Problems for M.Sc. Workshop no.12, January 13, 2013 Prof. Y.Kifer

72. Let α be irrational and $\beta \in (0,1)$. Define $a_n(\alpha) = \min_{1 \le m \le} \{m\alpha\}$ and $c_n(\alpha,\beta) = \min_{1 \le m \le n} \{\beta - m\alpha\}, n = 1, 2, \dots$ where $\{\cdot\}$ denotes the fractional part. Then there exists infinitely many n such that $a_n(\alpha) > c_n(\alpha, \beta)$. 73. Let $\xi = \sum_{n=1}^{\infty} 2^{-3^n}$. Then the inequality $|\xi - p/q| < cq^{-3}$ holds true for

infinitely or finitely many natural numbers p, q if c > 1 or if c = 1, respectively.

74. Let Γ be a directed graph with N vertices such that any pair of vertices can be connected by a directed path in the graph. Let p(n) be the number of periodic paths in the graph with period not exceeding n. Prove that the limit $\lim_{n\to\infty} \frac{1}{n} \ln p(n)$ exists and express it via the spectral radius of the incidence matrix of Γ .

75. Let $\{x^{(k)}\}\$ be a sequence of elements from the space l_1 such that $\lim_{k\to\infty} L(x^{(k)}) = 0$ for any linear continuous functional L on l_1 . Prove that $\lim_{k \to \infty} \|x^{(k)}\|_{l_1} = 0.$

76. Find all real $n \times n$ nonnegative matrices having inverse matrix which is nonnegative, as well.