Problems for M.Sc. Workshop no.10, December 30, 2012 Prof. Y.Kifer

61. Let A and B be 1979×1979 square real matrices such that AB = 0. Prove that either det $(A + A^*) = 0$ or det $(B + B^*) = 0$.

62. What can be the maximal dimension of a linear space consisting of $n \times n$ matrices with zero determinant.

63. Suppose that the function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analitic and one-to-one in the disc $D = \{z : |z| < 1\}$. Prove that $\text{Leb}(f(D)) \ge \pi$ (Leb denotes the Lebesgue measure) and the equality holds if and only if f(z) = z.

64. Prove that any rational number x such that the limit $\lim_{n\to\infty} \{x^n\}$ exists (where $\{a\}$ denotes the fractional part of a) is an integer or |x| < 1.

65. Infinely many convex sets of Lebesgue measure $\frac{1}{10}$ are contained in a unit square. Prove that for any $\varepsilon > 0$ we can choose two of these sets whose intersection has Lebesgue measure at least $\frac{1}{10} - \varepsilon$. Show that without the convexity assumption the claim is not true, in general.

66. Let f be a bounded measurable function on \mathbb{R} such that $\text{Leb}\{x : f(x) > 0\} > 0$ and $\text{Leb}\{x : f(x) < 0\} > 0$ where Leb denotes the Lebesgue measure. Prove that there exists a Borel probability measure μ on \mathbb{R} equivalent to Leb (i.e. they have the same sets of zero measure) such that $\int f d\mu = 0$.

67.Let f be a bounded measurable function on \mathbb{R} . Let μ be a Borel probability measure on \mathbb{R} such that $\int f d\mu = 0$ and for any other Borel probability measure ν on \mathbb{R} which is equivalent to $\mu \int f d\nu \neq 0$. Prove that the support of μ contains at most two points.