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1. INTRODUCTION AND MAIN RESULTS

Continuous wavelet transforms

F(@) > Wf(z,a) /f (‘“’_y‘>dy, (1.1)

TERY,  a>0, / w(lyl)dy = 0,
Rn

play an important role in harmonic analysis, function theory and have many ap-
plications (see, e.g., [6-8, 12, 14, 15, 21, 22] and references therein). Owing to the

formula
o0

/Wf(ac, a) acﬁa =c(-A)%f(z), c¢=c(a,w), (1.2)

0

= 0%/0x3 + ...+ 0%/0z2, which can be given a precise sense in the framework
of the LP-theory [21], the wavelet transforms (1.1) can be used for characterization
of spaces of functions of fractional smoothness and in a variety of problems dealing
with powers of the laplacian (e.g., in integral geometry and in fractional calculus
[12, 21, 23]. Our general aim is to find natural anisotropic analogs of (1.1), to
develop the relevant LP-theory and to give applications.

In this paper we introduce continuous wavelet transforms associated with the

heat operators —A, +3/0t, I—A,+0/0t, z€R", te€ R By making use of
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these transforms we obtain new explicit inversion formulas for parabolic potentials

H*f and H*f defined in the Fourier terms by

F[H*f](&,7) = (|€]* + ir) /2 F[f](&, 1), (1.3)

FIHOf)(€,7) = (1 + [€]> +im) "2 F[f] (€, 7). (1.4)

These potentials were introduced by B.F. Jones, Jr. [13] and C.H. Sampson [26] and
studied in [3-5, 9, 10, 16-19]. We also obtain a parabolic analog of the Calder6n
reproducing formula and give a new characterization of the relevant anisotropic
Sobolev spaces.

One should mention the papers [1, 2] by I.A. Aliev devoted to inversion and char-
acterization of parabolic potentials generated by a generalized translation operator
in terms of hypersingular integrals with finite differences. The techniques developed
below can be applied to this class of potentials. The corresponding results will be
presented in forthcoming publications.

Main results.

Let R*"*! be the (n + 1)-dimensional euclidean space of points (z,t), © =

(r1,...,7,) € R*, t € R'. Given a finite Borel measure m = m(z,t) on R**!, we

define an anisotropic dilation m. /5 , of m by
/ w(a, t)dm. g o () = / w(vaz, at)dm(z, 1), (1.5)
Rn+1 Rn+1

a>0, we Cy=Cy(R* ) (the space of continuous functions on R**! vanishing

at infinity). If m(R"*1) = 0, the convolution

Amf(xa b a’) = (f * m\/a,a)(ﬂ% t) =
— [ o= Vay.t - ar)am(y, ) (1.6)

Rn+1

will be called an anisotropic wavelet transform of f generated by the wavelet mea-

sure m. The choice of m is at our disposal. We choose it as follows. Let

W (z,t) = (4nt) "™ 2 exp(—|z|?/4t), z e R*, t>0, (1.7)
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be the Gauss-Weierstrass kernel possessing the following properties [27]:

1) /W(x, t)dzr = 1; 2) /W(y, OW(z —y,7)dy = W(z,t+ 7);
K K (1.8)
. 2
) FIV (010 = [ oW (o) = o
Rn
Suppose that p is a finite Borel measure on R! such that p(R') = 0 and suppy C
[0,00). Denote p' = p — p({0})d, where 6 = §(t) is the unit mass at t = 0. We set

m = u({0})d(z,t) + m/, dm/(z,t) = Wz, t)dzdy'(t), (1.9)

W (z,t) being extended to t < 0 by zero. Clearly, m is finite and m(R"**!) = 0.
Definition 1.1. The anisotropic wavelet transform (1.6) with m defined by (1.9)

will be called a parabolic wavelet transform and denoted by P, f(x,t;a). Thus,

Puf(a i) = (D@0 + [ flo= Vay,t - an) Wiy, )dydu(r) (110)

R7 x (0,00)
or
P.f(z,t;a) = / flz—Varz,t —ar)W(z,1)dzdu(r). (1.11)
R7 x [0,00)

Given two measures 1 and v on R! supported by [0, 00) we have
Puwf(z,t;a) = P[P, f(-, -;a)|(z,t;a). (1.12)

Definition 1.2. A finite Borel measure p on R supported by [0,00) is called

admissible if

k() = € L'(0,0). (1.13)

The following statement gives a “parabolic” analog of the Calderén reproducing

formula for functions f € LP = LP(R™**1) (cf. [8, 22]).

Theorem A. Let i be an admissible measure, and let

koz/k(t)dt (see (1.13)). (1.14)

(i) If feL?, 1<p<oo, then

a e—0
p—00

/Puf(x,t;a)@ = lim /(---) — kof(2,t) (1.15)

€
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(LP)
where lim = lim.

(ii) If f € Co, then (1.15) holds with the limit interpreted in the sup  -norm.
(z,t)ERn+1

(iii) Iff e LP, 1< p < oo, and k(t) has a decreasing integrable majorant,
then (1.15) holds a.e. on R**1.

As in [22, p. 180] and [21, Section 12|, a measure p is admissible if suppy C
[0,00), u(R') = 0 and one of the following conditions holds:

(@ [ g tidlul(®) < o (1.16)
0

or

(b) du(t) = g(t)dt, g € H?! (the real Hardy space on R!). (1.17)

Furthermore,

/ log(1/t)du(t) in the case (a),

0

ko = N (1.18)
g/ Hg(t)sgnt dt in the case (b),

Hg(t) =pv.7m! [° g(r)(t — 1)~ 'dr(€ L*(0,00)) being the Hilbert transform of g.
Here and on the notation like f: f(#)du(t) designates f[a py S ()dp(t).
Remark. We do not know whether the statement (iii) of Theorem A holds for p =1

because we cannot assert the validity of the weak estimate for the relevant mixed

partial maximal functions (see the proof of Theorem A in Section 2).

The potentials H® f and H® f initially defined by (1.3) and (1.4) are representable

by the integrals

1
Hf(z,t) = TP NW (y, ) f (@ — y, t — T)dydT =
F(a/2)Rnx(/0’oo) (1.19)
_ _ 1 e .
- (ha *f)($,t), ha(.’E,t) - I‘(a/2)t+ W($,t),
1
Hf(z,1) = T2 e W (y, ) f(x — y, t — 7)dydr,
F(a/2)Rnx(/0’ - (1.20)

= (ila*f)(f(?,t), ﬁa(x;t) :e_tha(.’li,t).

The integrals (1.19), (1.20) have the structure of one-sided potentials (cf. [20],
where similar potentials involving the Poisson kernel (instead of Gauss-Weierstrass’

one) were investigated).
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Theorem 1.3 [3, 9].

I. Let feIP, 1<p<oo,0<a<(n+2)/p, ¢g=Mn+2—ap) t(n+2)p.
(a) The integral (H*f)(x,t) converges absolutely for almost all (x,t) € R* 1.
(b) Forp>1, the operator H® is bounded from LP into L9.
(¢c) Forp=1, H® is an operator of the weak (1,q) type:

{(@,0) : [Hf)(,0)] > 7}] < (”ﬁ—”> |

II. The operator H* is bounded in LP for all o >0, 1<p < oo.

Remark 1.4. If o > (n + 2)/p, the integral (1.19) may be divergent for f € LP.
In this case we interpret H®f as a ®{-distribution defined by duality (H*f,w) =
(f,H*w), H%w=UH%Uw, Uw(z,t)=w(—z,—t) (since F[H*w](&,T) = (|¢]*—
iT)"/2F[w|(¢,7), H® is an automorphism of ®, for any «). Here the test func-
tion w belongs to the space @y = Po(R"!) of Schwartz functions orthogonal to all
polynomials [21, p. 19], and the abbreviation like (f, g) is used for [ fg.

A straightforward calculation enables us to represent (1.19), (1.20) via the rele-

vant wavelet transforms. Namely, for Rea > 0,

_ r da
Haf(./l,',t) = Ca’lu/P“f(.Z',t; Cl) m, (121)
0

oo

o = T(/2) / P2 (r)

0

provided that f;° 77 R¢*/2d|p|(1) < oo and cq,, # 0. Similarly,

r da
Haf(.’lj,t) = c;,L/PHf(JJ,t;a) al_T/z (122)

0

where
Puf(ostia) = p((ODf@0+ [ flo—Vayt— an)Wly,r)e " dydu(r) =
R X (0,00)

_ / f(& = Varz,t — ar)W(z, 1)e~* dzdpu(r) (1.23)

R7x[0,00)

will be called a weighted parabolic wavelet transform.
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In fact, the equalities (1.21), (1.22) were the first and gave rise to definitions of
the wavelet transforms (1.10), (1.23). Numerous examples of continuous wavelet
transforms generated by different analytic families of fractional integrals can be
found in [23]. An idea to introduce weighted wavelet transforms associated with
inhomogeneous differential operators (or fractional integrals) seems to be new (but
it was clear to the second author a few years ago; as an exercise, we suggest that the
reader defines weighted wavelet transforms corresponding to the Bessel potentials
Jof = (I — A)*/2f and proves the relevant reproducing formula).

The formula (1.12) remains true if P is substituted for P, and an analog of
Theorem A also holds for the weighted transform (1.23). In view of (1.3) and (1.4),
explicit inverses of H* and H* can be obtained from (1.21), (1.22) if one replaces

formally @ by —a.. More precisely we have

Theorem B. Let p be a finite Borel measure on [0,00) satisfying the following

conditions:
/tjdu(t) =0 Vji=0,1,...[@/2] (the integer part of «/2);
o (1.24)
/tﬁd|u|(t) < oo for some > a/2. (1.25)
0
Suppose that o = H*f, feLP, 1<p<oo, 0<a< (n+2)/p. Then
o0 o0
da .
P,o(z,t;a) tajz = &11_r)r(1) (...)=dauf(z,t), (1.26)
0 €

(—a/2) / T i0dut) if a/2 ¢ N,
dop = ’ (1.27)

—1)1+e/ o0
% /0 t*?logtdu(t) if a/2 € N.

The limit in (1.26) is interpreted in the LP-norm for 1 < p < oo and a.e. on R**!
for1l <p< oo.
The same statement holds for all « > 0 and 1 < p < oo (L is identified with

Cy) provided that H* and P,, are replaced by H® and P, respectively.

Our next result concerns application of parabolic wavelet transforms to charac-
terization of anisotropic spaces Eg‘yr(R"H) of parabolic potentials which were in-

troduced and studied in [19]. We recall that given o >0, 1 <p<oo, 1< r < oo,
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the space L3, = L& (R"*!) is defined by

Lor={f:flleg, = IFllr + IF~H(E? +ir)*2F £|l, < 0o} (1.28)

where the Fourier transform F' is understood in the sense of ®(-distributions (see

Remark 1.4).

Theorem C. Leta >0, 1<p<oo, 1<r<oo. Then

o , OoP flz,t;a
Ly, ={felL" ili% | %daﬂp < oo} (1.29)

where P, f is the parabolic wavelet transform (see Definition 1.1) generated by an

arbitrary measure i satisfying the conditions of Theorem B.

Example 1.5. Let

©= i ( > 1)*6s, > a/2, (1.30)

=0
0k = 0 (t) being the unit mass at the point ¢ = k. By (1.11),

L

Buf(ztia) = 3 (i) (—1)"’/]”(3 — Vakzt— k)W (z,1)dz =

k=0

- / AL (@, )W (y, a)dy

Rn

¢
where AL | f(z,t) = > (f;) (=1)* f(x—+'ky, t—ka) is an anisotropic finite difference
k=0
of f. Furthermore,

oo ) V4
/Mda: / AZ’L(m’t)w(y,a)dyda-

a1+a/2 a1+a/2
0 R X (0,00)

Hypersingular integrals of this form were introduced in [16-19]. As in [21, Section

17.4] it is not difficult to show that the measure (1.30) satisfies (1.24), (1.25) and

i 1—e
=[O e
0

In Sections 2, 3 and 4 we prove Theorems A, B, C respectively. Section 5 contains

concluding remarks and an additional Theorem D characterizing the range H®(LP).
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2. PROOF OF THEOREM A

Denote )
I p(p, f) = /P,Lf(a:,t;a) %, 0<e<p<oo. (2.1)
We have
Leo(p, f) = f+Ke — [+ K, (2.2)
where
K. (z,t) = e 'W(z, t)k(t/e), (2.3)

k(t) being the function (1.13) (extended by 0 to ¢ < 0). Indeed, by changing the

order of integration and passing to new variables we get

I, f) = 7 du(r>7(§)"/2% [ 1=t -nw (2 7)as -
= f%/f(a:—z,t—b)W(z,b)dz b//sdu(T),
0 Rn b/p

and (2.2) follows. If p is admissible, i.e. k(t) € L1(0,00), then

o0

(f * Ke)(z,t) = kof(z,t) = /k(T)dT/[f(ar —zVer,t —er) = f(x,1)]W(z,1)dz,
Rn

0

and therefore f x K. — kof in the LP-norm (or in the sup-norm for f € Cj).

Furthermore, if k(t) € L'(0,c0), then
lim ||[f* K[, =0 VfeLP(R"), 1<p<co (2.4)
p—00

(L°° is identified with CO). Indeed,
o
1% Kllp = 111 / k(r)dr / f(@ =yt — )W (y, pr)dyll el <
0 R

o0
< I[N [ 5= vt = )W (. )z drlzy <
0 R”

IN

I [ Ikl = prydrlaz, (2:5)
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where f(t) = ||£(-,t)|l, € L?(R'). The expression (2.5) tends to 0 as p — oo (use,
e.g., Theorem 1.15 from [21 p. 3]. This completes the proof of (i) and (ii).

The validity of (iii) follows in a standard way [27] from the maximal estimate

[sup [f = Ke| [[p < | fllp-
e>0

The latter is a consequence of the LP-boundedness of the “partial” Hardy-Littlewood

maximal functions

1 o1 .
fla.t) = sup o (/ Vol e =spg, /| fla,mydr,
B(z,r t—7|<s

B(z,r) ={y € R" : |x — y| < r}, due to the following estimates:

(f + K,) (1)) < / k(r)] | / f(@ — gt — pr)W (y, pr)dyldr <
0 Rn

e o]

< [ [sup [ 17 = vt = or) W)y dr <
0 R™
Sc/|k(7’)|f(3:,t—p7')d7'§clf*(x,t),
0

c and c; being some constants independent of f. [
The proof of the analog of Theorem A for the weighted wavelet transforms (1.23)

follows the same lines and is based on the equality

p

d
/’Puf(x,t;a);azf*Ka—f*Kp, (2.6)

€

K.(z,t) = e e~ W (x,t)k(t/e) (similarly for K,; cf. (2.3)). Slight additional

technicalities related to the extra factor e~t are left to the reader.

3. PROOF OF THEOREM B

Let hy/?(z,t)=a®/>= W (2, t) (I3 1) (t/a), where

T = Fag [ (= dutr)
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is the Riemann-Liouville fractional integral of p. We first show that
Py H f(x,t;0)=(f * hg/*)(z,1). (3.1)

Indeed, by (1.11), (1.19),

(Pt D) = [autr) [0~ VaTa,t - an)W 1)z =

= F(;/2) 7du(r)/W(z, 1)dz7(g_a7)a/2—1dg %

x/#@—sJ—OW@— a7z, ¢ — ar)dE =

tar [ fe-e odsdc/ - an) 2 (E G ) dpl),

R
1€, 7) /Wzl W(E — arz ¢ —ar)dz = W(EC)  ¥r>0, a> 0.
This implies (3.1). Furthermore, by (3.1),
(s t)d_ef/%dasze, (3.2)
where (use 3.238(3) from [11]) 6
Ve (3, 1) = VPV(SU/;)) / alﬁ - / (t = ar) 2 dp(r) = e W (z, ) Aa(t/¢),
! g

Aa(t) =t~ (IO‘/2+1 )(t); cf. (2.3). By Lemma 1.3 from [24], the conditions (1.24),
(1.25) imply that Ao (s) has a decreasing integrable majorant and [;° Aq(s)ds =
do,pu (see (1.27)). Hence (1.26) follows by the same argument as in the proof of
Theorem A.

In the inhomogeneous case ¢ = H* f the proof is similar and relies on the equality
Pup(z,t;a) ~ ~ L
/ = 1—|—a/2 da = [ *x 9, 1/)6(37at) =cle tW(ﬂ?,t))\a(t/E).

(cf. (2.6)). O
Remark 3.1. By keeping track of the proof of (3.2), one can readily see that the
equality

TEHf =[xty Pe(z,t) = 7 W (2, t)Aa(t/e), (3.3)
holds for all @ > 0 provided, e.g., f € ®y. This remark will be used in the next

section.
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4. PROOF OF THEOREM C

By Theorem 2.1 from [19], £5,. = L" N H*(L?). In other words, £y, consists

of functions f € L" such that f = H*g for some g € LP in the ®{-sense. Thus, it
suffices to prove the equivalence

r Puf(mat;a)

sl | o

(@)

dall, < 00 & f H%g (4.1)

€

for some g € LP. Assuming the right equality, we first show that

12 f(e,0) = [ PR b= gy (o) (1.2

€

(cf. (3.2), (3.3)). Let uw and v € ¢ be such that u = H*v (see Remark 1.4). Then

(T2 ) = {f,UTETR) = (. UTER=00) =) (1, U > U
Since 1. € L' there is a sequence {1 o} C C° which converges to 1 as £ — oo in

the L'-norm. Moreover, 1. o x UT € ®; V£, and

[(f, Ulhe x UD]) = (£, Ulthe e x UD] )| < || £l [|v]lr][the — e,

|1 —0
(1/r+1/r" =1), as £ — oco. Hence

<Taaf7 U> = 811)1{.10 <f7 U[¢€,€ * Ui] ) =
= lim (g, H*U[pes + U3]) = lim (g, UH ey +Ut]) =
= eligz(g’ U[’(/)E’e * HO‘UE] > = Elirgo <ga U[¢6,£ * Uﬂ] > =

= (9, Ulype x Ut]) = (g * e, u).
We have proved that the functions T®f € L" and g * ¢, € LP coincide as the
®(-distributions. By Corollary 1.1 from [19] they coincide pointwise a.e. on R**+1,
and (4.2) follows. The latter implies the left inequality in (4.1).
Conversely, if 51;13 T2 f|l, < oo, then the set of functionals ¢ — (T f, ), ¢ €

L¥'| 1/p+1/p’ =1, is bounded in (LP')*. Since the bounded set in the space
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which is dual to the reflexive Banach space is compact in the weak* topology, then
there exist a function g € LP and a sequence e — 0 such that (TS f, ) — (g,¢)
as e — 0 Vo € L?'. For this g and any test function w € &y we have

(Hg,w) = (g, Hw) = lim (T2 f, Hw) =

er—0

= lim (f, UTGUAG) = lim (f,UT HoUw) 2
er—0

er—0

= lim (f, U, *U@]) = lim (f % ve,,0) = (f,),

=1l
er—0

ie. f=H%g in the ®{-sense. This completes the proof. [

5. CONCLUDING REMARKS

An implementation of wavelet-type integrals [, P, f(z,t; a)da/ a't/2 (and their
inhomogeneous modifications including P, f) enables one to look with a “bird’s-eye
view” at the method of hypersingular integrals [16-19, 21, 25] and extract the
essence of the latter.

This essence is represented by the orthogonality relations (1.24). Without going
into technicalities, we note that the equality (3.1) can be extended to o > (n+2)/p,
thus demonstrating a regularizing effect of the wavelet transform P,¢, when ¢ =
H>f is a ®(-distribution. By Lemma 4.12 from [21] the conditions (1.24), (1.25)
imply he/? ¢ L', and the right-hand side of (3.1) is a usual function belonging to
LP for all 1 <p < oo.

By using the argument, which is similar to that in the proof of Theorems B and

C, one can obtain the following characterization of potentials H* f, f € LP.

Theorem D. Let « > 0, f € LP, o € L"; 1 < p,r < oo. Suppose that
satisfies the conditions of Theorem B. If ¢ = H*f pointwise a.e. for a < (n+2)/p
or ¢ = H*f in the ®}-sense, then (1.26) holds with the limit interpreted in the

LP-norm. If p > 1 this limit can be understood also in the a.e. sense. Conversely,

if doy # 0 (see (1.27)) and

@) 1 da
Eh_r)]% m/PMSO(%tQG) pEERYL) = f,
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then ¢ = H*f in the ®j-sense (or pointwise a.e. for a < (n+ 2)/p).

A similar statement (which does not involve distributions) also holds for inho-

mogeneous potentials H f.
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