <1i,j <m, and for generic choice of (T,r1,...;7j—1,Tj41,...,Tm) €
A;(P), the function

(6) fij(2) = yi(ri, o mj1, 2,741, 0oy Tims @)

is not DA.
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We note that the construction of a specific example (3)-(4) is essential for
our proof of the ‘generic’ result of theorem 1.

The significance of the problem posed by Rubel is brought out when we
note that the class of DA functions is a very “robust” one:
(i) The class is closed under many of the constructions of analysis: algebraic
operations, composition of functions, inversion, differentiation and integra-
tion.
(ii) The components of an analytic solution of a system of algebraic differential
equations are themselves DA [5].
(iii) A solution of a differential equation R(z, f(2), f'(2), ..., f™(2)) = 0,
where R is a DA function, is itself DA [7]. We note a special case n = 0
of this result, which can be called ‘the DA implicit-function theorem’, which
we shall have occasion to use later:

Lemma 2. Assume R(w,z) is a DA function, and f(z) is a real-analytic
function satisfying

R(f(2),2) =0

for all z in some interval. Then f is DA on this interval.

For the above reasons, most of the transcendental functions which are en-
countered in “daily life” are DA (notable exceptions are the Gamma function
and Riemann Zeta function, see [8]). It is then natural to wonder whether
functions obtained by the construction of looking at the dependence of the
“final value” on the “initial value” (in other terms, the components of the
“Poincaré map”) of an algebraic differential equation are also DA. Our re-
sults show that this is almost always not so.

The following remarks show that the result of theorem 1 is in some sense
close to optimal:

(i) The condition d > 2 cannot be removed. Indeed if d = 0 the solutions
of the system are linear functions in x, and if d = 1 the solutions are linear
combinations of exponentials in x, so the dependence on initial conditions is
certainly DA.

(ii) The condition m > 2 cannot be removed. Indeed if m = 1 then we are
dealing with an equation of the form

Y =p(y),

which is solved in terms of elementary functions, which implies that the de-
pendence on the initial condition is DA.

(iii) The restriction to generic systems cannot be removed, since, for example,
when, for each k, p; depends only on yi, we are back to a decoupled system
of equations of the same form as in (ii) above, so that again we have DA
dependence on initial conditions. However, it might still be possible to obtain
a stronger statement as to the size of the set of ‘exceptional’ systems. For
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example, we do not know whether the set of systems P € S(m,d) for which
all the functions f;; are DA is nowhere dense in S(m, d).

In section 2 we prove a general result which underlies the proof of our
‘genericity’ results. In section 3 we construct some explicit examples of func-
tions which we prove are not DA. In section 4 we show that the functions
constructed in section 3 arise in the solution of the system (3)-(4), and this
is used to prove that the solutions of this system are not DA in the initial
conditions. Finally, in section 5 we use the specific example constructed in
section 4, together with the general result of section 2, to prove theorem 1.

2. THE ALTERNATIVE LEMMA

In this section we present a result which we term the “alternative lemma”,
which is used several times in the arguments of the following sections. This
result says that if we have a parameterized family of analytic functions (with
the dependence on the parameters also analytic), then either: (I) all the
functions in the family are DA, or (II) generic functions in the family are not
DA. Thus, to show that a generic function in a certain family is not DA, it is
sufficient to prove that one of the functions in the family is not DA.

The proof of the lemma is based on two facts:

(i) The fact that an analytic function on a connected open set cannot vanish
on a ‘large’ subset without vanishing identically.

(ii) The Gourin-Ritt theorem [1] which says that any DA function f(z) in fact
satisfies a differential equation of the form (1) where Q is a polynomial with
integer coefficients.

We state the next lemma in both ‘real’ and ‘complex’ forms, since we shall
have occasions to use both.

Lemma 3. Let K=R or C. And let F: Q — R, where Q C RP x K is open
and connected, be an analytic function. For each u € RP, define

Qu) ={veK| (u,v) € Q}
And let
Y ={ueRl|Qu)#0}.
Then the following alternative holds: either
(I) For every u € ', F(u,.) is DA on Q(u). In fact, all the functions F(u,.),
u € Q, satisfy the same differential equation.

or:
(II) For generic u € ', F(u,.) is not DA on Q(u).

Proof. Let Q be the set of all polynomials with integer coefficients. Q is a
countable set. For each Q € Q, let Q'(Q) be the set of u € ', for which
f = F(u,.) satisfies (1) on Q(u). We claim that either Q'(Q) is of measure 0
or (Q) = . Assume that Q'(Q) has positive measure in R?. We choose
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open balls By C £ and By C K such that (i) By x Bs C Q and (ii) Q' (Q)N By
has positive measure. Then the real-analytic function

g(uvv) = Q(U,F(U,U),DUF(U,U), aDgn)F(uv'U))

vanishes on the set ('(Q) N By) X By, which is of positive measure. By
analyticity and the fact that € is connected, this implies that g vanishes
throughout €2, which means that alternative (I) holds. So if alternative (I)
does not hold, €/(Q) must be of measure 0. Since it is easy to see that '(Q)
is a relatively closed set in €', the fact that it has measure 0 implies that it
is nowhere dense. Since this is true for any @ € Q, the countable union

K = Ugeq®'(Q),

is a set of measure 0 and first category. By the Gourin-Ritt theorem, for all
u outside K, F(u,.) is not DA. Thus (II) holds. O

3. SOME FUNCTIONS WHICH ARE NOT DIFFERENTIALLY ALGEBRAIC

In this section we define some new functions and prove that they are not
DA. These results will be used in our construction of an explicit differential
equation with non-DA dependence on initial conditions in section 4.

We define the function H(c) (of ¢ € C) by:

) e = [

ce¥ —u

For ¢ € C to belong to the domain of definition Dy of H we need to ensure
that the denominator ce® — u does not vanish for any v > 0. It is then easy
to check that

(8) Dy =C-|[0,-].

1
e
Lemma 4. The function H(c) is not DA.

Proof. We define h(z) = H(L). We shall show that & is not DA, which implies
that H is not DA. We expand h in a power series (which converges for |z| < e):

0 —u 00 ©
ze “du _ _
h(z):/ T :/ ze " E ZRuke udy,
1— zue
0 0 k=0

_ sz+1 /Oo ke~ (+Du g, — Z (k ;kl)!zk.
k=0 0

k=1

We now use the theorem of Sibuya and Sperber [10], which gives the following
necessary condition on a power series ), arz" with rational coefficients in
order for it to satisfy an algebraic differential equation:

(9) lag|, < % forall k >0,
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FIGURE 1. Graph of the function H(c) defined by (7)

where |al, (p prime) is the p-adic valuation defined by writing a = p'™ (m,n

not divisible by p) and setting |a|, = p~*. Here we use this necessary condition

with p = 2. We have a; = (k;kl)!. We now choose k = 27. The highest power

of 2 dividing (k — 1)! is less than
k—1 k-1 k-1 »
ww<k—-1=27-1.
st g T S
On the other hand the denominator of ay, is 272", These two facts imply that

|agi|s > 207D+,
which together with (9) implies:

2U=DZHL < g5y < 9%

or, taking logs

((7 =127 +1)log(2) < C27,
which is obviously false for j sufficiently large. Hence the necessary condition
of Sibuya and Sperber is not satisfied for our series, completing the proof. [

We note a few properties of the restriction of H to the real line (which is
defined outside the interval [0, 1]), obtained by elementary arguments. See
figure 1 for the graph of H, plotted using MAPLE.
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(i) H is decreasing on (%,00), with lim, 1, H(c) = +00, lim,— H(c) = 0.
(ii) H is decreasing on (—o0,0), with lim.—,_o H(c) = 0, lim._,o— H(c) =
—0o0.

We now define the function F(s,c), where s € R is considered a parameter

and ¢ € C by:

(10) F(s,¢) = / §

ce —u

Since for F'(s, ¢) to be defined we need to ensure that the denominator does
not vanish for u € [0, s, it can be checked that the domain of definition of F'
is

Dr={(s,c)| s€R, ceC—J(s)},
where

J(s) =1[se™%,0] fors<0
J(s) =[0,s¢7°] for0<s<1

J(s) =10, é] fors>1.

Using the fact that H is not DA (lemma 4), we now prove that the function
F(s,.) is not DA for generic s. The argument is similar to the one in [2]

showing that the function z — fab u®e”"du is not DA for generic a, b by using
the fact that the Gamma function is not DA.

Lemma 5. For generic s € R, the function F(s,.) is not DA.

Proof. We apply lemma 3 with p = 1, K = C, Q@ = D C R x C (which
is indeed open and connected). We have ' = R. We want to show that
alternative (II) of lemma 3 holds. Let us assume by way of contradiction that
(I) holds, so that F(s,.) is DA for all s € R, and in fact there is a common
polynomial differential equation satisfied by all F'(s,.):

(11) Q(c, F(s,c), D F(s,c),.... D F(s,¢)) =0, forall(s,c)e Dp.

C

We now note that
lim F(s,c) = H(c)

§—00

uniformly on compact subsets of Dy. This implies that derivatives of D F (s,¢)
also converge to corresponding derivatives of H, and thus from (11) it follows
that

Q(c, H(c), H'(¢), ... H™(c)) =0

for all ¢ € Dy, hence H is DA, in contradiction with lemma 4. This contra-
diction proves that alternative (IT) holds, as we wanted to show. O
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We remark that we would guess that the ‘exceptional’ set in lemma 5 is
{0}, so that in fact F(s,.) is not DA for all s # 0, but we do not know how
to prove this.

We now restrict ¢ to be real nonzero number, and we define a new function
G(t,c) by the relation:

(12) G(F(s,c),c) =s forall (s,c) € Dp.

In other words we now look at ¢ as a parameter and define G(., ¢) as the inverse
function of F(.,c¢). To see that G is well-defined and determine its domain
of definition, we note the following properties of F', which are elementary to
verify.

Lemma 6. For eachc < 1 let s*(c) denote the solution (in the case 0 < ¢ < 1,
the smaller solution) of the equation se™* = c. We have:
(i) When ¢ < 0 the function F(.,c) is decreasing on (s*(c), 00),
limg_, g+ ()4 F(8,¢) = +00 and lim,_.o F'(s,c) = H(c) <O0.
Hence G(.,c) is defined on (H(c),+00).
(ii) When 0 < ¢ < 1 the function F(.,c) is increasing on (—o0, s*(c)),
lims o F(s,c) = —00 and lim,_, 4 (,)— F(s,c) = +00.
Hence G(.,c) is defined on (—00,00).
(iti) When ¢ > 1 the function F(.,c) is increasing on (—o0,00),
limg—, oo F(s,¢) = —00 and lims_,o F(s,c) = H(c) > 0.
Hence G(.,c) is defined on (—oo, H(c)).

Putting these facts together, we obtain that the domain of definition Dg of
G is:

D¢ = Dg U D,
where
D ={(t,c) | ¢ <0, H(c) <t < o0},

DE = {(t,¢) |0<c§é}u{(t,c)|c>é, oo <t < H(c))

(in figure 1, D, is the domain bounded by the left part of the graph of H and
the t-axis, and Dg is the domain bounded by the right part of the graph and
the t-axis).

We also note a fact that seems hard to prove directly, but which follows
indirectly from the results of the next section, as will be pointed out.

Lemma 7. The function G can be continued as a real-analytic function to
the open connected domain

(13) D =D;UDEU{(t,0) |t € R}
by setting
(14) G(t,0)=0 forallteR
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(in figure 1, D is the domain bounded between the two parts of the curve
representing the graph of H ).

Lemma 8. For generic t € R, the function G(t,.) is not DA.

Proof. Assume by way of contradiction that the conclusion of the lemma is
not true, so that G(¢,.) is DA for a set of values of ¢ which is either of positive
measure or not of first category. Then, applying lemma 3, with = D (recall
(13)), we conclude that G(t,.) is DA for all t € R. We note also that G(.,¢)
is DA for all value of ¢, since for ¢ # 0 it is the inverse of F(.,¢) which is
DA, and the inverse of a DA function is DA, while for ¢ = 0 it is identically 0
by (14). Thus G is DA with respect to both variables on Q. Now fixing any
5 € R, and using the defining relation (12) we have

G(F(3,¢),c)—5=0

for all . 'We now use lemma 2, with R(w,z) = G(w,z) — 3, to conclude
that F'(35,.) is DA. Since 5 € R was arbitrary, we have that F(s,.) is DA
for all s € R, but this contradicts the result of lemma 5. This contradiction
concludes the proof. O

4. CONSTRUCTION OF A DIFFERENTIAL EQUATION WITH NON-DA
DEPENDENCE ON INITIAL CONDITIONS

Theorem 9. Consider the initial value problem:
(15) Yvi=vy2—wy1, yi(0) =1
(16) Yo = y2(y2 — y1), y2(0) =12

Let the solutions be denoted by y1(r1,7r2; ), y2(r1,72; ), defined on the maz-
imal interval I(r1,r2). Then for generic x € R, the functions y1(0,rs;x),
y2(0,72; ) are not DA with respect to r.

To prove theorem 9, we assume for the moment that ro # 0, which implies
that y2(x) # 0 for all x (since by (16) and by the standard uniqueness theorem
for ODE’s, if yo vanishes at one point, it vanishes identically), and note that
from (15) and (16) we have

which implies

Y2 (z) = y2(0)er@—v1(0)
and in the case y1(0) =71 =0, y2(0) = ro:
(17) yo(w) = roet ).
Substituting (17) back into (15), we have

yi(x) = roe" @ —yy (2),
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or,
y1(x) _1
roevi(z) — Y1 (x) ’
Thus, integrating, and recalling the function F(s,c) defined by (10), we have:
F(yl(oa 23 I), TQ) =T
for all x € I(0,r2). In other words, recalling the definition (12) of G(t,s), we
have:
(18) y1(0,r9;2) = G(x, 1) forall rg #£0, xz € I(0,13)

We note in passing that, since y; (0, r2; ) is real-analytic in its domain of
definition, and is defined also for ro = 0, with 3,(0,0;2) = 0, (18) implies
that G can be extended to D as lemma 7 claimed.

In lemma 8 we showed that G(¢,¢) is not DA with respect to ¢ for generic
t. From (18) we then get, for generic x, that y; (0, r2; x) is not DA with resect
to ro. Using this fact and (17), together with the fact that compositions and

products of DA function are DA, we get the same conclusion for ys, concluding
the proof of theorem 9.

5. PROOF OF THE MAIN THEOREM

We first set some notation. Define ¥ C S(m,d) x R x R™ by
Y={(Pz,r)| PeS(m,d), reR™, zelI(Pr)}.
For each 1 < j < m let
i =A{(P,x, 71,0, 71,7415 s ") | Iy such that (P,x,r) € B}.
The proof of theorem 1, will be based on the following
Lemma 10. Assumem >2,d>2. Fix1<j<m.

Then for generic (P,T1,...;7j—1,Tj+1,-Tm, ) € X}, the functions fi; (1 <
i <'m) defined by (6) are not DA.

Proof. We note first that we may, without loss of generality and for notational
convenience, assume that j = m. Define Fj, : ¥ — R (1 < k <m) by

Fip(P,x,r1, ey Tim) = Yk(T1, ooy P ).
These are real analytic-function on X, and we may apply lemma 3, with
K =R, Q=3%, u identified with (P, z,r1,...,"m-1), v identified with r,,, and
F being any of the Fj, (1 <k < m). We would like to rule out alternative (I).
We now fix some 1 < i < m—1, and note that among the systems P € S(m, d)
is the system
Yi = Ym — Yi
Ym = Ym(Ym — i)
v, =0 fork#i,m.
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By theorem 9, for this system, for r; = 0 and for arbitrary values of 7
(k # i,m), the dependence of y;(r1,...,mm;x) and of Yy, (1, ..., "m; ) o0 Ty
is not DA. This rules out alternative (I) of lemma 3 both for F; and for F,,,
which implies that alternative (II) holds for both. Since 1 < ¢ < m — 1 is
arbitrary, this means that for each 1 < k < m there is a generic subset Ez of
3! for which the function Fy, is not DA with respect to r,,. Thus, setting

Y9 = ﬂlSkSmEz

we get a generic set, and for each (P, z,71,...7m—1) € 29 we have the conclu-
sion of lemma 10. O

Finally, to derive theorem 1 from lemma 10, we recall two classical results
(see [3]). Let C C RY x RM | and define for each u € RY,

C(u) = {veRM | (u,v) € C}.

We have:

(i) If the set C is of measure 0 then C(u) is of measure 0 in RM for all u € RY
except a set of measure 0. This is (a special case of) Fubini’s theorem.

(i) If the set C is of first category then C(u) is of first category in RM for
all u € RY except a set of first category. This is the Banach-Kuratowski
theorem.

Proof of theorem 1: We will prove the conclusion of theorem 1 for all P €
S(m, d) outside a set of measure 0, making use of Fubini’s theorem. To prove
the same conclusion for P outside a set of first category, one only needs to
replace Fubini’s theorem with the Banach-Kuratowski theorem.

For 1 < i,j < m define C;; to be the set of (P, &, 71, ..., 7j—1,Tj41, s Tm) €
Z;» for which the function f;; defined by (6) is DA. By lemma 10, each of the
sets Cj; is of measure 0 and of first category. Hence by Fubini’s theorem, for
all P € S(m,d) except a set of measure 0, the set

CZ(P) = {(.Z‘,’I“l, vy Ti—15Tj+1, ...,Tm) | (P,.’I,‘,’I“l, vy Ti—1,Tj41, ...,T‘m) € Cij}

has measure 0. Below we show that the sets C;;(P) are also of first category
for any P for which they are of measure 0. Since this conclusion is valid for
any 1 <4, < m, we have that for all P € S(m, d) except a set of measure 0,
all the sets C;;(P) have measure 0 and are of first category. This is precisely
the content of theorem 1.

It is left to show that whenever C;;(P) is of measure 0, it is also of first
category. Without loss of generality, and for notational convenience, we as-
sume j = m. We apply lemma 3 with K = R, Q = A(P) (recall (5)), u
identified with (x,r1,...,7m—1), v identified with r,,, and F' = f;,,. Since we
assume that Cj,, (P) is of measure 0, so that F is not DA with respect to r,
for almost all (z,71,...,7m—1) € A (P), alternative (I) of lemma 3 certainly
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does not hold, so (II) holds which means that Cj,,(P) is indeed also of first
category, concluding the proof.
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