GENERALIZATIONS OF THE BUSEMANN-PETTY
PROBLEM FOR SECTIONS OF CONVEX BODIES

BoRris RUBIN* AND GAOYONG ZHANGT

0. INTRODUCTION

Let M be a compact convex set of dimension ¢ in R” that contains the origin in its
relative interior. When ¢ = n, M is called a convex body. For 1 < k£ < ¢, when a
subspace n C R™ has dimension n — ¢ + k, the intersection M N7 is a k-dimensional
compact convex set in general. The k-th dual volume Vie (M) is defined as the average
of the k-dimensional volume volg (M Nn) about 7,

(0.1) Vie(M) = / volx (M N n)dn,
Gn,n7i+k

where volg(-) denotes the k-dimensional volume functional, and d7n is the invariant
probability measure on the Grassmannian G, ,_;ix. Note that V;(M) = vol;(M).
Dual volumes are important geometric invariants of sections of convex sets. One of
the subjects for sections of convex sets is to study how dual volumes behave. In this
paper, we investigate inequalities of dual volumes of origin-symmetric convex bodies.
We consider the following problem:

Problem A. Let K and L be origin-symmetric convex bodies in R", 1 < k < 1, and
E<l<n.If ) )
Vk(K N f) < Vk(L N E)

for any & € Gy, ;, does it follow that
Vi(K) < Vi(L)?

The special case, k =1 =n — 1, [ = n, is the well-known Busemann-Petty problem
[BP], which has been resolved by a series of works, see [LR], [Lu], [B], [Bo], [Gi], [P],
(G1], [G2], [K1], [Z2], [GKS]. Simplified proofs were presented in [BFM], [K3], [R3].
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2 B. RUBIN AND G. ZHANG

The Busemann-Petty problem deals with hyperplane sections of a convex body. It has
a positive solution in R® and in R*, and has a negative solution in higher dimensions.
The case k = i, [ = n, of Problem A, called the generalized Busemann-Petty problem
in [Z1], deals with intermediate sections. It was shown in [BZh] that the generalized
Busemann-Petty problem has a negative solution when 7 > 4. A different proof of this
result was given in [K2]. For i = 2, or 3, the answer is still open. For the special case
that K is a body of revolution, the answer is positive [GrZ], [Z1].

Problem A can be reformulated in an equivalent form which is more convenient to
handle and has generalizations. We denote by S™~! the unit sphere in R" endowed
with the rotation-invariant probability measure du. Let K be a convex body in R™ that
contains the origin in its interior. The radial function of K is defined by

pr(u) =sup{A>0: lue€ K}, ue S

One can show (see Lemma 2.1) that

WK = [ o) den
Sn—lmg

where ky is the volume of the k-dimensional unit ball, and d¢u denotes the relevant
induced measure. In view of this, we introduce the following functionals:

(0.2) I (K,¢) :/ px (v)*deu, Ji(K) = /Sn—l px (u) du.

Sn-1ng

Problem B. Let K and L be origin-symmetric convex bodies in R™, 0 < k < | < oo.
If

for any § € Gy, ;, does it follow that
Ji(K) < Ji(L)7?

In Problem B, k and [ are any positive numbers. If they are integers satisfying
1<k <iand k <l <n, then Problem B is a reformulation of Problem A. Particular
cases of Problem B were considered by Hadwiger [H] (n = 3, I — k < 1) for bodies of
revolution, and Koldobsky [K2, Theorem 8] (k =n —1,i = 3) for any origin-symmetric
convex bodies. For these cases they gave affirmative answers. Problem B has trivially
an affirmative answer when ¢ = 1. So it is always assumed that 2 < <n — 1.

Main results.

(a) Problem B (and therefore Problem A) has negative answers when (i) ¢ > 4; (ii)
Il —k>n—ifori=2or3. (Theorem 6.1)

(b) Problem B has a positive answer when | = k + 1 for ¢ = 2 or 3. (Theorem 5.2)

(c) Other cases of i = 2 or 3 remain open in general, but have positive answers when
K is a body of revolution. (Corollary 5.4)
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These results are generalizations of the full solution to the Busemann-Petty problem.
The main tools we use are totally geodesic Radon transforms and harmonic analysis
on the sphere. We also apply some techniques of fractional calculus [R1], [SKM], in
particular, the Erdelyi-Kober fractional integrals which arise in our problem in a natural
way. The curvature of a convex body plays a role in the proof of negative results. The
paper is almost self-contained.

The paper is organized as follows. In Section 1 we give explicit formulas for the
spherical Radon transforms and their dual transforms of SO(n — 1) invariant functions
(zonal functions). In Section 2 we define a class of star bodies called (i, p)-intersection
bodies and show the connections between these bodies and Problems A and B. Section 3
includes a few elementary geometric lemmas. In Section 4, using dual Radon transforms,
we derive important formulas that represent the radial function of a convex body in
terms of volumes of parallel sections. These are generalizations of the corresponding
formulas in [G1], [Z2] and [GKS]. In Section 5 we prove positive answers for Problems
A and B. Negative answers are obtained in Section 6. All results for Problem A in the
case of bodies of revolution are summarized in Table 1 at the end of Section 6.

As we have already mentioned, a negative answer to the generalized Busemann-Petty
problem for ¢ > 4 was first given in [BZh]. However, the proof of one of the lemmas in
[BZh] has certain gap. We will give another proof of that lemma in Appendix.
Notations.

Denote by 0,1 = 21P/2 /T (p/2), p > 0, and kp = 0p_1/p. Then o,_; is the surface
area of the unit sphere S”~! in R", and k,, is the volume of the n-dimensional unit ball
B™. Let G, ;, 1 < i <n—1, be the Grassmann manifold of i-dimensional subspaces
of R*. For u € S" ! and ¢ € Ghn.i, we denote by du and d¢ the corresponding SO(n)-
invariant measures with total mass 1.

A convex body in R™ is a compact convex set with nonempty interior. The class of
all convex bodies in R containing the origin o in its interior will be denoted by ™.
Denote by K7 the subclass of origin-symmetric convex bodies. A star body L in R" is a
star shaped set that has continuous radial function pr(u) =sup{A >0: Au € L}, u¢€
S™=1. The class of star bodies is denoted by 8™. The subclass of origin-symmetric star
bodies is denoted by S7'. N is the set of positive integers.

1. SPHERICAL RADON TRANSFORMS

Various problems about sections of centrally symmetric bodies are intimately con-
nected with totally geodesic Radon transforms on the unit sphere S”~1. In this section
we present some auxiliary statements about these transforms. More information can be
found in [He|, [R2], [R3], and other sources.

For continuous functions f(u) on S™~! and ¢(¢) on G, ;, the totally geodesic Radon
transform R;f and its dual transform R ¢ are defined by

(1.1) wn@©=[ | swda @ = [ o©ns

where d¢u and d,£ denote the induced normalized measures on the corresponding man-
ifolds S™™*N¢ and {€ € Gy, ; : u € €}. These manifolds can be identified with S*~! and
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Grn-1,i—1, respectively. The duality between R; and R is expressed by

(1.2) / RDOe©d = [ f)(Rig)(w)du

Gn,z S’n—l

This allows to define R;p and R} v for arbitrary finite Borel measures p on S"~! and v
on Gy, ;.

Let e1, eq, ..., e, be coordinate unit vectors, and x -y the usual inner product in R".
Given u € S ! and ¢ € G, ;, we write d(u, &) for the geodesic distance between u and
Sn—1N ¢, and denote by |Peu| the length of the orthogonal projection of u onto &. It is
easily seen that

(1.3) sind(u, &) = [Perul, cosd(u, &) = [Peu.

A function on the unit sphere S™~! or on the Grassmannian Gy, ; is called a zonal
function if it is invariant under the group SO(n — 1) of rotations preserving the north
pole e,,.

Lemma 1.1.

(i) A function f(u) on S™~! is zonal if and only if there exist fo(t), t € [—1,1], such
that f(u) = fo(cosw), w =d(en,u). If f(u) is zonal then f(u) = f(e1sinw + e,cosw).

(ii) A function ¢(§) on Gy ; is zonal if and only if there exist po(s), s € [0,1],
such that (&) = @o(sinf), 0 = d(en,§). If p(&) is zonal then (&) = @(&y) where
€9 = span(ey,...,e;_1,€e;sinf + e, cosb).

The statement (i) and the “if” part in (ii) are obvious. The “only if” part in (ii) can
be understood by geometric reasoning and proved analytically following more general
Lemma 2.7 from [GrR].

The next lemma provides Abel type representations for Radon transforms and there
dual transforms of zonal functions.

Lemma 1.2. Foru € S™ ! and { € G, ;, we denote
w=d(en,u), t=-cosw, 0 =d(en, &), s=sinb.

If f(u) = fo(t) and ©(§) = wo(s) then

(1.4) (Rif)(€) = — 2 / o (cos?0 — t2)=3)/2 fo(¢) dt
' ' cos' 20 J_cosg ° ’
. c sin w ) i i
(15 W= e [ e =) gy ) s,
032 03 20p—i-1
C1 = y Co = ——"—,
Oi—1 Op—2

provided that the corresponding integrals exist in the Lebesque sense. If f is an even
function then (1.4) becomes

COs o
(1.6) Rif)(€) = —2 /O (cos®0 — ) =372 fo(t) dt.

cost—20



GENERALIZATIONS OF THE BUSEMANN-PETTY PROBLEM 5

Proof. The formula (1.4) can be found in many sources in different forms. Both formulas
were presented in [R2], Lemma 2.4. For the sake of completeness we give another proof
which is more geometric. Let Pge, = (cos#)ug, ¥ be the angle between ug and u. Using
spherical trigonometry on the triangle (e, u,ug), we get u - e, = cosw = cos cos b,
and

RA©= [ folu-en)du

0i;—2

— /7T fo(cos ) cos B) sin® =2 1) da.
0

Oi—1

This coincides with (1.4). In order to prove (1.5) we fix {; € G, ; that contains e, and
u, and denote by G, the group of rotations in u*. For o € G, let ae, = v sinw +
wcosw, v € S" Nut. Then [Pes(aen)| = [Pepv|sinw, and by (1.3),

(Rfaz)(w) = [ allPesend

u€f

= / a(|Pa—1€d_enDda

u

:/ a([Peu (aen)|)do

u

= / a(|Perv|sinw)dv.
Sn—1lnyt 0
Using the bi-spherical coordinates [VK, pp. 12, 22]

v =2xcosY + y siny, dv = cosin™ "L 4p cos ™29 dypdady,
reST2cénuty ye 8Pl c g, 0< 9 <m/2,

we have [Pg1v| = sin, and

/2 ) )
(Riaz2)(u) = co / a(sinw sin ) sin™ "~ 4 cos' " 2epdap.
0

This gives (1.5). O

Let C; be the class of C*° zonal functions on the Grassmannian G, ;. Note that C;
is the class of even C'*°-functions on S™~!.

Lemma 1.3. The Radon transform R; and the dual transform R} are bijective mapings
from Cy onto C; and from C; onto Cq, respectively.

Proof. Tt is known (see [He], Proposition 2.4, p. 60) that R; and R} act from C>°(S™™1)
into C*°(Gy, ;) and from C*(G,, ;) into C*°(S™ 1), respectively. Since both transforms
commute with rotations, then R;(C;) C C; and R}(C;) C Cy. Injectivity of R; on C; and
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R} on C; follows from Lemma 1.1 and uniqueness of inversion of Abel type integrals
(1.6), (1.5) [SKM]. It was also proved in [GZ] (Lemma 2.2) using harmonic analysis on
Grassmannians. Note that R; is injective on C°_, (S™~1) [He, p. 99], [R2], whereas R}
is not injective on C*°(Gy, ;).

In order to prove surjectivity of R; : C1 — C; and R} : C; — C; we introduce the
spherical Riesz potential (or the generalized sine transform) [R2]

(1.7)

(Q*f)(u) = Un;;I(;SETl")/_le‘(;;XQ))/2) /Sn_l(l — |u- ’U|2)(a_n+1)/2f(’l))d’l)

on1l((n—1-0)/2) . i
~ 2r(-D/20(o)2) /Snl(smd(“’v)) T1f (v)dv,

a >0, a—n+1#0,2,4,....

Here d(u,v) is the geodesic distance between the points u,v € S"~1. The normalizing
coefficient in (1.7) is chosen so that if Y; is a spherical harmonic of degree j, then by
the Funk-Hecke formula and [PBM, 2.21.2(3)], Q*(Y;) = ¢a(j)Y; where

F(G+n-1-)/2)T((G+1)/2)

(1.8) Qa(j) = F((j+a+1)/2) F((j+n_1)/2)

(~(3/2)7% as j—o0)

for j even, and g, (j) = 0 for j odd. Since ¢,(7) is finite for a—n+1 # 0,2, 4, .. ., different
from zero for j even, and has a power behavior as j — oo, then Q* maps C,,,(S™" 1)

into C°,,,(S™""1) and is injective. By the same reason, for any g € C°,, (8™ 1), if

g=> Y, then f =3 . da(s)"'Y; belongs to C,,,(S*~') and Q*f = g. Thus Q*
is an automorphism of C2,,, (S™~1). Tt is known [He, p. 94], [R2, Theorem 1.1], that

_ I((n = 1)/2)T(i/2)
I((n—14)/2)L(1/2)

Let us show that each function ¢ € C; is represented by the Radon transform ¢ = R; f
for some f € C;. We have R} ¢ € C;. Hence there exists f € C; so that Rj¢p = Q1.
By (1.9), Rf¢ = RfR;f. Since ¢ and R;f are zonal and R} has a trivial kernel in C;,
this implies ¢ = R; f. Now let us show that each function f € C; is represented by the
dual Radon transform f = R}y for some ¢ € C;. By (1.9),

(1.9) RiR;f =cQ'f,

fF=Q7HQ™) I =Rfp, p=c R(QTH7'S
Since R; and (Q*~!)~! preserve smoothness and zonality, we are done. [

2. DUAL INTRINSIC VOLUMES AND INTERSECTION BODIES

_ The following lemma contains various representations of the dual volume functional
Vi. For £ € Gy, we denote by G; (&) the Grassmann manifold of all k-dimensional
subspaces 7 in £.
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Lemma 2.1. Let K € 8", £ € Gy 3, 1 <k <1 <n. Then the dual volume

(2.1) Vi(KN§E) = / voli (K N&Nmn)dy

Gnon—itk

has the following representations:

(2.2) Vi(K NE) :/ volg (K N ¢)d¢
Gi,k(€)
2.3 = kd
23) e [, (e
(2.4) = rr(Ripk) (€)
_ Ok—1 k—i
(2.5) = oy /Kng || d.

Proof. Let us prove (2.2). For almost all € Gy, ,—;+k, the intersection ( =& N7 is an
element of G; 1(§). Given ¢ € G, (£), denote by d¢n the invariant probability measure
on the homogeneous manifold {n € Gy n—itx : 7 O ¢}. By the formulas (14.40) and
(14.42) in [Sa, for any f € L'(Gy n—it+k) We have

(2.6) / f(n)dn = / ac £(n) A(m)den
Gnon—itk Gir(€) {n€Gn n_itr:nDC}

where the factor A(n) satisfies

/ A(n) d¢n = ¢ = const.
{nEGn,nfi+k:nD<}

The value of ¢ depends on normalization of measures involved. If we set f(n) = volg (KN
¢ Nn) then for n O ¢ we get f(n) = f(¢), and (2.6) yields

(2.7) / volg(K N&ENn)dn =c / volg (K N ¢)dC.
Gn,n—i+k Gz,k(g)

If K is a unit ball then (2.7) gives ¢ = 1 and (2.2) follows.
Let us prove (2.3) and (2.4), which are equivalent. By passing to polar coordinates,
we have voly (K N¢) = sk (Rep%)(¢), and therefore

/ volg (K N ¢)d¢ = ky / (Rip%)(Q)d¢ = Ky, / px (u)Fdeu.
Gik(€) Gi k(€)

Snflng

The last step is clear in view of duality (1.2) (set ¢ = 1). The equivalence of (2.5) and
(2.3) follows if we write (2.5) in polar coordinates. [
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Remark 2.2.

(i) If M is a compact convex set of dimension 7 in R™ that contains the origin in
its relative interior, and M C & € G, ;, then Vx(M N ¢) = Vi (M), cf. (0.1). By (2.3),
the dual volume Vi (M) is independent of the dimension n of the ambient space, and
can be called the kth dual intrinsic volume of M. This notion is dual in a sense to the
intrinsic volume Vj, (M) introduced by McMullen in [Mcl]; see also [Mc2], [S, p. 210].
Whereas Vi (M) corresponds to projections of convex bodies, V; (M) is appropriate to
studying central sections. The representation (2.5) shows that Vi (M), k=1,2,...,
are k-homogeneous rotation invariant valuations on K™; see [A], [KI].

(ii) The integrals in (2.3) and (2.4) are meaningful for all positive k and star bodies.
We will keep the same notation Vi (K N ¢) and Vi (K) for these cases. If i = n, then
(2.3) becomes

(2.8) To(K) = 1 /S prwdu.

For k < n, k € N, (2.8) is the re-normalized version of the dual Quermassintegral

~ K1 _~
(2.9) Vi(K) = ,Tk k(K.
Dual volumes of star bodies were introduced by Lutwak; see [Lu] and [BZ, p. 158]. The
definition here differs by a normalization constant factor, which was resulted from a
discusson with R.J. Gardner.

(iii) In the case i =n, k < n, k € N, (2.2) yields

(2.10) Ti(K) = /G o VKOG

This quantity measures the mean volume of k-dimensional central sections of K.
(iv) From (0.2) and (2.3), we have

(2.11) Vi(KNE) = kilp(K,E),  VilK) = kipJi(K).

These equalities give the connection between Problems A and B.

Definition 2.3. For 1 < ¢ < n —1, p € R, an origin-symmetric star body K € &7
is called an (i, p)-intersection body if there exists a non-negative measure p on the
Grassmannian Gy, ; such that

(2.12) pb = R¥p.

We denote by Z; , the class of all (7, p)-intersection bodies in R™.

An (n — 1, 1)-intersection body is simply called intersection body. This notion was
introduced by Lutwak [Lu]. The (i,n — i)-intersection bodies were studied in [GrZ] and
[Z1]. The connection of Problems A and B with (i, p)-intersection bodies is given by
the following two lemmas. The basic idea comes from Lutwak [Lu].
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Lemma 2.4. Let0< k<!, and K, L€ S". If K € 1; ;_, and
Vk(K N f) < Vk(L N f)

for any £ € Gy ;, then

Proof. Since K € Z; ;_, there exists a non-negative measure p on Gy, ; such that
pe® = Rfp. By (2.8), (1.2), and the Holder inequality, we have

VI(K) = Ky /sn—l px(u)ldu
=w [ R @pr(w)d

o /G (Ripl) (€)du(€)

n,i

=2 [ V(K N)dp(e)
kJG,;

< P Vk(ng)d/ﬁ(g)
k JGy;

=k / prc ()" pr (w)* du
Sn—l
< f/l(K)l—k/lf}z(L)k/l.

This gives the inequality V;(K) < V;(L). O

Lemma 2.5. Let 0 < k < I, and let L be a C* origin-symmetric convexr body of
revolution that has positive curvature. If L ¢ T, i then there exists another C'™
origin-symmetric convexr body of revolution K having positive curvature so that

Vi(KNé) < Vi(LN¢)

for any § € G, ;, but
Vi(K) > Vi(L).

Proof. By Lemma 1.3, there is a unique C*° zonal function f on G, ; so that
Py =Rif.

Since L ¢ Z;;_, f is negative somewhere. Therefore, there is a C° zonal function

g > 0 on G, ; such that
/ fg <.
Gn,i
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Define an origin-symmetric body of revolution K by

Pk =Pk —eq

where ¢ > 0 is sufficiently small and g = R;g;. Using the argument from [G2, p. 439],
one can show that K is convex and its boundary has positive curvature. It follows that

Ripl = Rip}, — eg.

By (2.4), this gives
V(K N€) < Ve(LN¢)

for any ¢ € G, ;. But

| Atk do=c [ ®inm=c[ g<o
Sn—1 Sn—1 Sn—1

Thus, the Holder inequality gives

1—k/l K/
/ ph < / ol F ol < (/ plL) (/ pirc) :
Sn—l Sn—l Sn—l Sn—l

This yields Vi(K) > Vi(L). O

3. SOME GEOMETRIC LEMMAS

Given a point z € int(K) (the interior of K), define the extended radial function of
K with respect to z,

p(z,v) =sup{A > 0:z+w € K}, (z,v)€Q=int(K)x S" L.

Lemma 3.1. If a conver body K € K™ has C™ boundary 0K, 1 < m < oo, then the
extended radial function p(z,v) is C™ in Q.

Proof. Consider the function

r—z

v=g(z,x) , zemt(K), z € 0K.

T Jr—7

Since 0K is C™, g(z,z) is a C™ function in int(K) x K. When z is fixed, g(z,-) is a
C™ diffeomorphism from K to S™~!. By the implicit function theorem, z = f(z,v) is
a C™ function in Q. Thus, p(z,v) = |z — z| = |f(z,v) — 2| is a C™ function in Q. O
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Lemma 3.2. For K € K7, there exist origin-symmetric conver bodies K; C K of
positive curvature such that pg,(u) € C®(S" ') and pk,(u) — px(u) uniformly on
S"=1 as j — oo.

Proof. Without loss of generality, assume that pg(u) > 1. It is well known that every
origin-symmetric convex body can be approximated in the Hausdorff metric by origin-
symmetric convex bodies having C'*°-boundary of positive curvature; see [S], pp. 158-

160. Therefore, there exist C'* origin-symmetric convex bodies of positive curvature
K such that

1 n—1
oKt (w) — pr ()| < 1 Vu e S".

Let K; = J_‘—FLlK.; Then, obviously, pk, () = px(u) uniformly on S*~! as j — oo, and

J j 1 J j 1 7‘ ]_ )

Lemma 3.3. If K is a C* convex body of revolution with the radial function pg, then
the star body K., € > 0, defined by

1
PIIJ(EZP]IJ{—EPP?_a p>07
is a C'°° convex body that has positive curvature when € > 0 is small enough.

Proof. We only need to prove that the boundary of K. has positive curvature. Note
that

pr. = px — €pi + O(e).
Let p = px — €p%. Abusing notation, one can write p(u) = p(f), 0 being the angle
between v and the hyperplane z,, = 0. Since p% + 2p'K2 — prpP% > 0, an elementary
calculation gives

2 2
P+ 20" = pp" = (1 = 3epx) (P + 20~ — PKPK) + €pi + O(e?) > 0
when ¢ is small enough. This gives the desired result. [

Lemma 3.4. Let C be a C? closed convex curve in the plane that encloses the origin.
If (p,0) are the polar coordinates of a point on the curve and k(0) is the curvature, then

/o " R(O)(p(0)> + p'(0))}db = 21

Proof. Let s be the parameter of arc length of C', and let ¢ be the angle between the
tangent line and the x-axis. Then

ds - 2 / 2 % d_go -
Thus
27 ¥4 27 L
o = / dp = / s = / 5(0)(p(6)2 + 9/ (6)2) % df,
0 0 0

where £ is the perimeter of the curve. [
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4. DUAL RADON TRANSFORM FORMULAS
FOR RADIAL FUNCTIONS OF CONVEX BODIES

It was discovered in [G1] and [Z2] that positive solutions to the Busemann-Petty
problem in R3 and in R* are intimately connected with the volume of parallel hyperplane
sections of convex bodies. For ¢ = n — 1, this connection evolves through appropriate
representation of the inverse spherical Radon transform of the radial function pg (u).
The corresponding formulas were obtained in [G1] (n=3), [Z2] (n=4), and [GKS] (all
n > 3). A different proof of the formulas was given in [BFM]. In this section, we
generalize these formulas to :-dimensional sections for all 2 <7 <n — 1.

For each convex body K € K", define the following functions:

A1) At €) = /S VKO (e €€ G LR

(4.2) a(t,v) = / vol; (K N {tu + Ru})du, vesS" !l teR
Snr—inyt

The function (4.1) averages volumes of all i-dimensional sections of K parallel to £ at
distance |t| from the origin. The function (4.2) is the mean length of chords parallel to
v at distance |t| from the origin. Note that

(4.3) a(0,v) = pk (v).
Lemma 4.1. Let K € K", 2 < i <n. Then

i—3

(4.4) RIA;(t,-)(v) = 0i—2 /too a(r,v)(r? —t*)= rdr, t>0.

Proof. This equality was established in [BFM] for ¢ = n — 1. In the general case the
proof is as follows. We denote

gi(t,v) = RFA;(t,)(v), ve s,
b(z,v) =voly (K N{z+Ruv}), =ze€R".

Fix a unit vector in v; € v+ and let & be a subspace of dimension i that contains v and
v1. Let SO(n — 1) be the group of rotations about v. Then

gilt,v) = / Ai(t, ako)da
S0(n—1)

:/ da/ duo/ dx
SO(n—1) Sn—1ngt zeKN{afo+tauo}

:/ da/ duo/ b(a(y + tug),v)dy
SO(n—1) Sn—1ngd yE&oNul

:/ da/ duO/ b(+/|y|? + t2avy,v)dy
SO(n—1) Sn—1ngd ye&onut
= 0j_o / da/ b(v/ 82 + t2awy,v)s " %ds

S0(n—1) 0

0o o
= 0j_9 / du/ b(ru,v)(r? — tz)%rdr,
Sn—1nyL t
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which gives (4.4). O
Let
(4.5) rg =sup{t >0: tBC K}

be the radius of inscribed ball in K.
Lemma 4.2. If conver body K € K™ is C™, 1 < m < 0o, then the derivatives

. d\’
AP(1,6) = (%) Ai(t,8),  1<j<m,
are continuous in (—rg,TK) X Gni-

Proof. Let z = tu, |t| < rg, u € S*~1N&L. Then

(4.6) vol; (K N{¢ +tu}) = i1 / p(tu,v)'dv,
v Jsn-ing

and by (4.1) we have
Oi—1

A;(t,6) = ,_/ du/ p(tu, v)'dv.
1 Sn—lmé‘J_ Sn—1m£

The lemma follows from Lemma 3.1. O

Theorem 4.3. If conver body K € K" is C?, then

% A5(0,-) — As(t,-
(4.7) pK——R2/ 2( )t2 2( )dt,
0

2

(4.8) pr = —7—R345(0,).

E

Proof. When u, v are fixed, b(ru, v) = vol; (KN{ru+Rv}) as a function of r has compact
support and is continuously differentiable except on the boundary of the support. By
(4.4) and the Fubini theorem,

g2(t,v) = O'Z'_g/ (r? — tz)_%rdr/ b(ru,v)du
t Sn—1nyLl

= —ai_2/ du/ (r® — £2)2 (ru, v)dr.
Sn—1nyt t

By changing variable, we get

1
t_z(QZ(t7U) - 92(07U))
o o0
:ai_2/ / s —1)7b (tsu v)ds—i—/ sb' (tsu, v)ds)
Sn— 1ﬂvJ- 1 0

00 1
:ai_2/ / (s —1)%)b’(tsu,v)ds+/ sb'(tsu,v)ds).
Sn—1nyLl 1 0
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Thus, by Fubini’s theorem,
R*/ Ay(t,-) — Ay(0, .)dt:/ ga(t,v) —gg(O,v)dt
0 0

2 12 12
[e’e) o 2 1 1
=09 / du( —b(0,v) / Mds — b(0, v))
Sn—lnyL 1 s
= —2mpK(v)

This yields (4.7).
To show (4.8), we differentiate (4.4) and obtain

%R;,Ag(t, (v) = —27ta(t,v).
Hence
@ R3A;5(t 2ma(0 4
SRS AL, )(0)|_ = —2ma(0,0) = ~4mpic(v)

By Lemma 4.2, one can differentiate under the sign of R} that gives (4.8). O

The special case n = 3 of formula (4.7) was obtained in [G1], and the special case
n = 4 of formula (4.8) was proved in [Z2]. The proof of formula (4.7) above requires
that the convex body is C!. In fact, formula (4.7) holds for any origin-symmetric convex
bodies.

Theorem 4.4. If K € K7 then the function

(4.9) pa2(§) = % /(;Oo A2(0,§)t—2 As(t, &)

dt,

is well defined for almost all £ € Gy, 2, non-negative, and integrable on Gy, 2. Further-
more, for all v € S™1,

(4.10) pr (v) = (R3p2)(v).

Proof. We fix v € S™~!, and set g(t) = R5A42(t,-)(v), a(r) = a(r,v). By (4.4),
g(0) —g(t) = 2t[/000 a(ts)ds — /100 a(ts)(s? — 1)_1/2sd3]
=2t /00 a(ts)k(s)ds

where k(s) = 1if s < 1 and k(s) =1 — s(s2 —1)~%/2 if s > 1. Then for ¢ > 0,

%wadt:/em%/owa(ts)k(s)ds
:/0°°a(y>dy/:°k<%)§

_ /OOO a(y)% /Oy/s k(s)ds.
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This gives
(1.11) 3 [ 0= [T g dy
y (2 1\ 1/2
Ay) = 5/0 k(s)ds = y= W -l € L'(0, c0),

where (y? — 1)4:1/2 = (y2 —1)"'/2if y > 1 and 0 otherwise. Since a(r) is bounded and
continuous at r = 0, the Lebesgue theorem on dominated convergence yields

(4.12) % tim [ 290 4 o) /oo My)dy = 5 a(0) = mpx.

e—0 J, t

To finish the proof we denote

ve(£)

~or 12

1 /oo A2(07 f) B A2(t7 5)
dt.

It is clear that ¢, is bounded on G, 2 for each € > 0. Moreover, since K is convex and
origin-symmetric, then A5(0,£) — A2(¢,£) > 0 Vi, &, and therefore ¢ () represents a
sequence of non-decreasing (in €) non-negative functions. The integrals

o _ 1 [%g(0)—g(t)
Rape = 2 /6 12 dt

are uniformly bounded in & because by (4.11), Rjp. < 77 '||al|o f5° A(y)dy. Applying
the Beppo Levi theorem [KF, p. 58] and using (4.12), we conclude that the limit

. 1 [ A5(0,¢) — Aa(t,
moﬂg%@:%A ﬂs$2(@

dt

exists a.e. on Gy, 2, @ is integrable on G, 2, and R3¢, = lin% Ripe = px. O
e—>

The next theorem extends (4.7) and (4.8) to the case of sections of arbitrary dimen-
sions 1 < ¢ < n. It generalizes known formulas for + = n — 1 which were obtained in
[GKS] using Fourier transform techniques. Our proof is based on another idea, and
might be useful in different occurrences.

Theorem 4.5. If K € K? is C°, then the radial function px can be represented by
the dual Radon transform px = R} ¢; where

(4.13)

1—2

1—1

3 o0 ) 2 29 ,
pi(§) = Wl;i) /0 = [Ai(t, ) — &AZ@J)(O,&) dt, i even,
5 !

J=0

(4.14)

(_1)i;1 rl=t (i—1) .

T T A g, ), dd.
21[\( ) (3 ( g) 10

*
2

wi(§) =
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Proof. Consider the following analytic family of functions associated to the body K
1 .
4.15 (&) = 7/ Pzt nds, €€ Gni, 0<ReA<n-—i,

where |P;. 2| denotes the length of the orthogonal projection of z on . Integration in
(4.15) over slices parallel to £ gives

N = g [ WP VoK g+ ydy

T'(A/2) Je

(4.16) = ;’6;‘2; /O b A1 A (¢, €)dt

On the other hand, by passing to polar coordinates we have

_ On—i—1 Ai—n )\—i—z
4.17 = P, u)du.
For f € C,,. (S™1), consider the generalized cosine transform [R2]

on_1T((n—i— \)/2)

(4.18) (R})(E) = 2r(n=1/2T'()\/2) gn-1

f(u)\P§¢u\’\+i_"du.
By Theorem 1.1 from [R2],

(419) o RR = @M,

)/2)

where Q* 1%~ f is the spherical Riesz potential defined by (1.7). For f = p;‘;”, combining
(4.19), (4.18), and (4.17), we obtain

(A +49)T((n—14)/2) D((n — i — X)/2)
27=D/2T((n — 1)/2) '

(4.20) Q>‘+i_1p;‘{+i = cAR; gx, cy =

Owing to (1.8), analytic family Q® includes the identity operator (for @ = 0). Hence
analytic continuation (a.c.) of (4.20) at A = 1 — ¢ reads

_T(n—i)/2)

(4.21) px = cR}[a.c. g)‘|>\=1—i]’ or(n—1)/2

We evaluate analytic continuation in the square brackets using (4.16). By the well-

known formula from [GS, Chapter 1, Sec. 3|, for —£ < ReA < —£+ 1, £ € N, we
have

(4.22) a.c. /Oo t’\_lAi(t,g)dt:/oo t*—l[ ez: AP, g]
0 0 0/
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Since all derivatives of A;(t,£) of odd order are zero at ¢t = 0, then for £ odd, the sum
Z;:(l) can be replaced by Zﬁ:ov and (4.22) holds for —¢/—1 < Re A < —£+ 1. It follows
that for ¢ even one can set £ =i —1 in (4.22) and obtain (4.13). On the other hand, the
duplication formula for I'-functions yields

A-1,1/2 5

n—i—1 1 o A—1 4.
O 5 1) cosOnr/2) T((TL = N)/2) [m) /0 P A €]

gr(§) =

and therefore [GS, Chapter 1],

_ (=)D 27l 20, iy o1
a.c. g/\(é.) |>\:1—i - 2@ F(’L/2) A’L (07 5)
This equality together with (4.21) imply (4.14). O

5. POSITIVE ANSWERS

The following theorem gives a partial solution to Problem B.

Theorem 5.1. Let i =2,0r3, k> 0, and K,L € K?. If I;;(K,&) < Ix(L,&) for any
5 € Gn,z’; then Jk+1(K) S Jk+1(L)

Proof. Let K have a C'*° boundary. Then
t — [vol; (K N {€ + tu})]*/?, u €&t

is a concave function and has maximum at ¢ = 0. It follows that A} (0,-) < 0 (the
derivative exists by Lemma 4.2), and A5(0,&) — Aa(t,&) > 0 VE. Hence Theorem 4.3
implies that K € Z;; when ¢ = 2,0or 3. The desired result now follows by Lemma
2.4. If K is not smooth, one can pick a sequence {K;} specified by Lemma 3.2. Since
Kj C K, then Ik(KJ,f) < Ik(K, 6) < Ik(L,f), and, by above, Jk+1(Kj) < Jk+1(L) for
all j. It remains to pass to the limit in the last inequality, by taking into account that
Ji+1(K;) = Jp41(K) as pg; (u) — px (u) uniformly on $*~1. O

The following theorem gives a partial solution to Problem A and generalizes positive
solutions to the Busemann-Petty problem in R3 and R*; cf. [G1], [GKS], [Z2].

Theorem 5.2. Let 1 <k <i4,i=2,0r3, K,L € S]. If K is convex, and
Vk(Kﬂf) < Vk(Lﬂf)

for all§ € G ;, then
Vir1(K) < Vi (D).

Theorem 5.1 resolves Problems A and B ounly for I = k + 1. If we wish to extend it
to any [ > k then, by Lemma 2.4, we need representation

(5.1) P =Rip, >0
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Theorem 4.5 does not provide it, but the proof of this theorem shows that one can arrive
at (5.1) and express ¢ in the same manner as in (4.13), if we change the definition (4.1)
of A;(t,£). Let us sketch the basic idea [R4]. The expression vol;(K N {£ + tu}) is
the euclidean Radon i-plane transform of the characteristic function xx (z) of the body
K [He]. If we replace A;(t,£) by the i-plane transform of the more general function
|z|*xx (x) with appropriate A\ and proceed as in the proof of Theorem 4.5 we arrive at
(5.1). This way leads to another class of star bodies rather than just convex bodies.

Bodies of revolution. Theorems 5.1 and 5.2 can be essentially strengthened for
bodies of revolution. To this end we use representation (1.5) the right hand side of which
resembles the so-called Erdelyi-Kober fractional integral. Such integrals are well known
in fractional calculus and arise in numerous applications; see [SKM, Section 18(1)] and
references therein. We recall some basic facts.

For a > 0 and 1 > —1/2, the Erdelyi-Kober fractional integral is defined by

(5.2) LNf(r) = %(:;n) /Or(r2 — sH) 12t £(5)ds.

For a =0, we set If = f. Operators I,y enjoy the composition law

arB _ jatB
(5.3) In In+a = Ifl ]

This can be easily checked by changing the order of integration. The left inverse of I
has the form

1 d\"
ay—1 — 27 2n+2m ym—a >
(5.4) (In) fr)y=r <_2r _dr) r IV flr), Vm>a, meN.

Owing to (1.5), we have
(5-5) Rip(u) = cIieo(r),

. W(i—l)/20n_i_1 o= 1—1 _n—i
on g 2 1Ty

-1, r = sind(en, u).

Formulae (5.2)-(5.5) will be repeatedly used in the following.
We recall that a body K is axially convex (with respect to the z,-axis) if any segment
[A, B] parallel to the x,-axis lies in K provided that A, B € K.

Theorem 5.3. Leti=2o0r3, k>0, and0<p<n—i. IfK,LeS8} and K is an
azially convezr body of revolution satisfying I, (K,€) < Ix(L,&) for any & € Gy ;, then
Jk+p(K) < Jk+p(L)-

Proof. 1t is enough to prove the result when pg € C(S"~1). In this case pf € Ci,

and, by Lemma 1.3, p% = R}y, ¢ € C;. According to Lemma 1.1, we set px(u) =
p(r), (&) = ¢o(s), where r =sind(e,, u), s = sind(ey, ). By (5.5),

(5.6) p(r)? = clo(r).
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If i =3, then a =1, 2n =n — 5, and (5.4) (with m = 1) yields

(5.7) coo(r) = %7‘4_”(7"”_3,0(7")1’)/_

This expression is non-negative for 0 < p < n—3 because rp(r) is non-decreasing (owing
to axial convexity of K). Therefore, K € Z3 ,. If i = 2, then a =1/2, 2n =n — 4, and
by (5.4) we have

3—n
cpo(r) = ! 9 d% (Tn_zI(lﬁs)ﬂ ) (r)
(5.8) = 73—_ni /T(r2 — §2)7Y25n2y(5)P ds
wl/2 dr J,
(5.9) _rnd / Y1 = )2 )2 p(rt? i,
wi/2 dr J,

If 0 < p <n—2, then " 2p(r)? = r"=2=P(rp(r))? is non-decreasing since rp(r) is
non-decreasing. It follows that the integral in (5.9) is a non-decreasing function of r.
Hence ¢ > 0, and therefore, K € Z,. The desired result now follows from Lemma
24. O

For n = 3,7 = 2, Theorem 5.3 was proved by Hadwiger [H].
In the context of Problem A we have the following

Corollary 5.4. Leti=2o0r 3,1 <k<i, k<l<n+k—i IfK,LeS} and K is
an azially convex body of revolution satisfying

Vk(Kﬂg) < ~k(Lﬂ§)

for any £ € Gy, 4, then

6. NEGATIVE ANSWERS

To prove negative results, we need to construct counterexamples. The counterexam-
ples are perturbations of a cylinder, which are constructed as follows: We take a rec-
tangle centered at the origin in the two-plane (z1,x,): {(z1,%,) : |z1] < 1, |z,| < h},
h > 0. Smoothen each corner of the rectangle to get a closed convex curve C that
is symmetric about the axes. Specifically, for small ¢ > 0, around the corner (1,h),
connect the points (1 —e, h) and (1, h —¢) with a C*° convex curve that is C*° tangent
to the rectangle at both points. Do the same for other corners. Then the curve C is
C® and contains four line segments. As an explicit example, one can divide the closed
convex curve e~ /%1 4+ e~1/7n = ¢=1/¢” into four symmetric parts and put them at the
four corners of the rectangle. Rotating the curve C' about the x,-axis, we get a C'*®
convex body of revolution L.
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Theorem 6.1. For all k > 0, in the cases
(a) 1<i<3, p>n-—i, and (b) i>4,p>0,
there exist origin-symmetric convex bodies of revolution K, L in R™ such that
In(K, &) < Ii(L, )

for any § € G, ;, but
Jotp(K) > Jpip(L).

Proof. By Lemma 2.5, it suffices to show that there exists a C'*° origin-symmetric convex
body of revolution with positive curvature that is not in Z; ,. By Lemma 3.3, we only

need to construct a C'*° origin-symmetric convex body of revolution L ¢ Z; ,. That is,
if

(6.1) rL =R,

then ¢ is negative somewhere. Let L = L.. Note that for some w, > 0,

1

sinw’

(6.2) pr(u) = we <w <

bo | 3

7

where w is the geodesic distance between u and the north pole. Let p(r) = pr(u), r =
sinw, re =sinwe. Then p(r) = 1/r Vr € [re, 1].

Let us consider all cases step by step.

1°. Let 1 =2, p > n — 2. We choose a long smoothened cylinder L. (h is large). As
in (5.8), we have

d S
ext /2 Sgo(s) = 4 [ (52 = 1) (P dr = 1 (s) + (9
0

where
d

(o) = [ =) <o

and

ns) = 5 [ (52 =y

ds J,.

d 1
= [s"—2—f’/ (1 —¢2)~1/24n=27P gt |
re/s

An elementary calculation gives

g2(s) = s7*r2 7 Pla(re/s) + b(re/s)],
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1
a(z) = (n— 2 —p)xp+1_"/ (1222 g () = (1 — 4?)" /2,
xT

x =71¢/s € [re, 1]. Note that r. is very small when the height of L. is large. Therefore,
the statement will be proved if we show that

(6.4) wl_i)IilO[a(a?) + b(x)] < 0.

Indeed, in this case there exists z. € (0, 1) such that a(z¢) + b(z.) < 0. If we choose we
in (6.2) so that sinw, = z,, then go(1) = 27~ 17P[a(x.) + b(x.)] < 0, and we are done.

Let us check (6.4). If n — 1 —p > 0 then a(z) - —oo, b(z) — 1, and (6.4) follows.
In the case n — 1 — p < 0 we have

n—2-—p 1— 1

lim [a(z) + b(x)] = < 0.

z—+0 p+1—n+ S n—1-p
2°. Let i =3, p>n — 3. Then for r € [re, 1], (5.7) yields
2cpo(r) = r+ " (r"3PY = (n — 3 — p)r P < 0.

3°. Let t = 4. Then a = g, and n = 5 — 3. We choose the example L. so that h = 1.
By (5.6),
3
p(r)? = cly_3p0(r),

and therefore (5.4) and (5.2) yield

Using integration by parts and differentiation twice, we have

T 1

s | 0=y s

cpo(r) =

Changing variable s = sin 0 gives
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where
1n" 30
9(6) = j@ ( “ (s[;nSGCOSG )> = a(0) — b(0) D(0)sin"~" 0,
a(0) = (n—3)(n—5)p? sin™ %6 cosd + sin" %0 ( ) pp—l dp
inn—4 9 d
N S cosf ppp—2(p2 +(p+ 1)(dg) )
D—2 d
0= o)
() = w(0) (0 + (30)) 2,
65 (o) =2 +2(%)° - pit

o+ (%))

Since p and % are uniformly bounded for any 0 < € < %, there are constants by and
M so that
la(@)] < M, b(0) > by >0
for 0 <0< T Tet My =M [ (L—sin20) 2df. Then,
(6.6) (1) <y - /%D(H) s 10
. cpol—= 1 — bo . T av.
V2 0 (2 —sin®0)®

Since the curve C converges to a square as ¢ — 0, the integral in (6.6) can be arbitrarily
large. Indeed, one can choose § > 0 so that

sin” %9 8 M,
>

(1 —sin2)? 7o

o Voe(7-67)

Then we choose € > 0 of L. such that x(6) =0 for 0 <6 < 7 —§. By Lemma 3.4, we

obtain .
n" %0 M 2M
/ D(# -do > s 1/ D(9)do = ==L,
l — sin 9) who bo

2

Therefore, by (6.6), goo(ﬁ) < —M; /e < 0 when ¢ is small enough.
4°. Let ¢ > 5. Again, we choose the example L. so that h = 1. By (5.6) and (5.3),

p(r)P = cIZpo = cIZ IS S oo = I24p,

where ¢ = cI ., > 0o. By (5.4),
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Let » = sin ¢. Note that 3—; gz = 0. An elementary calculation gives
— 4
1 1 _,d%p
ME) =3 ((n —i+2)(n—19)p" +pp” ),
4

Since the curvature x of the curve C' at ¢ = 7 tends to 400 as € — 0, (6.5) implies that

(‘ng tends to —oo as € — 0. Therefore, zp(%) < 0 when ¢ is small enough. It follows
that ¢q is negative somewhere when ¢ is sufficiently small. [

Remark 6.2. In the case i > 4, p > n —1i, the statement of Theorem 6.1 can be proved
more easily. Namely, by using notation of Lemma 1.2, from (1.5), (6.1) and (6.2), we
have

T 2\ (i—3)/2
(6.7) PP — 62/ (1 — —) "o (s) ds, Vr € [re, 1],
0

where r = sinw, @o(sind(e,,&)) = @(&). If oo > 0 and p > n —i then the left hand side
of (6.7) does not increase on [r, 1], whereas the right hand side is increasing because
its derivative is positive. This contradiction shows that ¢( is negative somewhere.

For p = n — k, Theorem 6.1 or Remark 6.2 imply the following

Corollary 6.3. If1 < k <1i and 4 < i < n, then there exist origin-symmetric convez
bodies of revolution K and L in R™ such that I(K,§) < Ix(L,&) for any & € Gy, ;, but
vol, (K) > vol, (L).

If k£ =4 this corollary gives the known negative answer to the generalized Busemann-
Petty problem for i-dimensional sections of origin-symmetric convex bodies in R” in the
case 4 < i < n. This result was established in [BZh] and [K2] by different methods.

The following table is a summary of solutions to Problem A when K is a body of
revolution.

Table 1
k 1 Answer
1 n No Theorem 6.1
1 1<li<n Yes Corollary 5.4
2 2<i<n Yes Corollary 5.4

1<k<3 k<l<n+k-3 Yes Corollary 5.4
1<k<3 n+k-3<l<n No Theorem 6.1
4 1<k<n k<l<n No Theorem 6.1

IV 0o o b N DO e

~.
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APPENDIX
The following theorem is in [BZh].

Theorem A.1l. (see [BZh], Theorem 1.3). For 3 < i < n, there exist origin-symmetric
conver bodies of revolution K and L in R™ so that
vol;(K N¢) <vol;(LNE), V€€ Gy,
but
vol, (K) > vol,(L).

The proof of this theorem used the following

Lemma A.2. (see Lemma 3.2 in [BZh]). For 3 < i < n, there exist a C* convex body
K and a C*° function g so that

Ri(pi*g) <0, /S B P g > 0.

The proof of this lemma given in [BZh] has certain gap. We give a correct proof here.

Proof of Lemma A.2. We shall seek a C'*° convex body K and a C°° function g that
are SO(n — 1)-invariant. One can take K to be a smoothened cylinder L. described in
the biginning of Section 6. By Lemma 1.3,

(A.1) P =Rip,

and (1.5) yields

r 2\ (i—3)/2 )
(A.2) 1= c2/ (1 - r_2> s o (s) ds, Vr € [re, 1],
0

where 7 = sinw, @y(sind(en,&)) = @(&). If oo > 0 then the right hand side of (A.2) is
increasing because its derivative is positive. This contradiction shows that the function
(&) in (A.1) is negative somewhere. Then we construct g, € C; so that ¢1(§) < 0V¢ €
Gn,i, and fGn P91 > 0. To this end we take the absolute value of g; sufficiently small
where ¢ > 0 and sufficiently large where ¢ < 0. By Lemma 1.3, there is g € C; satisfying
g1 = Ri(pc *g). Now by (A.1) and (1.2), we have

/ p’}{“g=/ R;*gop?“g=/ 0g1 > 0,
Sn—l Sn—l G .

n,i

and the lemma is proved. [
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