Prof. Y.Kifer
53. A convex set C of area a and of perimeter $2 p$ (i.e. $2 p$ is the length of its boundary) is contained in a unit square S so that all points of C are father than $\epsilon>0$ away from the boundary of S. A disk of radius ϵ is thrown randomly on S so that its center is uniformly distributed in S. Find the probability that this disk intersects C.
54. Prove that if $n \neq 2^{k}$ then any n real numbers can be reconstructed once we know their $n(n-1) / 2$ pairwise sums. Show that for $n=4$ this is not true, in general.
55. Let A be an n-element set and A_{1}, \ldots, A_{n+1} be some of its nonempty subsets. Show that there exist two disjoint index sets $I, J \subset\{1,2, \ldots, n+1\}$ such that $\cup_{i \in I} A_{i}=\cup_{j \in J} A_{j}$.
56. Let Q be the set of rational points. Prove that $Q \cap(0,1)$ and $Q \cap[0,1]$ are homeomorphic.
57. Given an integer $n \geq 3$ find all entire functions (i.e. analitic in the whole plane) f and g such that $f^{n}+g^{n} \equiv 1$.
58. Prove that in any separable metric space X there exists a set whose boundary contains all non isolated points of X.
59. Let K_{1}, \ldots, K_{n} be some disks on the plane. Set $a_{i j}=\operatorname{area}\left(K_{i} \cap K_{j}\right)$. Prove that $\operatorname{det}\left(a_{i j}\right) \geq 0$.
60. Let x_{1}, \ldots, x_{n} be nonzero vectors in a linear space and A be a linear transformation there such that $A x_{1}=x_{1}, A x_{k}=x_{k}+x_{k-1}, k=2,3, \ldots, n$. Prove that x_{1}, \ldots, x_{n} are linearly independent.

