Problems for M.Sc. Workshop no.6, November 25, 2012 Prof. Y.Kifer

33. Suppose that each point of $\mathbb{Z}^2 \subset \mathbb{R}^2$ is a center of a disk of radius $\epsilon > 0$. Prove that any half line starting at (0,0) intersects at least one of disks.

34. Let A and B be measurable sets on a circle \mathbb{S}^1 of length 1 with $\ell(A) = \alpha$ and $\ell(B) = \beta$ where ℓ denotes the Lebesgue measure. Show that some rotation of B intersects A by a set C with $\ell(C) \ge \alpha\beta$.

35. Find all Lebesgue integrable functions f on [0, 1] such that for any measurable subset $A \subset [0, 1]$ of measure 1/2 we have $\int_A f(x) dx = 1/2$.

36. Let μ be a probability measure on \mathbb{R}^1 and d > 0. Prove that the function $h(t) = |\int e^{itx} d\mu(x)|$ (where $i = \sqrt{-1}$) is $2\pi/d$ -periodic if and only if for some a the measure μ is supported by the set of points $A_a = \{a + kd : k \in \mathbb{Z}\}$, i.e. $\mu(A_a) = 1$.

37. Let $f: K \to K$ be a map of a compact metric space K such that f(K) = K and $dist(f(x), f(y)) \leq dist(x, y)$. Prove that f is an isometry.

38. Is it possible to approximate arbitrarily well the function z^{-4} on the circle |z| = 1 by (complex) polynomials there?