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1. INTRODUCTION

The first part of this note is an expanded version of the talk given by the first author at the
1998 Ahlfors-Bers Colloquium. The second part contains a general discussion of Weierstrass
points associated to arbitrary finite dimensional vector spaces of differentials on Riemann
surfaces of finite conformal type with applications to the study of H?/T'(k), where H? is the
upper half plane and I'(k) is the level & principal congruence subgroup of the modular group.

One of the topics central to investigations of functions on compact Riemann surfaces is the
Riemann theta function. In their published works and lectures, Ahlfors and Bers "neglected”
this function and hence many of their students were never exposed to this fascinating aspect
of the theory of Riemann surfaces. For the most part, this theory became the domain of
the algebraic geometers; this note continues the efforts to bring this theory back to function
theory practitioners.

We begin by recalling a number of statements concerning this subject made by Ahlfors
and Bers. The first one was in writing when Ahlfors ended his review of Lewittes’ Acta paper
[?], with the statement ”theta functions is not a spectator sport.” The second is a statement
made privately to the first author by Ahlfors after a lecture given in La Jolla explaining how
the theta function can be used to generalize the notion of the cross ratio of four points on a
sphere to four points on an arbitrary compact surface of genus g > 0. Ahlfors said that if
he were younger he would begin to study theta functions. Lipman Bers once told the first
author that in his opinion we really do not work on the same problems.

The purpose of this note is an attempt to make theta functions into a ”spectator sport,”
and to show that Bers and we really were working on the ”same” problems!. The first part
of this note should be viewed of as a continuation of [?] and [?], where relations between
Weierstrass points and the theta divisor are discussed.

PART 1. Some of the concepts discussed in Part II, particularly §?7?, are relevant for the
material presented here. The reader might want to review that section before proceeding to
this part.

Research by IK supported in part by NSF Grant DMS 9800924. Research by HMF supported in part by
the Edmund Landau Center for Research in Mathematical Analysis sponsored by the Minerva Foundation
Germany. Research of HMF and IK supported in part by a US-Israel BSF Grant 95-348.

! There may be little doubt about this statement applied to the second author; a recent “convert” to theta.
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2. WEIERSTRASS POINTS ON COMPACT HYPERBOLIC SURFACES

It is well known that on every compact Riemann surface S of genus g > 2, there is a finite
nonempty collection W of classical Weierstrass points with

20 +2 < |W|<g*—g;

the lower bound occurs if and only if the surface is hyperelliptic, the upper bound being the
generic situation. In the classical theory one takes a basis for the space of holomorphic one
forms on the surface® 6y, ..., 6,, and forms the Wronskian

0, s, ..., 04
! ! !
W(by,...,0,) = det b - %
AR SN o
One then shows that the Wronskian is a holomorphic @-differenﬁal and therefore that
W (61, ...,0,) has g> — g zeros counting multiplicity and that there are at least 2¢g + 2 distinct
zeros each with multiplicity at most @. If the maximum multiplicity is achieved at one
Weierstrass point, then the surface is hyperelliptic and it has 2¢ + 2 Weierstrass points each
with multiplicity @.

In a similar way, if one starts with a basis for the space of holomorphic ¢-differentials,
q > 2, one can define and obtain the Weierstrass points for this vector space generalizing
the classical situation. This is treated in [?, Ch. III] and the reader can consult this book
for further information on this subject. We point out that we show in our book that a set
of Weierstrass points can be defined for any finite dimensional vector space of holomorphic
differentials (see also §7? and the less known fact that, the set of classical Weierstrass points
W can be defined also by Riemann’s theta function. For the sake of completeness we recall
the statement of this last result ([?, Th. VII.1.10]).

Let 6 denote the Riemann theta function®. Let ¢p, denote the Abel Jacobi map of the
Riemann surface S into its Jacobi variety and let Kp, denote the vector of Riemann con-
stants, both with base point P,. Then the nontrivial zeros of 8(g¢p,(P) + Kp,) are classical
Weierstrass points and conversely, each classical Weierstrass point is a zero of this multival-
ued function. Here, nontrivial zero means that P # F;, the base point of the map ¢p,. If we
choose Py ¢ W, then the function P — 6(gpp,(P) + Kp,), has a g-th order zero at P, and
that the remaining ¢® — ¢ zeros are classical Weierstrass points. A similar statement holds

for the zeros of
0((2¢ — 1)(g — Dr, (P) + (2¢ — 1)Kry);

namely that they are the Weierstrass points for the space of holomorphic g¢-differentials,
q =2

It is a well known consequence of the Riemann vanishing theorem that if « is a positive
integer with 0 < a < g, then 6(ayp,(P) + Kp,) = 0 for all P € S. Thus « = g is the first
nontrivial case and it gives rise to the classical Weierstrass points. It thus seems reasonable
to ask what happens when g < o, a € Z.

2Unless otherwise noted, we are following the notation and conventions of [?]; in particular, we are
identifying, when there is little room for confusion, a differential § with its expression in local coordinates
p(2)dz as well the function ¢ in this representation.

3 Also defined for g = 1; although in this section, g > 2.
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3. g=1

When g = 1 and o = g we are considering the holomorphic function 6(¢p,(P) + Kp,).
This function has a simple zero at the point P = P, and no other zeros; a reflection the fact
that there are no classical Weierstrass points when g = 1. If for ¢ = 1 we take a € Z1,
a > 2, we find easily that 0(app,(P) + Kpg,) has a? zeros on the surface and that only one of

o
these zeros is at the point P,. The remaining zeros are at points P which satisfy (%) is a

principal divisor on the surface. Alternatively, we can say that P is a nontrivial zero of this
function provided there is a meromorphic one form on the surface whose only singularity is
a pole of order at most o at Py and a zero of order o at P. The dimension of the space of
meromorphic one forms with singularity a pole of order at most a > 2 at Fy is «; so that
in this sense, P is a Weierstrass point for this space. On the other hand if we think of the
point Py as the origin we are also constructing the points of order v on the torus. The above
material for higher genus surfaces will lead to a generalization of points of finite order on
tori.

4. THE GENERAL CASE

We now consider a compact Riemann surface S of genus ¢ > 2 and the multivalued
function on this surface

[P —=0((g+ k)er(P) + Kp)),
with k € ZtU{0}. The case k = 0 has already been studied; it yields the classical Weierstrass
points. There are now two ways to proceed and it is advantageous to study each of them.

Theorem 1. The zeros of 0((g + k)pp, (P) + Kp,) consist of the point Py and those points
k+1

P € S for which there exists an integral divisor ¢ of degree g —1 such that -5 +,f 18 principal.

Alternatively, the zeros of 6((g + k)pp,(P) + Kp,) consist of the point Po and the points

P € S such that P is a Weierstrass point for the vector space of meromorphic differentials

on the surface whose only singularity is a pole of order at most k + 1 at P,.

Proof. The Riemann vanishing theorem asserts that the zeros of the Riemann theta function
are those points in the Jacobi variety which are the images of integral divisors of degree
g — 1 under the Abel Jacobi map ¢p, translated by the vector of Riemann constants Kp,.
It follows that Kp, is always a zero. This explains why the point P, is necessarily a zero of
the function f. If P € S and P is a zero then there exists an integral divisor of { of degree
g — 1 such that

¥p (Pg+k) + ’CPo =¥pr (C) + K:Po

ph+1
It follows from Abel’s theorem that D = 139+,f is a principal divisor. The argument also

reverses so that P is a zero if and only if D is principal. Note that we see already here why
the case k = 0 gives rise to the classical Weierstrass points.
It is however useful to look at this condition in another way. We know that £, ,fil c is

principal. Since the degree of ( is g — 1 there is always a holomorphic differential nowhose

divisor is a multiple of {. If the divisor of the function f, (f), is 155:1 , then the divisor of

the meromorphic differential fn is Topre- * for some integral divisor ¢’ of degree g — 1. Notice

this meromorphic differential can only have a pole at Py, and the order of the pole is at
most k£ 4+ 1. Since the dimension of the space of meromorphic differentials with this type of
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singularity is precisely g + k and the order of vanishing of fn at the point P # P, is at least
g + k, we conclude that every zero P # P, of f is a Weierstrass point for this space V.

The general theory of theta functions (see, for example, [?, Ch. VI]) tells us that the
function 6((g + k)ep,(P) + Kp,) has (g + k)*g zeros on the surface, counting multiplicity,
and that if we denote the divisor of zeros by Q1 ... Q(g4k)24, then

PP (Ql Q(g+k)29) + (g + k)’CPo = _(g + k)2}CP0;

SO
(g+k)(g+k+1)
¢ro (@1 - Quotryzg) = 2 (—2Kp,)-
Since —2Kp, is the image under ¢p, of a canonical divisor, % is ¢ = 7(9““)(!2”’”1)_

0
canonical (the divisor of a meromorphic ¢-differential w). O

The ¢-differential w should be closely related to another g¢-differential €2, the Wronskian
of a basis for the (g + k)-dimensional vector space of meromorphic ¢-differentials V' with at
most a pole of order £ + 1 at F, that we introduced in the proof of the last theorem. Both
divisors (w) and (€2) have degree (¢9—1)(g+k)(g+k+1). Since the space V cannot contain a
differential with a simple pole at P, the lowest and highest possible orders at P, of elements
of V' are respectively

—(k+1), =k, ..., =2, 0, 1, ..., g—1
and
—(k+1), =k, ..., =2, 0, 2, ..., 29 —2;
(note that V' certainly contains differentials ¢ with ordp, =1, —(k+1) <1 <0, # —1)

hence

~1 ~1
ordPOQZ_k(/f;r?))Jrg(g2 ) (9+k 2)(9+k):_k(g+k+1)

and

k(k +3) C(gHk=D(g+k) _ g —g(1+2k) - 2k(1 + k)

-1 .
+9(g—1) 5 5

We conclude that the number, N, of zeros of Q on S — {Fy} is bounded by

g(29° + g(4k — 1) + (2k% — 1))
2

A point P € S — {P,} is a Weierstrass point for V if and only if 4 (ii—fﬁ) > 0. This
condition does not apply to the special point P, because a compact Riemz;nn surface does
not carry an abelian differential of the third kind whose only singularity is one simple pole.
Note that Py is a Weierstrass point for V' if and only if it is a classical Weierstrass point (if
and only if i(Py) > 0). Since each nontrivial zero of f is a Weierstrass point for the space
V', it is clear that f has at least g trivial zeros at P,. It may also occur that P, itself is a
Weierstrass point for the space V. We have proven

ordp,Q2 < —

<N<g((g+k)3’-1).

Theorem 2. The (multivalued holomorphic) function P — 6((g + k)pp,(P) + Kp,) has at
least a g-th order zero at the point Py and its remaining, at most g ((g + k)? — 1), zeros are the
zeros of the (meromorphic) Wronskian of a basis for the space of meromorphic differentials
with at most a pole of order k + 1 at P,.
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Remark 1. We do not claim that w is a nonzero constant multiple of 2. This equality would
follow if we could establish that

ordpw = ordp(2, for all P € S.

In this connection see the Problem at the end of [?, §6].

The above is capable of some generalization. In place of considering only one point P, we
can choose more than one point, say for argument’s sake two distinct points P, and P,. We
can now study the function

f(P) = 0((9 + kl)(PPl (P) + (k2 + 1)90P2(P) + ICPo)a
for arbitrary nonnegative integers k; and ko. It is easy to see that the above can be rewritten
as
0((g + k1)ep, (P) + (ko + 1) (¢p, (P1) + op, (P) + Kp,)
which is the same as

0((9 + k1 + k2 + 1)pp, (P) — (k2 + 1)pp, (P2) + Kp,).

It is thus clear that the point P is a zero of f if and only if there exists an integral divisors
¢ of degree g — 1 such that

P9+k1+kz+1<‘ Pg+k1+k2+1€
ep (W> = —2Kp, = ¢p, (W> ;

in other words, if and only if P is a Weierstrass point for the space of meromorphic differen-
tials with poles of orders at most k1 +1 at P; and ks +1 at P,. The dimension of this space is
g+ ki1+ ks +1 and a basis for the space is the union of a bases for the spaces of holomorphic
differentials, the meromorphic differentials with a poles of order I, 2 < [ < k; + 1, at the
point P;, the meromorphic differentials with poles of I, 2 < I < ky + 1, at the point P, and

one meromorphic differential with simple poles at P; and P,. A point P € S is a Weierstrass
point for this space if and only if ¢ (%) 0
1 2

The general f-function theory in this case yields that f has (g + ki + ko + 1)?g zeros
Q1 -y Q(g+ki+ko+1)2g Which satisfy the relation

(g9 + k1 + ka2 + 1) (k1 + 1)op, (P2) — Kp,) = 05, (Q1--Qgiks +ho+1y2g) + (9 + k1 + k2 + 1)°Kp,
or that

Q1 - Quuikitkatng ) _ (g+ki+ha+ 1)+ (g+k + ke + 1)
L8 plathithat1)(ka+1) - 2
2

(—2Kp,).

Q1 - Qotki+ha+1)2g
P(g+k1+k?2+1)(k1+1)P(g+k1+k2+1)(kz+1)
1 2

g+k1+ka+1)(
2

(9+ki+ko+1)(ki+1)and (g+ ki + ko + 1)(ka + 1)

at the points P, and P,, respectively. This differential is closely associated with the Wron-
skian of a basis for the space of meromorphic differentials which are permitted to have poles
only at P, and P, of orders at k; + 1 and k5 + 1, respectively.

is the divisor of a meromorphic ( gthitkat?) differential with poles of orders at most
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The Weierstrass points for the spaces we have been discussing are in fact objects that we
should be familiar with. Let us return to the space V where we started with the pair (P, k),
with arbitrary Py € S and k € Z1t U {0}. Let P € S. Consider the sequence of divisors

Pk+1 k+1 Pk+1
_ k+1 _*0 _ =0 _ 0
Do=P*, Di= =5, oy Do =g, vy Dagi = 5o

For each divisor Dy consider the vector space L(Dy), the space of meromorphic functions
on S whose divisors are multiples of Dy and its dimension r(Dy). Call the integer r > 1
a gap provided r(D,) — r(D, 1) = 0, and otherwise call it a nongap. It is an immediate
consequence of the Riemann-Roch theorem that 0 = r(Dy) = r(D1) = ... r(Dg) and that
7(Dag+r) = g. We therefore obtain

g =1(Dagyr) — r(D1) = (r(Dagrk) — 7(Daogrg-1)) + .. + (r(D2) — r(D1)).

It is thus clear that there are precisely g nongaps and therefore g+ k gaps among the integers
1, ..., 29+ k (and that 1, ..., k& are gaps). The Riemann-Roch theorem also gives us the
connection with the space of differentials since

PFt! [ P
T(PT' :T—(lf+1)—g+7; W

and i(Pof(kH)) = dim V. As in the classical case, r is a gap if and only if ¢ (IP;;—:) —
0

1 (%) = 1. If the point P # P, is not a classical Weierstrass point*, then the first nongap

is necessarily > g + 1. Moreover, as remarked earlier, P is a Weierstrass point for V' if and
only if it is a classical Weierstrass point.

5. AN EXAMPLE

The example we discuss, where we compute Weierstrass points, is not the most general but
is designed to indicate the possibilities and the advantages of the theta function approach
when used together with the Wronskian approach. It is clear that in the study of the space
of meromorphic differentials V' with poles at P, the question of the order of pole of the
Wronskian of a basis for V' at P, is not totally trivial and this is in fact reflected in the
ambiguity of the order of the zero of the theta function at this point.

Let S be a hyperelliptic surface of genus g > 2, Py € S and £ = 1. We consider the
Weierstrass points for the vector space V' of meromorphic differentials with at most a second
order pole at F,. There are two cases depending on whether F; is a classical Weierstrass
point or not.

Assume that P, is a classical Weierstrass point on S and let P # P, be any other classical
Weierstrass point. In this case the relevant sequence of dimensions is:

p? p? p? p? p?
iy =o=r () (B =1= () o r(B) =i=r ().
il il
e T <ﬁ) 9= <p29+1) ;

so that the sequence of gaps at P is the sequence of odd integers 1, 3, ..., 2g + 1 and the
weight of the Weierstrass point P for the space is04+1+2+...4+g= @. There are 2g+1

41f the point P # Py is not a Weierstrass point for V, then the first nongap is necessarily > g + k + 1.
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such points; so that the number of Weierstrass points accounted for by the 2¢g + 1 classical
Weierstrass points P with P # P is MQQQH).

As remarked earlier, the classical Weierstrass point P, is a Weierstrass point for the space
V. In this case, the gap sequence is identical to the ones for P # F,, but the weight of
the Weierstrass point is different since we allow poles of order at most 2 at P. The weight
of this point is (—=2) + (-1)+ 0+ ...+ (¢ —2) = %. The total weight for V' of the
2g + 2 classical Weierstrass points is hence (g+1)(g? + g — 2). Since the total weight of V is
(9—1)(g+1)(g +2), we have accounted for all the Weierstrass points of this space. The set
of Weierstrass points for the space V is the same as the set of classical Weierstrass points
but the weights of the points are different.

If Py is not a classical Weierstrass point then the appropriate sequence for P a classical
Weierstrass point is

P? P? P? P? P?
r(POQ):O:r(?O) =7“<P—02> ZT(P—%), T(P_i) =1:r<FO5), ey
P} . P} P} P}
7‘<P2i> =z—1=7‘<P2i+1 s ey T P21 =g—2=r Pag—1 )

P P
T(ﬁ):g—l,’r<m =g4.

Hence the gaps at the classical Weierstrass point P for the space V' are the positive integers
1, 2, 3, 5, 7, ..., 29 — 1; its weight is therefore %, a Weierstrass point for V' if and
only if ¢ > 3. There are 2g + 2 such points so that their total weight for the space V is
(9 —2)(¢g — 1)(g + 1). Before estimating the number of additional Weierstrass points, we
must consider the point P, which may have negative weight. The sequence of dimensions to

be studied is now
r(P) =0=r(R), r(1)=1=r(Fy") =r(P?) = .. 7(P, ),

r(ByU) =1, r(PyY) = g;
so the gaps at Py are 1, 3, 4, ..., g+ 2 and its weight is —(g+ 2) (since this is the minimum
possible weight at Py, this point is not a Weierstrass point for V'). There are therefore an
additional 4g% + g — 2 Weierstrass points for the space V.

The approach used above to calculate the weights of the Weierstrass points is of course the
Wronskian approach. The remark after Theorem 2 pointed out that we make no claim that
w is a constant multiple of €2 even though we believe this to be so since we believe that the
generic Riemann surface has only simple Weierstrass points. We of course have not proven
this here. For the remainder of this section though we make the implicit assumption that
this is so.

Let us see what this means for the simplest cases, g = 2 and 3.

We begin with g = 2. Here the function f(P) is 6(3¢p,(P)+ Kp,). Let us assume that P,
is a classical Weierstrass point. The function f vanishes to order three at the six classical
Weierstrass points (also the Weierstrass points for V') on S. The Wronskian for V' has a
third order zero at each Weierstrass point P # P, and a third order pole at F,. If P, is not a
classical Weierstrass point then the function f vanishes to order two at the point P, and at
16 other points. One of the reasons we get this situation is the following. In the case of g = 2
if we wanted to describe the Weierstrass points for the holomorphic quadratic differentials,
we would be looking at the zeros of 8(3¢p,(P)+3/Kp, and would indeed find that there are 18
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such points; the classical Weierstrass points each of weight 3. If P, is a classical Weierstrass
point, it is a point of order 2 in the Jacobi variety J(S); so that 3/Cp, = Kp, and the function
0(3¢p,(P) + Kp,) whose zeros are the Weierstrass points we seek are the same as the zeros
of the function f. This is why we get 6 zeros each of weight 3.

Let us see whether we can deduce anything from this. In the case that F; is not a classical
Weierstrass point, there are 16 Weierstrass points for V' and none of these are classical
Weierstrass points on S. The function f has 16 non trivial zeros (P, is a trivial double
zero). These 16 zeros decompose into two sets, simple zeros and double zeros. Let us now
suppose that we have an automorphism 7T of our surface of prime order, and that P, is a fixed
point of this automorphism.Thee sets of simple and double zeros are each invariant under
the automorphism 7. This is fairly obvious from the Wronskian approach. It is however
also not too difficult to see that when g = 2 and F; is not a classical Weierstrass point, the
function 0(3¢p,(P) + Kp,) has a double zero at P, and the remaining 16 zeros are either
simple or of order 2. Consider

e(d)Po(P) + KP0)7 0(¢P0(P) - KPO)'

The first vanishes identically on the Riemann surface and the second has a double zero at
the point FPy. This implies that

0(Kp,) = Z9z‘(KPo)Mz'(P0) = ZOZ'(KPO)MQ(P()) + Z 0;i(Kpy) pi(Po) i (Fo) = 0
and that
Zei(_KPO)M;(PO) + Z 05i(—Kpy) pi(Po) 115 (Po) # 0

where the subcripts on the theta function mean partial differentiation and uq, s are a basis
for the holomorphic differentials.
Suppose now that 6(3¢p,(P) + Kp,) had a third order zero at Py it would follow that

2

3 0:(Kp)ii(Po) +9 ) 0;(—Kp,)s(Po)pj (Po) = 0

i=1 ij=1

This together with the preceding would imply that

2
> 0:(Kpy) i (Po)
i=1
which is a contradiction since in order that this differential have a double zero at Py, Py need
be a classical Weierstrass point which it isn’t.

We have already seen that the Weierstrass points for the space V in this case are not
classical Weierstrass points and that all nontrivial zeros are Weierstrass points for V, it
thus follows by a similar argument that all zeros can be at most of order 2. In fact a
characterization of the points of weight 2 can be given which of course agrees with the one

in the Wronskian approach. We outline the argument.
Let @ # P, be a zero of 8(3¢p,(P) + Kp,). We then have that

36p,(Q) + Kp, = ¢p,(R) + Kp,
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3
or that PQT; is principal and %&R) is canonical. Let us write
0 0

€ = ¢p0(R) + Kpo.

Then as is well known from the theory of theta functions on Riemann surfaces we have

2

> 0:(e)m(P)

i=1

is a holomorphic diferential which vanishes at the two points R and h(R) on the surface
where h represents the hyperelliptic involution. The condition for second order vanishing is
thus that

Z@-(e)m(@) =0

and this occurs only when () = R which is ruled out since this would imply that @ is a
classical Weierstrass point, or @) = h(R). This of course implies that IQJ—(; is canonical which
gives weight 2 in the Wronskian approach.

Let the cardinality of the sets of simple and double zeros be x and y, respectively. Since
x+2y = 16, x must be an even integer and the possible solutions to the Diophantine equation

are the pairs (z,y)
(0,16)(2,7), (4,6), (6,5), (8,4), (10,3), (12,2), (14, 1), (16, 0).

The only possible orders of 1" are 2, 3 and 5.

If the order of T' is 2 then either we have 6 fixed points and the automorphism is the
hyperelliptic involution (which we have excluded by the hypothesis that Py a nonclassical
Weierstrass point is fixed by T'), or there are 2 fixed points in which case we actually know the
other fixed point. It is just h(Py), where h is the hyperelliptic involution. If the solution to our
Diophantine equation is either (2,7), (6,5), (10,3) or (14,1) then the fixed point **WHICH
ONE*** is in fact one of the Weierstrass points above **MORE SPECIFIC***, If the
solution is one of the remaining cases we have no further information.

¥*NOT CHECKED REMAINDER OF THIS SECTION***If the order of T" is 3 then it
is clear that some additional fixed points are always in the set of Weierstrass points above.
None of the possible solutions are of the form (z,y) with both = and y congruent to zero
mod 3 so there must be fixed points. In fact a case by case description is easily done.

If the order of T is 5, then there are 3 fixed points, 2 in addition to the one at P, and the
reader can check that some of the above possibilities are in fact not possible and again will
show that at least one additional fixed point is in the set of Weierstrass points for our space.

Let us now consider the case of ¢ = 3 and P, not a classical Weierstrass point and 7" an
automorphism with 7'(FP,) = P,. In this case we have seen that the classical Weierstrass
points are all Weierstrass points for our space as well but are all simple Weierstrass points.
There therefore remains an additional 37 Weierstrass points for the space and no matter how
they distribute themselves into points of weight 1,2 or 3 each of those sets will be invariant
under 7" and an additional fixed point of 7" will be in this set of Weierstrass points. The
argument is simple. Since 37 is prime there is no way that each of the sets can be congruent
to zero mod the order of T'. If they were the order of 7" would have to divide 37 which it
can’t since it is less than 37 and 37 is prime.
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We therefore see that the sets of Weierstrass points we have here constructed can be useful
for example in locating fixed points of automorphisms.

PART II. More material on the subject discussed here can be found in [?]°.

6. FACTORS OF AUTOMORPHY

Let G be a subgroup of SL(2, R) whose projection (denoted by same symbol) to PSL(2, R)
is a finitely generated Fuchsian group of the first kind®. We restrict our attention to the
action of G on the upper half plane H? = {7 € C; 37 > 0}. A factor of automorphy for G is
a function

e:GxH - C
(C* = C — {0}) with

e(g,”): H2 — C*
holomorphic for all g € G and

6(9192,7) = 6(91792(7')) 6(92,T)

for all g1, g» € G and all 7 € H2. The most important example of a factor of automorphy is
the canonical factor K defined by

K(g,7)=4¢'(r), g€ G, T € H.

We are interested only in a restricted class of factors of automorphy. A factor of automorphy
e is called parabolic if there exists a real constant ¢, which we will call the weight of e, and
for each g € G there exists a complex number of absolute value 1, ¢(g), such that

e(g,7) = c(g) ¢'(1)9, all T € H2.

This requirement involves only finitely many conditions (one for each generator of G). If
q € Z, then c is a (normalized) character for G; that is, ¢ is a homomorphism of G into the
unit circle, the complex numbers of absolute value 1. It is convenient to write

c(g) = exp{2ma(g)}, a=a(g) e R, 0 < a< 1.

A meromorphic function ¢ on H? is e-automorphic if it satisfies

o(v(1)) e(y,7) = p(7), all T € H?, all y € G, (1)

and has a limit, ¢(z) (as a point of CU{oo}), as 7 € H? approaches a parabolic fixed point”
z € RU{oo} of G through a cusped region determined by z. The e-automorphic function ¢
for the parabolic factor of automorphy of weight ¢ is holomorphic if it is holomorphic function
on H? and ¢(z) is finite for all parabolic fixed points z of G. The condition imposed at the
cusps on a function to be e-automorphic needs further explanation.

SWe are following the notational conventions of that manuscript. In contrast to Part I, the genus of a
surface is denoted by p rather that g; the latter symbol being reserved for elements of a group G.

6We also use the same symbol for an element of SL(2, R) and the M&bius transformation it induces.

"The set of parabolic fixed points of G' will be denoted by Apar(G); these fixed points will also be called
cusps.
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Let C € SL(2,R) and assume that e is a parabolic factor of automorphy for G of weight
q. Then

- CgC)' (7))

é(CgC, 1) =e(g,C(T ( , g€ G, Tl

(€7290,7) = <lo, )= ey

defines a parabolic factor of automorphy é for G = C~'GC of weight ¢. Let C? be the map
that sends a function ¢ to ¢ = (p o C)(C")9. If ¢ satisfies (??), then @, = @ satisfies

¢(3(1)) é(7,7) = (1), all T € H?, all 5 € G.
Let z € RU {oc} be a parabolic fixed point of G. Let P be a generator for the stabilizer
of z in G. Choose a Mébius transformation C' € PSL(2,R) such that
1 £1
0o 1]

Replacing P by its inverse, we may assume that CPC~! = B. Let® é(B,7) = exp{2ma},
a € R 0 < a< 1. The function ¢ satisfies

C(z) = oo and CPC™! = B*! = [

G(r + 1) exp(2ma) = §(1), all 7 € H>.
Hence
f(7) = exp(2mar)p(r), T € H,
has a Fourier series expansion

flr) = Zan exp(2mint), T € H2.
neZ
We say that ¢ is meromorphic at 100 if there exists an N € Z, such that a, = 0 for n < N.
It involves no loss of generality to assume that ay # 0. In this case,

o(1) = exp(—2mar) Z an exp(2minT), ay #0, 7 € H2. (2)
n=N
We say that ¢ is holomorphic (satisfies the cusp condition) at 100 if N —a >0 (N —a > 0)
and set
oo if N—a<0
Qo) =< ayif N—a=0 .
0if N-—a>0
We claim that our definitions are well defined (independent of the choices made). Our only
choice was the transformation C. Had we used C; instead, then C;C~!' € PSL(2,R) and
C,C~'BCC;' = B*'. The minus sign cannot hold since a real Mdbius transformation
cannot conjugate B to its inverse. Thus there exists a b € R, such that Cy(r) = C(7) + b.
Hence
¢1(7) = ((C)lp) (1) = (Clp) (T +b) = B(1 +b);
showing that

?1(1) = exp(—2ma(T + b)) Z a, exp(2min(T + b))

n=N
o0
= exp(—2marT) Z exp(2mi(n — a)b)a, exp(2minT).
n=N

8This corresponds to e(P, 1) = exp{2ma}P'(1)? .
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Even though the Fourier series expansion of of a meromorphic é-automorphic function de-
pends on the choice of the fractional linear transformation C, its value at the cusp 200 does
not. We can now define ¢ to be meromorphic, holomorphic or satisfy the cusp condition at
x if ¢, is meromorphic, holomorphic or satisfies the cusp condition, respectively, at 200.

We let AT (H?,G,e) and A(H?, G, e) denote the spaces of e-automorphic functions that
are holomorphic, respectively satisfy the cusp condition, at each # € Apar(G). Note that
AT (H?,G,e) D A(H?, G, e). Further

C?¢: AT (H?,G,e) — At (H2, G, é)
and .
Cl: A(H?,G,e) — A(H?,G, &)

are C-linear isomorphisms. If ¢ ¢ Z, then we use the same branch of (C")? in all the above

formulae. The resulting factor of automorphy and its space of holomorphic automorphic
functions depend in a mild way on this choice.

7. MULTIPLICATIVE ¢-FORMS

Let G be a finitely generated Fuchsian group of the first kind operating on H2. Let ¢ be
a character on G and ¢ € Z. For the parabolic factor of automorphy e = ¢ K? for GG defined
by

e(g,7) =g'(1)" clg), g€ G, T €I,
we write
AT (H,G,e) = A (B, G, c) and A(H?, G, e) = A (H*, G, c).
The trivial character ¢ = 1 is, as usual, dropped from the notation.

Let e be factor of automorphy for G of weight ¢g. A nonzero e-automorphic meromorphic
function ¢ (in particular, a ¢ € AT (H?, G, e)) has a well defined order, ord,¢ € RU {0}, at
each point z € H? and each point z € Apar(G), the set of parabolic fixed points z € RU{co}
of G. For x € H?, ord, is defined as the order of vanishing® of ¢ at z divided by the order
of, G, the stabilizer of z in G. To define the order of ¢ at a parabolic fixed point x of G we
use the material and notation of the previous section (especially (??)) and set

ord,o = N — a.
While the order of ¢ at a parabolic fixed point = is only a nonnegative real number,
ord,p; — ord,ps € Z,
for all p; and o, € AT(H?,G,e) — {0}'°. It is routine to prove that if G has signature

(p,m; p1, -, Mn), then (see, for example, [?, §I11.8] for a similar argument)
- 1
Z ordxgozq(Qp—2+Z<1——_>>:D(q)GQ. (3)
zel? /G J=1 Hi

It is useful to observe that for all ¢ € AT(H?,G,e) (more generally for all meromorphic
e-automorphic functions for G), all C' € SL(2,R), and all z € H? U Apar(C~'GC),

ordg(zyp = ord,Cy(p), (4)

9A rational, not necessarily an integer.
10More generally, for all pairs of nontrivial meromorphic e-automorphic functions.
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where g is the weight of e. The possible orders of vanishing of a 0 # ¢ € AT (H?, G, e) at an
ordinary point x € H? are the positive integers

At an elliptic fixed point z, there are restrictions for the possible orders of vanishing of
functions 0 # ¢ € AT (H?, G, e) that can be readily determined. It suffices to observe that
these rational numbers satisfy as a consequence of (?7),

0 < ordzp < D(q);

also at parabolic fixed points.
Let ¢ € Z and let ¢ be a character on G. If ¢ € Al (H? G,c) — {0}, then ¢7 €
Af(H?, G, c?) — {0}, and for all z € H? U Apar(G),

ord,¢? = q ord,;
hence for rational characters (characters ¢ with ¢V the trivial character for some N € Z1),
(?77?) is a consequence of the fact that the degree of a canonical divisor on a compact surface

of genus p > 0 is 2p — 2.

Proposition 1. Let e be a factor of automorphy for the finitely generated Fuchsian group
of the first kind G operating on H?. Then

dim AT (H2, G, e) < oo.

Proof. If dim AT (H?,G,e) > 0, choose a nonzero element ¢, € AT (H?, G, e). For any ¢ €
AT (H?, G, e), the ratio - projects to a meromorphic function on H? /G, the compactification

of H? /G obtained by filling in the punctures) with poles only at the zeros of (,. These poles
have orders at most D(q). 0O

Remark 2. Let ¢ be a character on G. A form ¢ € A (H?,G,c) — {0} defines a Prym
differential on the compact Riemann surface H? /G if and only if ¢() = 1 for all elliptic and
parabolic v € G.

8. WEIERSTRASS POINTS FOR SUBSPACES OF AT (HZ, G, e)

We fix a finitely generated Fuchsian group of the first kind G operating on H2. Let e be
a parabolic factor of automorphy of weight ¢ for G. Let V be a nontrivial d-dimensional
vector space of meromorphic e-automorphic functions (in particular, V' could be a subspace
of AT(H?,G,e)). We proceed to define an invariant for this space. For x € H? or z a
parabolic fixed point of G. Let

o <711 < oo < Tg—1
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be the possible orders of vanishing!! at z for elements of V' — {0}. We define the weight of
the point x with respect to the vector space V as

o)

if r € 2 and |G,| = u = pg, and
a1
Tv(z) = Zri
i=0

if z is a parabolic fixed point for G. Note that r; € R for x € Apar(G), r; € Q whenever
xr € H2, and r; € Z if in addition p, = 1. We call  a Weierstrass point with respect to V if
and only if every element of V is holomorphic'? at x and its weight is above the minimum
that it can be; that is, if and only if ry > 0 and

0if z € H?
TV(-Z‘) > d(d—l) lf.’L' c Apar(G)

2
The weight of the vector space V is

V)= > mv(x)

zel? /G
Choose a basis ¢, ..., p4_1 for V, and as in [?, §II1.5] form their Wronskian
o e Pd-1
Yo $aa

W = det = det [QO(), . (‘Od—l]-

A L
It is easily seen that a change of basis for V results in a nonzero constant multiple of
W and that W is a edn@-automorphic function (W € AT (H?, G, ek T 1)) whenever
V C AT (H?,G,e) ), where  is the canonical factor of automorphy for G. Hence deg (W) =

d x(G) (¢ + 41), where x(G) is the negative Euler characteristic of G.

Proposition 2. For all z € H? U Apgr(G),
ord, W = 1 (x).

Hence

d—1
7(V) =deg (W) =d x(G) (q + T) .

UTf 2 € H? is stabilized by an elliptic subgroup of order u, then the ordinary order of vanishing of
meromorphic functions is divided by u; at a parabolic fixed point, we use the order of vanishing of the
Fourier series in terms of an appropriate local coordinate vanishing at the corresponding puncture. In this
context, the weight of a parabolic fixed point can be interpreted as the limiting case of the weight of an
elliptic fixed point as 4 — 00. Thus the second formula below should be interpreted as a special case of
the first one with 4 = oo. We will use this convention, usually without further remark, throughout the
remainder of the manuscript.

12Tt is often desirable to have a way of labeling points at which functions in V have singularities as
Weierstrass points. This extension is very sensitive to the definition of the space V. For our example in §7?
the point Py is naturally considered a Weierstrass point for V' if and only if it is a classical Weierstrass point.
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Proof. The arguments of [?, §I11.5], whose notation we employ in this section, easily establish
the equality for z € H?. For z € RU {oo} a parabolic fixed point, we use the fact that

det [po, - wa-1] = ¢ det [1, L Q"dl] — ot det [ﬁ, 90d1:|’

and hence by induction on d that

d-1

ordzdet [(po, ceey Qod—l] =d To + ZT‘Z' — (d — 1)7‘0.

i=1

9. HOLOMORPHIC MAPS OF H?/I’(k) INTO LOW DIMENSIONAL PROJECTIVE SPACES

The purpose of this section is to give an application of the material on Weierstrass points
for finite dimensional spaces of holomorphic functions developed in §77.

Let k € Z*. Let V (k) be the finite dimensional vector space of holomorphic functions on
H? spanned by the modified theta constants

7 = @i(1) = 0[x:](0, k7)),

20+1 2
where the characteristic y; = [ ’1€ } , 1=0, .., %, for odd £ > 3 and x; = [ k } , 1=

0, ..., g, for even k.

For odd k, let V'(k) be the finite dimensional vector space of holomorphic functions on H?
spanned by the modified theta constant derivatives (" denotes differentiation with respect to
z, the first variable of 6[x](z, 7))

20+1

7= (7) :0’[ : ](O,kT), [=0, oy —o—.

For even k, let V'(k) be the finite dimensional vector space of holomorphic functions on H?
spanned by the modified theta constant derivatives

2 k—2
T () =6 [ 8 ] (0,k7), 1L=1, ..., —
The four spaces introduced have respective dimensions £, £ 4 1 % and £ — 1. We

will denote this number by d + 1. The easiest way to obtain the linear independence of
the functions introduced is through the observation that in terms of the local coordinate
T = exp (27];”), for odd k, and x = exp (%), for even k,

(1+21)?

orde ) = g = orde. ) for odd k and ordy; = I = ordy.) for even k.

We need to look at several families of subgroups of the modular group PSL(2,Z) =T
(a) T'(k) is the level k principal congruence subgroup of elements represented by matrices

[Z‘ b]erwithaa mod k=dand b=0 mod k = ¢,

d

(b) [',(k) consisting of elements represented by matrices [ ch Z } € 'withe =0 mod k and
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(c) H (k) defined only for even k and consisting of elements represented by matrices [ ch 2 ] €

['(k) with b=0 mod 2k = c.

The needed facts concerning the first two families of groups are well known (see, for
example, [?, Ch. 1]). The groups H (k) appear less often in the literature. We need to know
that H(2) = I'(4) and that for all even k > 4,

['(2k) ¢ H(k) C T'(k);
the two inclusions being of index 2 and 4, respectively. The group H(k) is torsion free of

type (4p(k) — 3 + n(k),2n(k)), where (p(k),n(k)) is the type of ['(k); its (negative) Euler
characteristic is

(H (k) 4 for k=2
x(H(k)) = 3 .
%Hqs prime, gk (1_%) for k > 4

The basic facts about the spaces V' (k) and V'(k) are summarized in

Lemma 1. Let

s { L when considering V (k) (k) for odd k

3 H(k) for even k ~

T when considering V' (k)

andGz{

(a) The Petersson inner product
oy —— | dzdz
<ovs= [ [ @ eie |5
® /G

endows V (k) and V'k) with a Hilbert space structure; this space is invariant under the s-
action of I': an element v € T' acts on these spaces as the operator ~; that sends ¢ to
(e o))"

(b) The spaces V (k) and V'(k) consist of automorphic functions for a factor of automorphy
of weight s for the group G.

(c) Assume that k is even. For each element y = [ z I } e I'(k), vi sends ¢, L =0, ..., g,
4

to a monzero constant multiple of itself if 2k|c and to a nonzero constant multiple of Py

k_
g

and to a nonzero constant multiple of ¢’y _, otherwise.
2
(d) For all vy € T, v¥ is a unitary operator on V(k), V' (k).
(e) Assume that k is odd. For each motion v € T',(k)/T'(k) there is a permutation o, of the
first % nonnegative integers such that

otherwise, and 3 sends ¢), | =1, 1, to a nonzero constant multiple of itself if 2k|c
4

vier = 67)0e,0), Vet = K(LVCo,w, 1=0, 1, oy ——, and Yighs = kg,

where k(l,7y) and Kk are constants of absolute value 1.

(f) Assume that k is an odd prime. The % functions {pq, ..., gokz;s} form an orthogonal

basis for the Hilbert space V (k); these functions have the same norm. The % functions
{©h, -y @i} form an orthogonal basis for the Hilbert space V'(k); the first % of these

2
functions have the same norm.
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Proof. For odd k, most of the lemma has been established in [?]. Consult [?] for a complete
treatment. U

Proposition 3. For each odd integer k > 5, the maps
©:7 = (@o(7), 01(7), -y Przs(T), Prza(T))

and
O 7 (py(7), PL(T), .. QD%(T), ‘P%(T))

from H2 U Q U {0} to c5 and (C]%, define holomorphic mappings (also to be called ®
and ®') from H2 /T(k) into PC" and PC5 . If k is prime, the distinguished punctures
on the surface H? /T(k) are sent (injectively) onto the coordinate vectors in projective space.
Further, in this case, the maps ® and @ restricted to the punctures are injective, and of
mazimal rank at each distinguished puncture (punctures on H?/T'(k) that are T,(k)/T'(k)-
equivalent to Py, the puncture on H2 /T'(k) obtained from the cusp 100.

Proof. The case of V (k) has been treated in [?]. The arguments for V'(k) are similar. O

We assume for the remainder of this note that £ is odd. The following corollary and
proposition were also established in [?].

Corollary 1. For every prime k > 7, the map ® is also defined by % linearly independent

abelian differentials of the first kind on H? /T (k).

Remark 3. ®(H?/T'(k)) is a curve of degree W in PC™2*. For k = 7 it is a curve of
genus 3 and degree 4 in 2-dimensional complex projective space; as a consequence of the last

corollary, the canonical curve.
Problem 1. Are the maps ® and ®' injective?

Proposition 4. For each prime k > 3, the homomorphism
©:T/T'(k) - Aut PV (k)
induced by ® is injective.

Remark 4. 1t is probably true that ® is injective. The injectivity of © would follow trivially
from this conjecture.

Although we have few tools for the investigation of the maps ® and ®' at points z €
H? /T'(k), at times enough information at the punctures can be translated to results about
interior points. Among the results so obtained are the following two propositions.

Proposition 5. (a) For odd k > 1, each puncture on H?/T'(k) is a Weierstrass point for
V (k) and V'(k), and only the punctures are Weierstrass points.

(b) For k =2, the 6 punctures on H? /H(2) are the Weierstrass points for V(2).

(c) For k > 4, the punctures on H2 /H (k) are the Weierstrass points for V (k) and V'(k).

Proof. Assume that & is odd. It is obvious that oo is a Weierstrass point for V' (k) since

o +1)? _
Gl tori=o0, . kT?’

The same argument shows that oo is a Weierstrass point for V'(k). Since I' preserves V (k)
and V'(k) and acts transitively on the punctures of H? /T'(k), we conclude that all the cusps

r; = ordeoip; =
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are Weierstrass points of the same weight. Now straight forward calculations (using formulae
for the sums of squares of odd integers and the fact that the negative Euler characteristic of

. 3
T(k)is & 15 prime, g (1 - %)) show that

k(k—1)(k —2) k(k+1)(k+2)
Ty (k) (00) = 13 , Tvik) (00) = 13 :
Kk —1)(k — 2) 1
r(V (k) = I1 1- —
%0 P prime, Pk ( ¥ >
and
, k3 (k+1)(k+2) 1
r(V'(k)) = I1 QT
%0 P prime, Pk ( i )

Since the % [Ty prime, 3k (1 - %) punctures account for the total weight of V (k) and

V'(k), the proof is complete in this case. For the odd prime k, we have the simplification

r(V(k)) = (k—2)(k —961) kk+1) SV (k) = (k= Dk(k +1)°(k +2)
For even £k,

96

k(k+1)(k +2) k(k —1)(k — 2)
7'V(k)(OO) = 24 ) TV'(k)(OO) = 24 )

V() 6 for £k =2
TV/C = k3(k k
(+2li( +2) Hqs prime, pk (1_%) for k > 4

I N | ()

24 , P2
B prime, ‘J3|k

Once again, for k = 2 (for k£ > 4), the 6 (k2 ng prime, gk (1 — é)) punctures account for
all the Weierstrass points.

and

Proposition 6. For all odd k € Z", k > 3, the maps ® and ® have mazimal rank every-
where.

Proof. We need to show that d® and d®' are nonsingular everywhere; equivalently that for
all z € H2 U QU {oo} we can find functions f and g in V (k) (V'(k)) that are regular at =
with 4 having a simple zero at . We have seen that we can choose f and g in both V (k)

and V'(K) so that

1 9
ordy f = 3 and ord,.g = 3

Hence our maps have maximal rank at the cusps. The previous proposition showed that the
weight of each ordinary point x € H? with respect to either V (k) or V'(k) is zero. Hence
there certainly are functions f and ¢ in these spaces with

ord,f =0 and ord,g = 1.

Thus the two maps have maximal rank globally. O

Remark 5. The maps ® and @' can be defined for even k (using the groups H (k) rather than
['(k)). Results similar to the last proposition follow. The details are left to the reader.
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