
1. Introduction

1.1. The Dirichlet theorem. In this course we will study the theory
of representaions of finite groups. The theory of representaions of fi-
nite groups originated in the work of Dirichlet on primes in arithmetic
progressions and I start with a review of this work of Dirichlet

Let q be a positive number and a a positive number prime to q.

Theorem 1.1. T:D For any number a prime to q the arithmetic pro-
gression a, a + q, a + 2q, . . . contains an infinite numbers of primes.

In the case when q = 1 or q = 2 the result was know to Euclead
but for general q the theorem was proven by Lejeune Dirichlet in 1837.
I will not present a complete proof but outline the main idea of the
proof.

Let Z/qZ be the ring of residues mod q and G = (Z/qZ)⋆ ⊂ Z/qZ

be the multiplicative group of invertable elements. [In other words
G = {ā} where a ∈ Z is prime to q where we denote by ā ∈ Z/qZ the
residue of a mod q].

Definition 1.2. a) A character of G is a function χ : G → C⋆ such
that

χ(āb̄) = χ(ā)χ(b̄)∀ā, b̄ ∈ G

We denote by χ0 ∈ G∨ the trivial character χ0(ā) ≡ 1.

b) We denote by G∨ the set of characters of the group G and for
any χ ∈ G∨ denote by χ̃ : Z → C the function such that χ̃(a) = 0 if
(a, q) 6= 1 and χ̃(a) := χ(ā) where ā ∈ Z/qZ the residue of a mod q if
n is prime to q.

c) For any χ ∈ G∨ we define the Dirichlet L-function Lχ(s) by

Lχ(s) =
∑
n≥1

χ̃(n)/ns

It is easy to see that this series is convergent for s > 1.

Claim 1.3. C:1 a) For any ā, b̄ ∈ G∨ we have∑
χ∈G∨

χ−1(ā)χ(b̄) = 0

if ā 6= b̄ and ∑
χ∈G∨

χ−1(ā)χ(b̄) = |G|

if b̄ = ā.
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b) We have
∑

ā∈G χ(ā) = 0 for all χ ∈ G∨, χ 6= χ0 and
∑
ā∈G

χ0(ā) = |G|

if χ ≡ 1.

We will later prove Claim 1.3 for arbitrary finite abelian groups.

Lemma 1.4. L:con For any χ ∈ G∨, χ 6= χ0 the series Lχ(s) =∑
n≥1 χ̃(n)/ns is convergent for any s ∈ C with Re(s) > 0.

Proof. The proof is based on the following result from Calculs

Claim 1.5. C:2 Let an, n ≥ 1 monotonely decreasing sequence of
positive numbers such that limn→∞ an = 0 and bn, n ≥ 1 a sequence
of complex numbers such that the sequence Bn :=

∑n
k=1 bk is bounded.

Then the series
∑

n≥1 anbn is convergent.

Take now an = 1/ns and bn = χ̃(n). As follows from Corollary 1.5
for any d > 0 we have

∑q
i=1 bd+i = 0. So the sequence Bn :=

∑n
k=1 bk

is bounded. �

Proposition 1.6. P:D Lχ(1) 6= 0 for any χ ∈ G∨, χ 6= χ0

The proof of Proposition 1.6 is not very difficult [ see for example the
book of Ram Murty “Problems in Amalytic Number Theory” pp.24-
29] but it would take us away from out theme. So I’ll not prove this
propostion but only show how to deduce the Dirichlet theorem from
Proposition 1.6.

Proof. To start with we consider the Riemann zeta function

ζ(s) =
∑
n/≥1

1/ns

which is convergent for s > 1. I claim that

lim
s→1+

(s − 1)ζ(s) = 1

Really it follows from the inequalities∫ n+1

n

x−sds < n−s <

∫ n

n−1

x−sds

that the difference ζ(s) − 1/(s − 1) is bounded when s → 1+.

Corollary 1.7. C:in lims→1+(s − 1)L(χ0(s) 6= 0
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Proof. Since L(χ0(s) =
∏

p∈Pq
(1 − p−s)ζ(s) we see that

lim
s→1+

(s − 1)L(χ0(s) =
∏
p∈Pq

(1 − 1/p) 6= 0

�

The proof of Theorem 1.1 is based on the possibility to write the
L-function Lχ(s) as the Euler product.

Claim 1.8. For any s > 1 and χ ∈ G∨ we have

Lχ(s) =
∏

p∈P−Pq

(1 − χ(p)/ps)

The Claim follows immediately from the uniqueness of the decom-
position to prime factors.

Corollary 1.9. C:D a) lims→1+

∑
p∈P−Pq

(χ̃0(p)/ps) = ∞.

b) For any χ ∈ G∨, χ 6= χ0 the sum
∑

p∈P−Pq
(χ̃(p)/ps) which is

absolutely convergent for s > 1 extends to a smooth function on s ≥ 1.

Proof. a) Consider the function ln(Lχ0
(s)), χ ∈ G∨. Using the presen-

tation of Lχ0
(s) as the Euler product we see that

ln(Lχ0
(s) =

∑
p∈P−Pq

ln(1 − 1/ps) =

∑
p/∈P

(χ̃(p)/ps − 1/2(χ̃(p)/ps)2 + . . . ) =
∑
p∈P

(χ̃(p)/ps) + fχ(s)

for all s > 1. It is easy to check that the series for fχ(s) are absolutely
convergent for s > 1/2. Since by Corollary 1.7 lims→1+ ln(Lχ0

(s) = ∞
we see that lims→1+

∑
p∈P (χ̃0(p)/ps) = ∞.

b) For any χ ∈ G∨, χ 6= χ0 it follows from Lemma 1.4 that Lχ(s)
is a smooth complex-valued function on the ray s > 1/2 such that
lims→∞ Lχ(s) = 1. For s > 1 the Euler product Lχ(s) =

∏
p∈P−Pq

(1 −

χ(p)/ps) is absolutely convergent and therefore Lχ(s) 6= 0 for s > 1.
Since by Proposition 1.6 that Lχ(1) 6= 0 we see that function ln(Lχ(s)
defined for s > 1 extends to a smooth function on s ≥ 1.

On the other hand

ln(Lχ(s) =
∑

p∈P−Pq

ln(1 − χ̃(p)/ps) =

∑
p∈P−Pq

(χ̃(p)/ps − 1/2(χ̃(p)/ps)2 + . . . ) =
∑

p∈P−Pq

(χ̃(p)/ps) + fχ(s)
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for all s > 1. It is easy to check that the series for fχ(s) are absolutely
convergent for s > 1/2. �

Now we can prove Theorem 1.1.Fix any a ∈ Z prime to q. To
show that the arithmetic progression a + nq, n > 0 contains an infinite
number of primes consider the function

φa(s) :=
∑

p∈P,p≡amod(q)

1/ps

which is absolutely convergent for s > 1. It is sufficient to show that
lims→1+ φa(s) = ∞.

But it follows from Claim 1.3 that for s > 1 we have

φa(s) =
∑

χ∈G∨

χ−1(a)Lχ(s)

Therefore the equality lims→1+ φa(s) = ∞ follows from Corollary 1.9.
�


