Problems for M.Sc. Workshop no.3, November 4, 2012

Prof. Y.Kifer
15. The set $\mathcal{L}_{\varphi, \psi}=\left\{\left(x_{\varphi}(t), y_{\psi}(t)\right):-\infty<t<\infty\right\}$, where $x_{\varphi}(t)=A \sin (t+$ φ), $y_{\psi}(t)=B \sin (\omega t+\psi$), is called a Lissajous figure (or a Bowditch curve). Prove that $\mathcal{L}_{\varphi, \psi}$ is dense in the rectangle $[-A, A] \times[-B, B]$ for each pair φ, ψ if and only if ω is irrational.
16. Find necessary and sufficient condition on two probability vectors $p=$ $\left(p_{1}, \ldots, p_{n}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ such that there exists a lower triangular $n \times n$ probability matrix (i.e. rows are probability vectors) $A=\left(a_{k l}\right)$ so that $p A=q$ (i.e. $a_{k l}=0$ for $k<l$ and $\left.\sum_{k} p_{k} a_{k l}=q_{l} \forall l\right)$.
17. Extend Problem 15 to infinite matrices and vectors, i.e. characterize infinite probability vectors $p=\left(p_{1}, p_{2}, \ldots\right)$ and $q=\left(q_{1}, q_{2}, \ldots\right)$ such that there exists a lower triangular infinite probability matrix $A=\left(a_{k l}\right)$ so that $p A=q$.
18. Let $\left\{x_{k}, k=1,2, \ldots\right\}$ be an infinite sequence of vectors in \mathbb{R}^{n} with integer coordinates. Show that there exists N such that any x_{k} is a linear combination of $x_{1}, x_{2}, \ldots, x_{N}$ with integer coefficients.
19. Show that in any given sequence of $n^{2}+1$ numbers there is a monotonic subsequence of length $n+1$.
20. Let $X_{1}, X_{2}, X_{3}, \ldots$ be independent identically distributed bounded random variables. Prove that with probability one,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{n} X_{2 n}=\left(E X_{1}\right)^{2}
$$

