Problems for M.Sc. Workshop no.10, December 30, 2012

Prof. Y.Kifer
61. Let A and B be 1979×1979 square real matrices such that $A B=0$. Prove that either $\operatorname{det}\left(A+A^{*}\right)=0$ or $\operatorname{det}\left(B+B^{*}\right)=0$.
62. What can be the maximal dimension of a linear space consisting of $n \times n$ matrices with zero determinant.
63. Suppose that the function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is analitic and one-to-one in the disc $D=\{z:|z|<1\}$. Prove that $\operatorname{Leb}(f(D)) \geq \pi$ (Leb denotes the Lebesgue measure) and the equality holds if and only if $f(z)=z$.
64. Prove that any rational number x such that the $\operatorname{limit}^{\lim }{ }_{n \rightarrow \infty}\left\{x^{n}\right\}$ exists (where $\{a\}$ denotes the fractional part of a) is an integer or $|x|<1$.
65. Infinely many convex sets of Lebesgue measure $\frac{1}{10}$ are contained in a unit square. Prove that for any $\varepsilon>0$ we can choose two of these sets whose intersection has Lebesgue measure at least $\frac{1}{10}-\varepsilon$. Show that without the convexity assumption the claim is not true, in general.
66. Let f be a bounded measurable function on \mathbb{R} such that $\operatorname{Leb}\{x: f(x)>$ $0\}>0$ and $\operatorname{Leb}\{x: f(x)<0\}>0$ where Leb denotes the Lebesgue measure. Prove that there exists a Borel probability measure μ on \mathbb{R} equivalent to Leb (i.e. they have the same sets of zero measure) such that $\int f d \mu=0$.
67. Let f be a bounded measurable function on \mathbb{R}. Let μ be a Borel probability measure on \mathbb{R} such that $\int f d \mu=0$ and for any other Borel probability measure ν on \mathbb{R} which is equivalent to $\mu \int f d \nu \neq 0$. Prove that the support of μ contains at most two points.

