Problems for M.Sc. Workshop no.12, January 13, 2013

Prof. Y.Kifer
72. Let α be irrational and $\beta \in(0,1)$. Define $a_{n}(\alpha)=\min _{1 \leq m \leq\{m \alpha\}}$ and $c_{n}(\alpha, \beta)=\min _{1 \leq m \leq n}\{\beta-m \alpha\}, n=1,2, \ldots$ where $\{\cdot\}$ denotes the fractional part. Then there exists infinitely many n such that $a_{n}(\alpha)>c_{n}(\alpha, \beta)$.
73. Let $\xi=\sum_{n=1}^{\infty} 2^{-3^{n}}$. Then the inequality $|\xi-p / q|<c q^{-3}$ holds true for infinitely or finitely many natural numbers p, q if $c>1$ or if $c=1$, respectively.
74. Let Γ be a directed graph with N vertices such that any pair of vertices can be connected by a directed path in the graph. Let $\mathrm{p}(\mathrm{n})$ be the number of periodic paths in the graph with period not exceeding n. Prove that the $\operatorname{limit}^{\lim }{ }_{n \rightarrow \infty} \frac{1}{n} \ln p(n)$ exists and express it via the spectral radius of the incidence matrix of Γ.
75. Let $\left\{x^{(k)}\right\}$ be a sequence of elements from the space l_{1} such that $\lim _{k \rightarrow \infty} L\left(x^{(k)}\right)=0$ for any linear continuous functional L on l_{1}. Prove that $\lim _{k \rightarrow \infty}\left\|x^{(k)}\right\|_{l_{1}}=0$.
76. Find all real $n \times n$ nonnegative matrices having inverse matrix which is nonnegative, as well.

