RECONSTRUCTION OF FUNCTIONS FROM THEIR
INTEGRALS OVER k-PLANES

BORIS RUBIN

ABSTRACT. The k-plane Radon transform assigns to a function
f(z) on R™ the collection of integrals f(r) = J, [ over all k-
dimensional planes 7. We give a systematic treatment of two in-
version methods for this transform, namely, the method of Riesz
potentials, and the method of spherical means. We develop new an-
alytic tools which allow to invert f () under minimal assumptions
for f. We assume that f € LP, 1 < p < n/k, or f is continuous
with the minimal rate of decay at infinity. In the framework of
the first method, our approach employs intertwining fractional in-
tegrals associated to the k-plane transform. Following the second
method, we extend the original formula of Radon for continuous
functions on R? to f € LP(R") and all 1 < k < n. New integral
formulae and estimates, generalizing those of Fuglede and Solmon,
are obtained.
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1. INTRODUCTION

Let G, be the manifold of all non-oriented k-dimensional planes 7
in R*, 1 <k < n. The k-plane Radon transform of a function f(z)
on R" is defined by f(r) = [, f(x)d,x where d,x denotes the Lebesgue
measure on 7. The present article is motivated by the following.

1°. On a formal level traditional inversion formulae for f read

(1.1) f=a(=0)2()Y,  f=c((-A)"2f)Y,

where A, and A, denote the corresponding Laplace operators, and “V”
designates the dual k-plane transform. The first formula was presented
in [H2, p. 29] under the following assumptions

(a) f € C*(R"); () f(z) =0O(]z|™*) for some a > n.
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2 BORIS RUBIN

The second formula can be found in [H2, p. 18] (for £ = n — 1 and
f belonging to the Schwartz space S(R")), in [SSW, p. 1260] (for
k=n-1, f € L*(R")), and in [K, p. 287] (for 1 < k < n-—1
without rigorous justification). On the other hand, f(7) is well defined
under much weaker assumptions. Namely, it exists for all 7 if f(x) is
continuous and O(|z|~%), a > k. Moreover, f(7) exists for almost all
7if f € LP(R"), 1 < p < n/k. The restrictions a > k and p < n/k are
minimal in the framework of the corresponding function spaces [So;
see also [Str]. Our aim is to study applicability of (1.1) under these
mild assumptions. Some results in this direction were obtained by S.R.
Jensen [J]. She studied applicability of the first formula in (1.1) to
sufficiently smooth functions f by interpreting (—A,)*/? as analytic
continuation of the corresponding Riesz potential (1.5).

20, In 1917 J. Radon [R] employed invariance of the hyperplane
transform (the case £ = n — 1) under isometries of R and reduced
the inversion problem for f to the one-dimensional Abel integral equa-
tion. The key idea is to average f(7) over all 7 at distance r > 0
from z, and then apply the Riemann-Liouville fractional derivative in
the r-variable. This gives the spherical mean of f which tends to f as
r — 0. The same idea was applied by S. Helgason to k-dimensional to-
tally geodesic Radon transforms of compactly supported C* functions
on the unit sphere S™ and the hyperbolic space H* [H1, H2]. B. Ru-
bin [Ru3, Ru4] extended these results to continuous and L functions
without any support restrictions. The celebrated Radon’s formula for
continuous functions on R? reads

PR P E

(see [R, Proposition ITT]) where Fj(r) is the average of f over all lines at
distance r from . We could not find in the literature any generalization
of (1.2) to all 1 < k < n and non-smooth f. The desired generalization
is obtained in the present paper.

The plan of the paper and main results are as follows. Section 2 is
of preliminary character. We derive new integral formulae, generalize
some estimates of Solmon [So], and introduce important mean value
operators. In Section 3 we introduce analytic families of intertwining
fractional integrals (Pf)(7), (]’5 %p)(x), including (for @ = 0) the
k-plane transform and its dual, respectively (see (3.4), (3.2)). For
k = n — 1, these families were introduced by Semyanisty [Se]. Similar
families associated to totally geodesic Radon transforms on S™ and H"
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were introduced in [Ru4, Ru5]. The main result of Section 3 is the
following equality

(1.3) ]ﬂIS PP f =, I*PHFf (the Riesz potential of f),

which generalizes the well known formula of Fuglede (f)¥ = cknl® f;
see [F|, [H2, p. 29]. Section 4 contains a series of inversion formulae
related to (1.1) under minimal assumptions for f. The structure of
these formulae is determined by (1.3).

Section 5 is devoted to the method of spherical means. Main results
are stated in Theorem 5.4 and Corollaries 5.3, 5.6. In particular, for
k =1 (the X-ray case), we obtain the inversion formula

o0

(1.4) O R

’7T r?
0

where @(z) (the dual k-plane transform of ¢) is the integral of (1)
over all k-planes 7 meeting z, and ¢,(x) denotes the mean value of
©(7) over all k-planes at distance r from z. The expression (1.4) can
be written as a limit

1 SN y 5

by [ o) 1y (30) [ty

T =0 r2 T =0 r2

in appropriate sense, and coincides with (1.2) because

=0.

lim ()55(.’13) B ()b(x) _ 0 > (.I) -

e—0 € or’"

We see that Radon’s formula (1.2) remains unchanged for all n provided
k = 1. Theorem 5.4 generalizes (1.2) and (1.4) to all 1 < £k < n.

In the present paper we do not touch such important questions as
the range characterization, support theorems, the Fourier transform
approach, the convolution-backprojection method, and other related
topics. More information and further references can be found in [H2];
see also papers by E.E. Petrov and a recent preprint [Ru6].

Notation. In the following o, ; = 27™/2/T'(n/2) is the area of the
unit sphere S”~! in R”; ey, ..., e, are coordinate unit vectors;

RF = Re; + ...+ Rey, R"* = Repy1 + ...+ Rey,.

For the sake of convenience, we denote by |z —7| the euclidean distance
between the point x € R® and the k-plane 7. This notation is not
confusing, and agrees with the usual definition |z — y| for z,y € R".
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The notation C', C™, C'*°, L? for spaces of functions on R” is stan-
dard; Cy = {f € C(R") : |]|im f(z) = 0}. @ = ®(R") is the
I|—00

Semyanisty-Lizorkin space of rapidly decreasing C'*°-functions which
are orthogonal to all polynomials (see [Se|, [SKM]). The Riesz poten-
tial I¢f on R" is defined by

« _ 2a7Tn/2F(OJ/2)
oy / S ot

Rea >0, a—n # 0,2,4,.... The operator I* is an automorphism
of @, and F[I*f|(x) = |z| “F[f](z) for f € ® in the Fourier terms.
The last relation extends I*f to all @ € C as an entire function of
a. For a real and f € LP, the integral I*f exists a.e. if and only if
1 < p <nfa, and |[1°f]], < c||f||, for 1 < p< g =np(n— ap)~ [St].
The Riemann-Liouville fractional integrals are defined by

(1.6) (T%u)(t ' / t“T —dr, (Iau)(t)zr(la) / (Tf(tgz_adn

Rea > 0. More information about Riesz potentials and fractional inte-
grals can be found in [Rul], [SKM]. The letter ¢ stands for a constant
that can be different at each occurrence. Given a real-valued expression
A, we set (A)} = A*if A>0and 0if A <O0.

2. SOME PROPERTIES OF k-PLANE TRANSFORMS

We recall basic definitions. Let G, and G, be the affine Grass-
mann manifold of all non-oriented k-planes 7 in R”, and the ordinary
Grassmann manifold of k-dimensional subspaces ( of R", respectively.
Each subspace ¢ € G, represents a k-plane passing through the ori-
gin. The group M(n) of isometries of R" acts on G, transitively.
Each k-plane 7 is parameterized by the pair ((,u) where ( € G, and
u € ¢* (the orthogonal complement to ¢ in R®). The manifold G, x
will be endowed with the product measure dr = d{du, where d( is the
SO(n)-invariant measure on Gy of total mass 1, and du denotes the
usual volume element on (.
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The k-plane transform f(7) of a function f(z) and the dual k-plane
transform ¢(z) of a function ¢(7) = (¢, u) are defined by

(2.1) f(T) = /f(u+ v)dv, 7= ((,u) € Gug;
¢

22) @)= [ ehGradr= [ o Praad, ser.

SO(n) Gnk

Here Pr..x denotes the orthogonal projection of z onto ¢+, is an
arbitrary fixed k-plane through the origin. We denote

(23) (fif) = / L@ h@)de, (o0~ = / o1 () pa(r)dr.

gn,k

An important duality relation for (2.1) and (2.2) reads

(2.4) (f, )" =(f,9)

provided that either side is finite for f and ¢ replaced by |f| and |¢|,
respectively [H2, So].

Lemma 2.1. For z € R* and 7 = ((,u) € G, let

(2.5) r = |z| = dist(o, x), s = |u| = dist(o, 7) = | 7|

denote the corresponding distances from the origin. If f(x) and ¢(T)
are radial, i.e. f(x) = fo(r) and o(7) = @o(s), then f(7) and ¢(x) are
represented by Abel type integrals

(2.6) f(T) = ak_l/fo(r)(rz — §2)k2 Ly,

T

27  pla) = BTkl / 0o(s)(r® — s> Lgn k14,
Op-1T
0
provided that these integrals exist in the Lebesgue sense.
Proof. We set ¢ =tw+s0; t,s>0; we (NS 0ecltnsrt.
Then (2.1) reads

o

fr) = / Ly / Folltw + s0])dew = 051 / 1 (VI T 5D) k.
0

0 Cmsn—l
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This gives (2.6). Furthermore,

pa) = /wwww@=/wmmmww7
Gnk S0(n)

1
= /<p0(|Par_kr0|)da, r=|x|.

On—1
Sn—1

By passing to bi-spherical coordinates o = a cosy + bsin 1),
a€ ST CRF, be SPhl c Rk, 0<<m/2,

do = sin" "1 ¢ cost "1 dip da db [VK, pp. 12, 22], we obtain

/2
o(z) = Th=19nk-1 / @o(rsine) sin™ *~1oh cosF1ep dap.
On_
' 0
This coincides with (2.7). O

Example 2.2. The following useful formulae can be obtained from
(2.6), (2.7) by elementary calculations. For Rea > 0 and a > 0,

(2.8) lz|7¢ % 5 A re,
N - 72T (ar/2)
YT T((a+k)/2)
(2.9) L+ [a)~ 2 L X1+ 7)),
Ao = AL
(210) (@ =[2P)T S hala® =)
72 ()
N Z TarkD)
(2.11) |7_‘a+kfn 1) /\4|x‘a+kfn’
I'(a/2)T(n/2)
N o=

C((a+k)/2T(n—k)/2)
(Ir? a3 (2f? — a®)§™

|T‘n7k72

¢<

(2.12) As

‘x|n72 ’
2 g, 11 T ()

Ao = on 1 D(a+k/2)
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rfo+h gk

\Y
—) e —

(14 [r[?)(eth)/ "1+ [z P)er
7Tk/2 Opn—k—1 F(Oé/Z)
o1 L((a+k)/2)

The last equality is especially important, and we present its proof
(all the rest are left to the reader). Let
|7_|a+lc n

(2.13)

Ao =

c— Ok—-10n—k—1
(14 [r[?) Rz’ On1

p(r) =

Then (2.7) yields

2 2\k/2-1 a1
Hr) = c /(r s?) s ds

rn—2 (1+ 82)(a+k)/2

1472
e (1472 — )21 (¢ — 1)2/2 "
T 9pn—2 tlatk)/2

1
72 gy _1_1T(af2) rothk—n
on 1 D((a+k)/2) (1 +r2)e/2
Combining (2.8)-(2.13) with the duality (2.4), we obtain the follow-
ing equalities that give precise information about behavior of f(7) and
p(2).
Theorem 2.3. For Rea > 0 and a > 0,

dx dr
2.14 ) —— = A -
(214) [ = M [ e
Rn gn,k
dx dr
2.15) [ ¢ — _ar
( ) /@(I)(1+|$|2)(a+k)/2 2 / SO(T)(]_+|T|2)04/2
R gn,k
(2.16) / ¢(z)(a®—|z[)*Hdz = X / p(r)(a® = |7[*)*+*/> L,
|z|<a |7|<a
(2.17) / FElrietrar = A, / f () |,
RTL
Y Gl R
9 / B A I T

7|>a |z|>a
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(2 19) / f |7_|a+k n \ /f |x|a+k n _fafert
. 7’ = ./,E
T+ [Py ') A afyer

provided that either side of the corresponding equality exists in the
Lebesque sense.

Corollary 2.4. If f € LP, 1 < p < n/k, then f(T) is finite for almost
all T € Guy. Ifp > n/k and f(x) = (2+]|x])™?(log(2+|z|)) ! (€ LP),
then f(1) = o0

Proof. By Holder’s inequality, the right hand side of (2.19) does not
exceed AXg||f||, where

Ap’ |.,L.‘(a—|—k—n)p’ s T(a—|—k—n)p’—|—n—1
- | e e | g
R'ﬂ

(1/p+1/p'=1). For 1 <p < n/k and o > n/p — k, this integral is
finite, and therefore the left hand side of (2.19) is finite too. It follows

that the Radon transform f(7) is finite for almost all 7 € G, ;. The
second statement follows from (2.6). O

Remark 2.5. The statement of Corollary 2.4 is due to Solmon [So]. His
proof is different and based on the estimate

/()| dr |/ (z)| dx
(2.20) /WSCRZW, V6 > 0.

n,k
Below we obtain more informative inequalities. Let a > 0, f € R,

u(r) = [T A+ ) v(e) = el fa])

(1+|z])~@ if a < 83,

a(x) =< (1+|z)7? if a > B,
(1+ |z))Plog(2 + |z]) if a =B,

(14 |7])~= if o < 3,

o(r) =1 |r|fe(+|r))*? if a > 8,

1+ |7))Plog(2+1/|7]) if a = B.

Lemma 2.6. For nonnegative functions f and ¢,

(2.21) / Fryu(r)dr < c / F(@)ii(z) da
Gn.k R™
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(2.22) /gb(x)v(:c) dx <c / o(T)o(T) dr.
R» On,k
Note that (2.21) implies Solmon’s estimate (2.20) if 8 > o =n — k.
Proof. Let us prove (2.21). We replace ¢(7) in (2.4) by the weight

function u(7), and make use of (2.7). This gives

a1y _ 42Vk/2—1
(2.23) gb(-T) :C‘$|a+k_nw(‘x|)7 ¢(T) :/t ((11+:t))ﬂ

dt.

If » — 0 then ¢(r) — const # 0. For sufficiently large r, the desired
estimate follows from known properties of hypergeometric functions, or
can be easily obtained by setting

W(r) = (7+ 1//2+/1)(...), r> 2,
0 1/r 1/2

and estimating each integral. To prove (2.22) we set f(z) = v(z) in
(2.4) and make use of (2.6). We get

o

f(r)=ec /rﬂk“(l + 1) P2 — D)2 rdr = es7(1/s),
¥ being the same as in (2.23). This gives what was required. O
Let us introduce important mean value operators.

Definition 2.7. Forr > 0, z € R, 7=({,u) €Gnp, € € Gy, uel,
we define

fr(r) = ! / dw/f(rw+u+v)dv

On—k—1
CJ_mSnfl C
1 ~
(2.24) = / f(¢, u+rw) dw,
On—k—1
CJ-OS"L*1
(2'25) (,ZJT(CC) = / QO(VRIC +x+T7€n) dy = / (10(’777+x) d,
50(n) S0(n)

T, being an arbitrary fixed k-plane at distance r from the origin.

The integral (2.24) can be regarded as a mean value of f(z) over all x
at distance r from the k-plane 7. If r = 0 then f,(7) coincides with the
k-plane transform f(7). The integral (2.25) averages ¢(7) over all 7 at
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distance r from z, and coincides with the dual k-plane transform @(z)
if r = 0. Clearly, operators f(z) — f,(1), ¢(1) = @,(x) commute
with the group M(n) of isometries of R".

Let us consider intertwining operators of the form

(2:20 W) = / f@yw(le - 7)d
2.27 Wo)(w) = / p(ryu(ls - 7)) dr
Gn.k

where w(-) is assumed to be sufficiently good. If 7= ((,u), u € ¢4,

then
— [ #(¢ v wlu=olae
CJ'

and therefore, for f € L?, p > 1, the integral (2.26) is well defined
only if p < n/k; cf. Corollary 2.4. In (2.27) it suffices to assume

¥ € Lloc(gnak)'

Lemma 2.8. The following representations hold:

(2.28) (W F)(7) = onp_1 / Y (r) fo (1) dr,
(2.29) (W) (@) = 0n s 1 / rrk =Ly (1) (2) dir-

It is assumed that either side of the corresponding equality exists in the
Lebesgue sense.

Proof. For 7 = (¢, u) € Gy, we have

o0

(W) (r) = / w(lu—v|)f(C, v)dv = / w(r)r—E=1dy / (¢, u—ro)do.

¢t 0 gn—k—1
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By (2.24), this gives (2. 28) In order to prove (2.29),let o = R*, @ (1) =
o(T + ), b(r) = @a(T)w(|7]), b(7) = b((, u). Then

W /dc/ Cudu= [ dy [ brm,u

Gn k S0(n) YRn—k

= /du/b(’yTo,’yu)dfy:/r"_k_ldr / dw/b(fyTo,r’yw)d’y
Rk SO(n) 0 Sn k-1 SO(n)

o0 o

= ankl/rn_k_ldr / b(’y7'0+7°’yen)dfy=onk1/r"_k_lér(0) dr,
0 SO(n) 0

o being the origin of R". Since

b (0) = / 62 (770 + e w(1770 + rrenl) dy = w(r) @ (z)
SO(n)
we are done. I

3. ANALYTIC FAMILIES ASSOCIATED TO THE k-PLANE TRANSFORM

Example 2.2 and duality (2.4) give rise to six equalities (2.14)-(2.19).
Let us focus on (2.17). We replace f by the shifted function f,(y) =
f(z+vy) and get

(3.1) ﬁ/f(ﬂu—ﬂa““"ch
Gn.k

I'(n/2) e »
F((n—k)/2)r((a+k)/2)]1§[f(y)|$ y[* " dy, Rea>0.

The right hand side resembles the Riesz potential (1.5). Denoting

1 —Nn
B2 (P = [ el
Tn— k( )
gn,k
Rea >0, a+k—n#0,2,4,..., from (3.1) and (1.5) we obtain
(33) ﬁ af' = ck,nIOH—kfa Ck,n = (27T)k0'n,k,1/0'n,1,

provided that either side of (3.3) exists in the Lebesgue sense (e.g., for
felPr®R), 1<p<n(a+ k)*l) By duality we define

o a+k—n
(3.4) (Pf)(T % o /f — 7| dzx.
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Operators (3.4) and (3.2) can be represented as

(3.5) pef =1t f,  P=(I2 ),
where for 7 = (¢,u), I® , denotes the Riesz potential on (* in the
u-variable. For sufficiently good f and ¢,
(3.6) lim Pof = f,  lim P %p = .

a—0 a—0
This can be easily seen if we represent P®f and 1*3 “p according to
(2.28) and (2.29), respectively. Thus we can extend definitions (3.4)
and (3.2) to o = 0 by setting P°f = f, p %p = ¢, and obtain analytic

families {P*} and { P @} which include the k-plane transform and its
dual. The equality (3.3) generalizes the known formula of Fuglede

(3.7) (f)Y = crul®f
[F], [H2, p. 29] to Rea > 0.

Theorem 3.1. Let f € [, 1 <p<nla+B+k)? a>0, 8>0.
Then

(38) ﬁ aPﬂf = Ck,n1a+’3+kf, Ck,n = (27T)k0'n_k_1/0'n_1.
Proof. By (3.3) and (3.5),
Ck,nIa+/J’+kf —p a+ﬂf — (I:jlff)v _ (Isfkfnﬂ—kf)v =p apﬂf_
O

Remark 3.2. If f belongs to the Semyanisty-Lizorkin space ® (see No-
tation), then (3.8) extends to all complex «, 5. This follows from (3.5)

and the equality (%7 A)V = cnl*f, a € C, which was proved in
[Ru2, Theorem 2.6] using the Fourier transform technique.

4. INVERSION OF k-PLANE TRANSFORMS. THE METHOD OF RIESZ
POTENTIALS
Throughout this section
Ckn = (2m)F0n_—1/0n_1.
Equalities (3.8) and (3.5) give a family of inversion formulae:
(4.1) haf =P Fper? f VagecC

(at least formally). For f € &, (4.1) is well justified (see Remark
3.2). In the general case we are faced with the following questions.
What choice of a and g is preferable? How to represent operators in
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(4.1) constructively and recover f(z) pointwise for all or almost all x?
To answer these questions we employ appropriate tools of fractional
calculus and singular integrals.

4.1. The case a = = 0. In this case (4.1) reads

(4-2) Ck,nf = Dk@a Y= f:

where D¥ = I = (~A)*/2 denotes the Riesz fractional derivative, A
being the Laplace operator. Thus the problem is how to invert the Riesz
potential ¢ = I*f (in our case g = c,;jlgb)? Numerous investigations
are devoted to this question; see [Rul, SKM] and references therein.

4.1.1. Hypersingular integrals. Below we review some results in the
context of their application to the k-plane transform. Let us consider
finite differences

(Ayg)(x) = ZZ: (ﬁ) (=1 g(z - jy),

Bya@ =3 (1) -1Viota — Vi),

and normalizing constants

(1—ein)* ) i
(4.3)  dne(k)= Wdy (y1 is the first coordinate of y),

o0

44)  d,.(k il (1—e
( . ) n,m( ) ri n—i—k /2 / tl—i—kj/Q
0

We assume ¢ = k if k is odd , and any ¢ > k if k is even; m >
k/2. Integrals (4.3), (4.4) can be evaluated explicitly, and the following
statement holds [Rul, pp. 238, 239|, [SKM, Section 26]:

Theorem 4.1. Let g=IFf, f € LP, 1 <p < n/k. Then

1 e, 1 A
@s) =g R/ PR / PR

where [, =lim [ . This limit exists in the LP-norm and in the a.e.
R e—0 ly[>e

sense. For f € CyN LP, it exists in the sup-norm.
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Corollary 4.2. In assumptions of Theorem 4.1, the k-plane transform
@ = f can be inverted by

1 / (A8)(@) 1 / (Ame) () ;
Yy

n,o(k) [y|n
R

(4.6) cpuf(x) =

/y =
n+k
[yl dnm (k) J

Remark 4.3. Let us compare (4.6) with the known formula

(47) f =AM (f)Y,
(see formula (3.12) in [So]) where

49 A=3 R (R¥ia) = 5PV [ Rovta -y

0; = %. Operators R; are called the Riesz transforms. They are
understood in the Cauchy principal value sense and bounded on L? for
1 < p < oo [Ne, p. 101].

The following advantages of (4.6) are worth to be noted. The func-
tion f is expressed by (4.6) through the only one singular integral which
is understood in the usual sense for sufficiently good f. The formula
(4.7), unlike (4.6) contains (apart from derivatives) nk singular integral
operators R;, the LP-theory of which is much more sophisticated than

that of (4.5), and does not include the L' case.

Remark 4.4. (i) The set of continuous functions
4.9)  Co=A{f: feCR"), f(z) =0(«]")}, a>0,

is contained in L? for n/a < p < n/k. Hence (4.5) and (4.6) are
applicable to f € C,, a > k.

(ii) Instead of (4.5) one can use many other inversion formulae for
Riesz potentials which can be found in [Rul]. If f(z) = 0 for |z| >
R > 0, it suffices to determine ¢(z) for |z| < R only. Then we get

Ch,n / f(y)dy

Yn (k) |z —y["*
lyl<R

:Qb(l'), ‘:L" < R.

Equations of this type play an important role in mixed boundary value
problems of mathematical physics (in particular, in mechanics). They
can be solved explicitly, but inversion formulae are more complicated
than those for potentials on R”. The interested reader is addressed to
[Rul, Chapter 7] for details.
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4.1.2. Powers of “minus Laplacian”. Another series of inversion for-
mulae can be obtained using integer powers of “minus Laplacian”.

Definition 4.5. For A € (0, 1), let Lip} be the space of functions f(z)
on R” having the following property: for each finite domain 2 C R",
there is a constant A > 0 such that

(4.10) |f(@) — f()| < Alz —y[*  Va,y € Q (the closure of ).
We denote
(4.11) C:={f: feC,nLip¥ for some X € (0,1)}.

Theorem 4.6. Let ¢ = f, 1<k<n-1.
(i) For k even, a >k, and f € C}, we have

(4.12) cunf (x) = (=A)"2p().

(ii) For k odd, the following statements hold.
(a) If f € Cy, a >k, then

“AYED2500) — (—AYED/25(5 —
13) s =2 [ CAO A ),

R”

where [, = l1_1>1(1) f‘y|>s uniformly in x € R".
(b) If f € C%, a > k, and A is the operator (4.8), then

(4.14) crnf(2) = (A(=A)*D20) (2).
Furthermore,
(4.15) crnf (@) = —(=2)FD2(ITAP) ()

if 3<k<n-1, feC;, a>k, and

(4.16) cenf (@) = (=2) V(1) (2)

if 1<k<n-2 feC; a>k+1.
All derivatives in (4.12)-(4.16) exist in the classical sense.

Proof. These statements are consequences of known facts for potentials
and singular integrals. In the following, according to (3.7), we denote
g = Cppp s0 that g = I¥f.

(i) To “localize” the problem, let x € Bgr = {z : |z| < R} and
choose x(z) € C* so that

0<x(z) <1, x(z) =0if |z| < R+1, and x(z) = 1if |[z| > R+ 2.
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We have f = fi + fo, fi=xf, o=1-Xx)f,

_Jo if |z| <R+1, _J f(z) if |z| < R+1,
w1 f@0={}e, tShry a0={1 TSR

Let g = g1+ g2, g1 = I*f1, go = I*f,. Then g, € C*®(Bg), and for all
multi-indices 7,

g1 (x) = fily) |z — y|* "dy.

1
Yn(k)

ly|>R+1

In particular, for k even, we get (—A)*2g,(x) = 0. The function go

belongs at least to C*~1(Bg), and differentiation is possible under the
sign of integration; see, e.g. [VI1, Section 1(6)]. Hence, for k even,
(—=A)E=2/2g, = I?f, (the Newtonian potential over a finite domain),
and (i) follows by Theorem 11.6.3 from [Mi2, p. 231].

(ii) Consider the case £ odd. By reasoning from above,

(4.18) (—=A)#ED2g(z) = (I'f)(x),

and (4.13) holds owing to Remark 4.4(i). In order to prove (4.14) we
note that ¢; = 0;I'f = R, f (see (4.8)) where R;f € Lip\® for some
A € (0,1) [Mil, pp. 59, 46]. Since f € L? for max(1,n/a) < p < n/k,
and R; is bounded on LP, then ¢; € Lipf\"C N LP. Let us consider R;p;.
As in (4.17), we define ;1 and ;2 so that ¢; = ;1 + @2,

2 Tj—Yj
R0, = = . e )
(Bjep;)(x) p / wg,l(y)|m_y|n+1 Y
ly|>R+1
2 Tj—Yj
— P.V. - —1 =y
+ o / QOJ;Q(y) |.7) _ y‘""’l Y

ly|<R+2

The first term € C*°(Bg) while the second one is Lip, in Bg (use
Theorem 1.6 from [Mil, p. 46]). Since R can be arbitrary large and
R; is bounded on LP, then R;p; = Rjzf € LipY* N LP. By taking into
account that Y7, R f = f [Ne], owing to (4.18), we obtain

fl@) =) (Rjpj)(x) =D (R;0;(=A)* Vg)(z) VzeR".
j j
This gives (4.14).

If k£ > 3 then, as in (i), we have —Ag = I*"2f. Hence —I'Ag =
I*71f and (4.15) follows. To prove (4.16) we note that for f € Cy, a >
k+1and k+1 < n, one can write I'g = I'I* f = I*T' f. Since f satisfies
some Lipschitz condition the argument from (i) is applicable, and we
are done. O
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Remark 4.7. If f € LP, 1 < p < n/k, all formulae (4.12)-(4.16) remain
true with the following changes: (a) The corresponding derivatives are
understood in the sense of &’ or @ distributions. They also exist in
a certain L?-norm for almost all x; see [St, Chapter VIII], about this
notion of differentiation. (b) In (4.16) we have to assume 1 < p <
n/(k + 1) (otherwise I'g may be divergent). (c) Convergence of the
hypersingular integral (4.13) is interpreted in the LP-norm or in the
a.e. sense.

4.2. The case a =0, f = —k. In this case (4.1) reads
(419) el =59, o) =f(1) = f(Cu),

and one has to give precise sense to the operator I fk acting in the u
variable. The first way to do this is to use hypersingular integrals like
(4.5) in the (n — k)-plane (*. Let, for example,

(As9) (¢, ) é() @(¢; Prer — jv),

Jj=0

1— ty1\L
s €R", welt,  dupelk) = / % dy,
Rn—k

where ¢ = k for k£ odd, and V¢ > k for k even; cf. (4.3).

Theorem 4.8. If o = f, f € I?, 1 < p < n/k, then

(4.20) cpnf(z) = dn:g(k) / (Afp)(¢2) dcdv
k)

(4.21) = lim; / d¢ / wdv.

e—0 dn,k,g(k‘) ‘U‘"
Gnr  {vivelt, jv|>e}

The limit (4.21) exists in the LP-norm and in the a.e. sense. If f €
Co N LP for some 1 < p < n/k, this limit is uniform in xr € R".

This statement was obtained in [Ru2, Theorem 3.6] as a particular
case of a more general result. Theorem 4.8 gives precise sense to the
second formula in (1.4) for f € LP. In order to interpret this formula
in terms of pointwise laplacians, one has to impose extra smoothness
conditions on f (which are redundant for existence of f), and proceed
as in Section 4.1.2.
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5. INVERSION OF k-PLANE TRANSFORMS. THE METHOD OF
SPHERICAL MEANS

The method of spherical means is alternative to that of Section 4. It
is based on the definition (2.25) and the following

Lemma 5.1. Let

(5.1) (M. f)(z)

Unl

/fx—l—tﬁ t>0,

be the spherical mean of f. Iff € LP 1 <p<n/k, then
62) (@ =os [MHEE )

Proof. Let f.(y) = f(xz +y). For any fixed 7 € G, x such that |7| = r,
we have

() / for+ady= [ (fo0) @)y = o),
S0(n)
/ fowdr= [ fa+m)ir=(MyHie),
SO(n) S0(n)
It remains to make use of the Abel type representation (2.6). [l
For ¢ = f, we denote
(5-3) 9a(s) = (Msf)(@),  als) = 7773 4(2).
Then (5.2) reads
(5.4) (I29,)(s) = ¥2(5)

(see notation (1.6)). If f is continuous and decays sufficiently fast at
infinity then (5.4) can be easily inverted, and we get

(5.5) f(z)= ( . %)m(ﬁ—’“/%)(s)‘ . VYmeN, m>k/2.

This formula is inapplicable for generic f € LP because the integral

(m’“%x) (I"g,)(s)
69 =me | f@— =

ly|2>s

dy
Jy~—2

can be divergent for n/2m < p < n/k. Thus the main difficulties
are connected with behavior of functions at infinity, and the inversion
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procedure should not increase the order of the fractional integral (5.4).
For k£ > 1, the order can be reduced by differentiation in the s-variable
according to the following

Lemma 5.2. Let g,(s) = (M ;f)(z), f € LP.

(i) If 1 < p < n—1 then —%(I1g;)(s)]s=0 = [f(), the derivative
being well defined in the LP-norm and for almost all x.

(ii) If o > 1 then for each s > 0, —%£(I%g,)(s) = (I° 'g2)(s)
where differentiation is understood for almost all x or in the LY-norm,
0<1/g<1/p—2(ax—1)/n.

(iii) If f € Co N LP then derivatives in (i) and (ii) ezist for all z in
the classical sense.

Proof. (i) A standard machinery of approximation to the identity [St,
Chapter III, Sec. 2] yields

s
(I19:)(6) — (I1g-)(0) _ 1
- 5 S/Mff
0
0n1/f$_\/_y)\ — f(z) as §—=0
ly|<1

in the required sense. The condition p < n — 1 is necessary for the
existence of I' g,; cf. (5.6).

(ii) We note that (I* 'g,)(s), @ > 1, exists in the Lebesgue sense if
and only if 1/p > 2(aw — 1) /n. Furthermore, for each s > 0,

1 1 2a-1)
5.7 I g, < , 0<-<-———7-—>.
(5.7) 1IEg0) (g < cs Il <75 "
To see this one should replace m by o — 1 in (5.6) and make use of
Young’s inequality. Our aim is to show that
(I292)(s) — (I%g:)(s +0)
5 —(I*'g2)(s)

tends to 0 as § — 0 in the required sense. This expression can be
written as a convolution f * hs, where

hss(z) = As(2) h(i),

z? s

I NS Y (B
On1D(a—1)  |z|n2 t(a—1)
The function A(t) is bounded and PH(} h(t) = 0. Since |f * hss| <

—>

||h|]oo]| f] * As| and the convolution |f| * A; obeys the same estimate

- 1.

As(z) =
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(5.7), by the Lebesgue theorem on dominated convergence we have

a.e.

Lim(f  hss)(@) =0, Hm||f  hssllg =0

for each s > 0 and ¢ satisfying (5.7).
The proof of (iii) follows the same lines. O

Application of Lemma 5.2 to (5.4) gives the following

Corollary 5.3. Let o(1) = f(T), T€Gui- If f € LP, 1 <p<n/k,
then for k even,

(5.8) fla) (- %%)” *0()

where ¢p(x) is the average of ¢(T) over all k-planes T at distance r
from x. If f € CoN LP then (5.8) holds for all x € R™.

r=0

Let us consider arbitrary 1 < k < n — 1. As we have already seen,
fractional differentiation of (5.4) in the Riemann-Liouville sense blows
up. To resolve the problem we use the Marchaud fractional derivative

o

(5.9) (D )(s () (s + jit) tflfa (>a,

0 J

see [Rul, SKM]. Here

ke(Q) = ]o(l—e—t)et—l—adt

¢
F(_a)z (f) (_1)jjaa Ol?é 1,2,...,5—1,
_ j=1
N —1)+a ¢ .
( 03' > <§>(—1)jja10gj, a=1,2,...,0—1.
b

Owing to normalization, D* ¢ is independent of £ > «. The right hand
side of (5.9) is understood as a limit of the truncated integral

w[i() o+ 0] i

Jj=0

(5.10) (D% .)(s)

as ¢ — 0 in the appropriate sense.
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Theorem 5.4. Let ¢ = f,felIr, 1<p< n/k. For any £ > k/2,

(5.11) flz) = &Tk//;/ [z; (j)(—l)M\/ﬁ(I)]tlf—z/g

where [;° = liH(l) [ in the LP-norm and in the a.e. sense. If f €
£

Co N LP this limit exists in the sup-norm.

Remark 5.5. The right hand side of (5.11) represents the Marchaud
derivative of order k/2 of the function v,(s) (see (5.3)) evaluated at
s = 0. The formula (5.11) is applicable to all 1 <k <n—1. Fork =1
(the X-ray case), (5.11) has an especially simple form

(5.12) fz) = %/Mdﬂ

Proof. For a = k/2, according to (5.4) we have

i ( ) ) (1%gz)(jt) = t* /0 ook(u)gx(ut)du,
= pL i ( > -3t

This gives
(513)  (DF_.4,)(0) = (D° I%,)(0) = / Nea(m)gs(en)dn,

0 4)0) = = [Naldn [ flo-+ yET0) s
515) = / o+ VA s, Aaly) = el

By (5.14), this is an approximate identity, and the result follows. [
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Corollary 5.6. Let ¢ = f,feIr, 1<p< n/k. If k is odd and
m = (k — 1)/2 then the derivative

hatr) = (= 5) ()

2r dr

exists for almost all x, and all 1 > 0. The function f can be recovered
by the formula

1 [ ha(0) = ha(r) [ oae [
(616) ()= i / ~ W, / —tim [ .
0 0 5

If f € CoN LP the integral (5.16) converges uniformly in © € R™.

Proof. By Lemma 5.2(ii), the equality (5.4) yields
a.e. d\m™ . def 7
(12g)(s) 2 72— )"0 s(a) % hols),
and therefore

oo L ~

O20)0) = 5oz [ S s = [ e+ VA dy

€ R
cf. (5.15). This implies (5.16). O
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