Problems for M.Sc. Workshop no.6, November 25, 2012

Prof. Y.Kifer
33. Suppose that each point of $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$ is a center of a disk of radius $\epsilon>0$. Prove that any half line starting at $(0,0)$ intersects at least one of disks.
34. Let A and B be measurable sets on a circle \mathbb{S}^{1} of length 1 with $\ell(A)=\alpha$ and $\ell(B)=\beta$ where ℓ denotes the Lebesgue measure. Show that some rotation of B intersects A by a set C with $\ell(C) \geq \alpha \beta$.
35. Find all Lebesgue integrable functions f on $[0,1]$ such that for any measurable subset $A \subset[0,1]$ of measure $1 / 2$ we have $\int_{A} f(x) d x=1 / 2$.
36. Let μ be a probability measure on \mathbb{R}^{1} and $d>0$. Prove that the function $h(t)=\left|\int e^{i t x} d \mu(x)\right|$ (where $i=\sqrt{-1}$) is $2 \pi / d$-periodic if and only if for some a the measure μ is supported by the set of points $A_{a}=\{a+k d: k \in \mathbb{Z}\}$, i.e. $\mu\left(A_{a}\right)=1$.
37. Let $f: K \rightarrow K$ be a map of a compact metric space K such that $f(K)=K$ and $\operatorname{dist}(f(x), f(y)) \leq \operatorname{dist}(x, y)$. Prove that f is an isometry.
38. Is it possible to approximate arbitrarily well the function z^{-4} on the circle $|z|=1$ by (complex) polinomials there?

