Problems for M.Sc. Workshop no.1, October 21, 2012
 Prof. Yu. Kifer

1. Prove that for any bounded continuous function g and each $a>0$ the limit

$$
f_{a}(\lambda)=\lim _{n \rightarrow \infty} e^{-\lambda n} \sum_{0 \leq k \leq a n} g\left(\frac{k}{n}\right) \frac{(\lambda n)^{k}}{k!}
$$

exists and $f_{a}(\lambda)=0$ if $a<\lambda, f_{a}(\lambda)=\frac{1}{2} g(\lambda)$ if $a=\lambda$, and $f_{a}(\lambda)=g(\lambda)$ if $a>\lambda$.
2. Suppose someone is choosing two real numbers a and b independently at random according to an unknown continuous distribution on \mathbb{R} and tells you a. You have to guess whether a is smaller or larger than b. Is there a strategy which will give you a success with probability larger than $\frac{1}{2}$.
3. For any set $A \subset \mathbb{R}^{d}$ denote $D(A)=\{x-y: x, y \in A\}$. Prove that if A is the standard Cantor set on $[0,1]$ then $D(A)=[-1,1]$. Let A be the subset of $[0,1]$ consisting of all numbers whose decimal expansion contains only: a) odd digits, b) only digits $1,2,3,4$. Check whether $D(A)=[-1,1]$ in these two cases.
4. Prove that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ cannot be an integer for $n>1$.
5. Prove that any rational number $r \in(0,1]$ is a sum of finite number of reciprocals of different natural numbers (i.e. $r=\sum_{i=1}^{k} 1 / n_{i}, n_{i} \neq n_{j}$ if $i \neq j$ and $\left.n_{i} \in \mathbb{N} \forall i\right)$.
6. Prove that n robbers can divide among themselves their booty which is arbitrarily divisible so that every one of them would feel that he got a fair part. Proof for $n=2: A$ asks B to divide the booty into 2 equal (from B^{\prime} s point of view) parts and then A chooses the part he likes best. In this way B feels satisfied since he considers both parts equal and A is satisfied since he chose the part which in his opinion is, at least, not less than the other one, i.e. that he got, at least, half of the booty.

