Problems for M.Sc. Workshop no.2, October 28, 2012
 Prof. Y.Kifer

7. How many elements are there in the sequence $a_{n}=\ln \ln \ldots \ln n$ (where in a_{n} we take $\ln n$ times)?
8. Two villages A and B are connected by two very narrow paths so that two cyclists tied by a rope of length a and going by different paths can pass from A to B . Two thick men of radius a go one from A to B and the other from B to A . Can they pass without collision?
9. A rectangle R on the plane is partitioned into finite number of smaller rectangles each of which has a side of integer length. Prove that R itself has a side of integer length.
10. Prove that decimal representations of $2^{n}, n=1,2, \ldots$ can start with any given string of digits $a_{1}, \ldots, a_{k}, a_{1} \neq 0, a_{i} \in\{0,1, \ldots, 9\}$.
11. Let $N_{a}(n)$ be the number of times $a=\left(a_{1}, \ldots, a_{k}\right)$ appears as the starting string in $1,2,2^{2}, \ldots, 2^{n}$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N_{a}(n)
$$

exists and find it.
12. n points are thrown independently with uniform distribution on a circle of length 1. Find the probability that some half circle contains all n points.
13. Let f be a continuous function on the plane \mathbb{R}^{2} such that its integral is zero over each rectangle of area 1 with sides parallel to coordinate axes. Prove that $f \equiv 0$.
14. Let $f(x, y)$ be a 1-periodic continuous function on \mathbb{R}^{2}, i.e. $f(x+1, y)=$ $f(x, y+1)=f(x, y)$ for all x and y. Prove that if α is an irrational number then uniformly in x and y,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(x+\alpha s, y+s) d s=\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y
$$

