
1. Examples

Definition 1.1. a) For any finite set X we denote by C[X] the space
of complex-valued functions on X.

b) We define the Hermitian scalar product (, ) on C[X] by

(f ′, f ′′) := 1/|X|
∑

x∈X

f ′(x)f̄ ′′(x)

c) If a group G acts on the set X we define a function ρ : G →
Aut(C[X]) by

ρ(g)f(x) := f(xg), f ∈ C[X], x ∈ X

Please check that ρ : G→ Aut(C[X]) is a representation of G on (C[X]
which preserves the scalar product (, ).

Remark 1.2. If X = G and the action of G on X is by left shifts
(g, x) → gx then the map eg → δg, g ∈ G where

δg(x) = 0 if x 6= g and δg(g) = 1

defines an equivalence between the representation ρ and the regular
representation of the group G. [see [S]1.2].

1.1. Commutative groups. Let G be a finite commutative group.
Then [see Th.7 in [S]] any irreducible representation ofG is one-dimensional
and is given by a function χ : G → C⋆ such that χ(g′g′′) = χ(g′)χ(g′′)
for all g′, g′′ ∈ G. Since a representation of G is one-dimensional the
character of the representation χ is equal to χ. So for commutative
groups G we can identify irreducible representation of G with its char-
acter.

Definition 1.3. For a commutative group G we denote by Ĝ the set
of irreducible representations of G and for any χ′, χ′′ ∈ Ĝ we define the
product χ′ ◦ χ′′ ∈ Ĝ by

(χ′ ◦ χ′′)(g) := χ′(g)χ′′(g), g ∈ G

It is easy to see that the operation χ′, χ′′ → χ′ ◦ χ′′ defines a structure
of an abelian group on the set Ĝ with the unit being the function 1.
We say that Ĝ is the group dual to G.

Remark 1.4. The dual group Ĝ is defined only for abelian groups G.

The right action of G on itself defines a representation ρ of G on
C[G]. On the other hand the map ρ∨ : G→ Aut(C[Ĝ]) given by

(ρ∨(g)φ)(χ) := χ(g−1)φ(χ), φ ∈ C[Ĝ], g ∈ G
1
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defines a representation ρ∨ of G on C[Ĝ]) [please check]. We define the

Fourier transforms F : C[G] → C[Ĝ] and F∨ : C[Ĝ] → C[G] by

F(f)(χ) :=
1

√

|G|
∑

g∈G

χ(g)f(g), χ ∈ Ĝ, f ∈ C[G]

and

F∨(φ)(x) :=
1

√

|G|
∑

χ∈Ĝ

χ−1(x)φ(χ), φ ∈ C[Ĝ]), x ∈ G

Proposition 1.5. P:fou a) F ◦ ρ(g) = ρ(g)∨ ◦ F .

b) F and F∨ are unitary linear maps which are inverse to each other.

Proof. a) F ◦ ρ(g0)(g)(χ) = 1√
|G|

∑

g∈G χ(g)(ρ(g0)f(g)) =

1√
|G|

∑

g∈G χ(g)f(gg0) = 1√
|G|

∑

g′∈G χ(gg−1
0 )f(g)) =

χ(g−1
0 ) 1√

|G|

∑

g′∈G χ(g)f(g) = ρ∨(g0)(F(f))

b) To prove that F∨ ◦ F = IdC[G] it is sufficient to show that F∨ ◦
F(δg) = δg for all g ∈ G. By the definition for all χ ∈ Ĝ we have

F(δg)(χ) =
1

√

|G|
χ(g)

Therefore

F∨ ◦ F(δg)(x) = 1/|G|
∑

χ∈Ĝ

χ−1(x)χ(g) = 1/|G|
∑

χ∈Ĝ

χ(x−1g)

Now the equality follows from Proposition 7 in [S].
The proof of the equlity F ◦ F∨ = Id

C[Ĝ] is completely analogous.

Since functions {|G|δx}, x ∈ G is an orthonormal basis of the space
C[G] it is sufficient to check that for any x 6= y ∈ G we have (F(δx),F(δy)) =
0 and that (F(δx),F(δx)) = 1/|G|2 for all x ∈ G. But this follows from
the equlity F(δg)(χ) = 1√

|G|
χ(g), g ∈ G and Theorem 3 in [S]. �

1.2. One-dimensional representations. Let G be a finite group,
[G,G] ⊂ G the subgroup generated by elements of the form aba−1b−1

for a, b ∈ G. As you know [G,G] is a normal subgroup of G and the
quotient group Ḡ = G/[G,G] is commutative. Let p : G → Ḡ be the
natural projection. For any one-dimensional representation χ of the
group Ḡ, χ ◦ p is an one-dimensional representation of the group G.
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Lemma 1.6. L:com Any one-dimensional representation π of the
group G has a form χ◦p where χ is an one-dimensional representation
of the group Ḡ.

Proof. Since the representation π is one-dimensional we have

π(aba−1b−1) = π(a)π(b)π(a−1)π(b−1) = 1

for all a, b ∈ G. So π[G,G] ≡ 1. Since π is a representation we see
that π(gγ) = π(g)∀g ∈ G, γ ∈ [G,G]. But this show thatwTherefore
there exists a function χ : Ḡ → C

⋆ such that π = χ ◦ p. Since π is a
representation of G,χ is also a representation of G. �

1.3. The additive group. Let p be a prime number q = pr, r > 0 and
Fq be the field of order q. We will study representations of different
groups over Fq. Let will denote the additive group of the field Fq simply
by Fq. This is a commutative group of order q. Since the group Fq is
commutative all it irreducible representations are one-dimensional. As
we know there exist q one-dimensional representations of the group
Fq. We fix one non-trivial such representation ψ : Fq → C⋆. By the
definition ψ : Fq → C⋆ is a function such that ψ(x+ y) = ψ(x)ψ(y) for
all x, y ∈ Fq. For any c ∈ Fq we denote by ψc : Fq → C⋆ the function
given by

ψc(x) := ψ(cx), x ∈ Fq

It is clear that for any c ∈ Fq the function ψc defines an one-dimensional
representations of the group Fq.

Lemma 1.7. L:ad Any irreducible representation of the group Fq is
equal to ψc for some c ∈ Fq.

Proof. Since [please check] all the functions ψc, c ∈ Fq are distinct we
obtain q distinct irreducible representations of the group Fq. Since we
know the group Fq has q distinct irreducible representations [see Th.7
in [S]] the Lemma is proven. �

Remark 1.8. Since Since ψc′ψc′′ = ψc′+c′′ for any c′, c′′ ∈ Fq [please
check] we see that a choice of non-trivial elements ψ ∈ F∨

q defines an
isomorphsim c→ ψc between the groups Fq and F∨

q .

Let L be a finite-dimensional Fq-vector space. We can consider L
as a finite abelian group. How to describe the dual group? Let L∨ be
the space of Fq-linear functionals λ : L → Fq. If we fix a non-trivial
character ψ : Fq → C⋆ we can associate to any λ ∈ L∨ a function

λ̃ : L→ C
⋆ where λ̃(l) := ψ(λ(l)).
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Problem 1.9. P:1 a) For any λ ∈ L∨ the function λ̃ : L → C⋆ is a
character of the group L.

b) The map λ → λ̃ defines an isomorphism between the groups L∨

and L̂.

As follows from Proposition 1.9 we can consider the Fourier trans-
form F : C[L] → C[L̂] as a map from F : C[L] → C[L∨].

Definition 1.10. a) For any bilinear form B : L× L→ Fq we denote

by B̃ : L→ L∨ the Fq-linear map given by

B̃(l)(l′) := B(l, l′), l, l′ ∈ L

b) A bilinear form B is non-degenerate if B̃ : L→ L∨ is an isomorphism
of vector spaces.

c) For any non-degenerate bilinear form B : L×L→ Fq we define a
linear map FB : C[L] → C[L] by

FB(f)(l) := F(f)(B̃(l)), f ∈ C[L], l ∈ L

In other words

FB(f)(l) :=
1

√

|L|
∑

l′∈L

ψ(B(l, l′))f(l′)

Problem 1.11. P:2 a) If the form B is symmetric then for any f ∈
C[L], l ∈ L we have FB(f)(l) = f(−l).

b) If the form B is anti-symmetric then FB(f)(l) = f(l) for any
f ∈ C[L], l ∈ L.

We denote simply by F : C[Fq] → C[Fq] the Fourier transform corre-
sponding to the bilinear form (x, y) → −xy, x, y ∈ Fq. In other words

F(f)(x) =
1√
q

∑

y∈Fq

ψ(−xy)f(y)

1.4. The group of affine transformation of a line. Consider now
the group P of 2 × 2-matricies over Fq of the form

pa,b =

(

a b
0 1

)

, a ∈ F
⋆
q, b ∈ Fq

We define U := {p1,b}, b ∈ Fq and H := {pa,0}, a ∈ F⋆q.

Problem 1.12. P:3 a) U is a commutative normal subgroup of P
isomorphic to Fq. Moreover U = [P, P ]
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b) The group P̄ := P/[P, P ] is isomorphic to F⋆q and the map p : P →
P̄ := P/[P, P ] is given by pa,b → a. The map p defines an isomorphism
H → P̄ .

c) Any p ∈ P can be written in the form p = hu, h ∈ H, u ∈ U and
such a decomposition is unique.

As follows from Lemma 1.6 the number of one-dimensional represen-
tation of the group P is equal to the number of one-dimensional repre-
sentation of the commutative group P̄ = has q−1 one-dimensional rep-
resentations of the group P which have the form χ◦p where χ ∈ (F⋆q)

∨.

Lemma 1.13. L:P The group P has one equivalence classe of ir-
reducible representations of dimension > 1 and they have dimension
q − 1.

Proof. I’ll give two proofs of Lemma 1.13. The first work for finite field
[the only ones we study in this course] and the second works also for
real and p-adic fields.

The first proof. We start with the following result

Claim 1.14. a) If two elements pa,b, pa′,b′ ∈ P are conjugate then a = a′

b) If a 6= 1 then all the elements pa,b, b ∈ Fq are conjugate.
c) All elements p1,b, b ∈ F⋆q are conjugate.

Proof. The result follows from an explict formula

p−1
x,ypa,bpx,y = pa,c, c = x−1[(a− 1)y + by]

�

So we see that the group P has q conjugacy classes. Therefore (by
Theorem 7 in [S]) the group P has q equivalence classes of irreducible
representations. Since P has q − 1 distinct 1-dimensional representa-
tions we see that it has unique equivalence class of [ρ] of irreducible
representations of dimension > 1. Let d be it’s dimension. In follows
from Corollary 2 to Proposition 5 in [S] that d2 + (q − 1) = |P |. So
d2 + (q − 1) = q(q − 1) and d = q − 1. �

Corollary 1.15. C:P Any representation π of P of dimension q − 1
whose restriction on the subgroup U ⊂ P is not trivial is irreducible
and therefore belongs to [ρ].

Proof. If π is reducible then all it summands have dimension smaller
then q − 1. In this case it would follow from Lemma 1.13 that all this
summands were trivial on U�.
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The second proof. Since U is a normal commutative subgroup of P
the group H acts on the group U∨ by

χ→ χh, χh(u) := χ(h−1uh), h ∈ H, u ∈ U

As follows from Lemma 1.7 the group H acts simply transitively on
the set U∨ − {e}.

Fix any non-trivial character χ : U → C⋆ and consider the induced
representation τ = indPUχ. Since the group H acts simply transitively
on U∨ − {e} it follows from the Corollary 0.15 in in the section of
induced representations that the representation τ is irreducible and
does not depend on a choice of χ ∈ U∨ − {e}.

Now we want to prove that any irreducible representation (π, V ) of P
of dimension > 1 is equivaent to τ . Since both π and τ are irreducible
it is sufficient to prove that HomP (τ, π) 6== {0}.

Since U is a normal subgroup of P the subspace V U ⊂ V of U -
invariant vectors is a P -invariant subspace of V . Since V is irreducible
either V = V U or V U = {0}. In the first case we obtain an irreducible
representation of P̄ on V . Since P̄ is commutative this would contradict
the assumption that dim(V ) > 1. So V U = {0}.

Since V U = {0} and the group U is commutative we have a decom-
posion V =

∑

χ∈U∨−{e} Vχ where Vχ ⊂ V is U -invariant and π(u)|Vχ
=

χ(u)IdVχ
. Choose χ ∈ U∨ − {e} such that Vχ 6= {0}. Since τ = indPUχ

we have HomP (τ, π) 6== HomU(χ, V ) = Vχ. �

To describe an other way of construction of an irreducible repre-
sentation of P of dimension q − 1 consider the action of the group P
on the set Fq. To any element pa,b ∈ P we can associate an affine
transformation p̃a,b : Fq → Fq by

p̃a,b(x) = ax+ b, a ∈ F
⋆
q , b, x ∈ Fq

Problem 1.16. P:4 a) The map pa,b → p̃a,b defines an action of the
group P on Fq. In other words

˜pa,bpa′,b′ = p̃a,bp̃a′,b′

for any pa,b, pa′,b′ ∈ P

b) One can identify this action of P on Fq with the action of P on
P/H.

Since the group P acts on the set Fq we obtain a homomorphism
ρ̃ : P → AutC[Fq] by

ρ̃(pa,b)(f)(x) = f(p̃−1
a,b(x), f ∈ C[Fq], x ∈ Fq
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[In other words ρ̃(pa,b)(f)(x) = f(a−1x− a−1b).] Let V ⊂ C[Fq] be the
subspace of functions f ∈ C[Fq] such that

∑

x∈Fq
f(x) = 0. Since the

group P acts on the set Fq by permutaions the subspace V ⊂ C[Fq]
is P -invariant. We denote by ρ′ : P → Aut(V ) the corresponding
subrepresentation. Since dim(V ) = q−1 and the restriction of ρ′ on U
is not trivial it follows from Construction 1.15 that the representation
ρ′ : P → Aut(V ) is irreducible and belongs to [ρ].

Since the representations ρ′ : P → Aut(V ) and τP → GL(W ) are
equivalent and irreducible it follows from the Schur’s lemma that the
spaces HomP (V,W ) is one-dimensional. How to construct a non-trivial
element of this space?

Since P = HU,H ∩ U = {e} we can identify W with the space of
functions on H . The map a→ pa,0 identifies H with F⋆q . This gives an
identification of W with the space of functions on F⋆q.

Problem 1.17. After this identification of W with the space of func-
tions on F⋆q we have

(τ(pa,b)f)(x) = χ(bx)(f(ax), f ∈W x ∈ F
⋆
q

Let T : V ′ → V ′′ be the map given by f → f̄ , f̄(a) := F(f)(a), a ∈
F⋆q.

Claim 1.18. T ∈ HomP (V ′, V ′′).

Proof. Since elements p1,b and pa,0, a ∈ F⋆q , b ∈ Fq generate the group
P it is sufficient to check that T ◦ ρ′(pa,0) = ρ′′(pa,0) ◦ T for all a ∈ F⋆q

and T ◦ ρ′(p1,b) = ρ′′(p1,b) ◦ T for all b ∈ Fq.

To show that T ◦ ρ′(pa,0)(f)(x) = ρ′′(pa,0) ◦ T (f)(x) consider the
function Let f ′(x) := ρ′(pa,0)(f)(x) = f(ax). Then

T ◦ ρ′(pa,0)(f)(x) =
1√
q

∑

y∈Fq

ψ(−xy)(f ′)(y) =
1√
q

∑

y∈Fq

ψ(−xy)f(ay) =

1√
q

∑

z∈Fq

ψ(−xaz)f(z) = T (f)(ax) = ρ′′(pa,0) ◦ T

Analogously T ◦ ρ′(p1,b)(f)(x) = T (f ′′(x)) where f ′′(x) = f(x + b).
So

T◦ρ′(p1,b)(f)(x) =
1√
q

∑

y∈Fq

ψ(−xy)(f ′′)(y) =
1√
q

∑

y∈Fq

ψ(−xy)f(y+b) =

1√
q

∑

z∈Fq

ψ(−x(z − b))f(z) =
1√
q

∑

z∈Fq

ψ(xb)ψ(−xz)f(z) = ρ′′(p1,b) ◦ T
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�

1.5. The Heisenberg group. In this section we assume that q is odd
and fix a non-trivial character ψ of Fq.

Let L be a 2-dimnsional Fq-vector space, and <,>: L × L → Fq on
L be a non-zero skew-symmetric bilinear form. If you fix a basis e1, e2
in L then

< ae1 + be2, ce1 + de2 >= α(ad− bc) where α =< e1, e2 >

Let H be the product L × Fq. We define the group structure on H
by

(l, a) × (l′, a′) → (l + l′, a+ a′ + 1/2 < l, l′ >)

I’ll leave for you to check the parts a)-d) of the following

Claim 1.19. C:H a) The map m defines a group structure on H such
that (0, 0) is the unit.

b) The subgroup Z := {(0, a)}, a ∈ Fq is the center of H.

c) For any line R ⊂ L the subset R̃ := R × Fq ⊂ H is a normal
subgroup of H and

(r, a)(r′, a′) = (r + r′, a+ a′), r, r′ ∈ R, a, a′ ∈ Fq

We denote by Ψ be the set of characters ψ̃ : R̃ → C⋆ of R̃ such that
ψ̃(0, a) = ψ(a) for any a ∈ Fq. For any h = (l, b) ∈ H and ψ̃ ∈ Ψ we

define a character ψ̃h : R̃ → C⋆ by

ψ̃h(r̃) := ψ̃(h−1r̃h), r̃ ∈ R̃

d) ψ̃h ∈ Ψ for all ψ̃ ∈ Ψ, h ∈ H.

e) The group H acts transitively on the set Ψ.

Proof. of e). For any two characters ψ̃, ψ̃′ ∈ Ψ the ratio ψ̃/ψ̃′ is char-

acter χ of R̃ trivial on Z. So we can consider it as a character of
R = R̃/Z. Since h−1r̃h = (r, a+ < r, l >), r̃ = (r, a), h = (l, b) we have

ψ̃h(r) = ψ(< l, r >)ψ̃(r)

As follows from Lemma 1.7 the map from L to characters of R given
by l → χl, χl(r) := ψ(< l, r >) is surjective and we can find l ∈ L such

that ψ̃/ψ̃′(r) = ψ(< l, r >). But then ψ̃′ = ψ̃h, h = (l, 0). �

Corollary 1.20. C:ind Let π be representation of H such that πRψ (0, a) =

ψ(a)Id for any a ∈ Fq. Then the restriction of π on R̃ contains ψ̃ for

any ψ̃ ∈ Ψ.
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Proof. Consider the restriction of π to R̃. Since the group R̃ is commu-
tative there exists a character ψ̃0 of R̃ which is contained in resR̃(π).

Since πRψ (0, a) = ψ(a)Id for any a ∈ Fq we see that ψ̃0 ∈ Ψ. The result
follows now from the part e) of the Claim. �

Proposition 1.21. P:Hei a) The induced representation πRψ = indH
R̃
ψ̃

does not depend on a choice of ψ̃ ∈ Ψ, it is irreducible.

b) πRψ (0, a) = ψ(a)Id for any a ∈ Fq.

c) Any irreducible representation π of H such that πRψ (0, a) = ψ(a)Id

for any a ∈ Fq is equivalent to πRψ .

Proof. The part a) follows from the Collorary 0.15 in the section of
induced representations and Claim 1.19. The part b) is clear since Z
is [in] the center of H .

c) Let (π, V ) be an irreducible representation ofH such that πRψ (0, a) =

ψ(a)Id for all a ∈ Fq. We want to show that π is equivalent to indH
R̃
ψ̃.

Since both representations are irreducible it sufficient to show that
HomH(indH

R̃
ψ̃, π) 6= {0}. By the definition of an induced representa-

tion we have HomH(indH
R̃
ψ̃, π) = HomR̃(ψ̃, resR̃π). But by Corollary

1.20 there is an R̃-invariant subspace W ⊂ V such that R̃ acts on W
by the multiplication by a character ψ̃. �

Example 1.22. Let’s describe the construction of the representation
π of H more explicitely. We choose a basis e1, e2 in L such that <
e1, e2 >= 1. Then we identify elements of L with pairs (x, y), x, y ∈
Fq, < (x, y), (x′, y′) >= xy′−x′y and identify elements of H with triples
(x, y; a), x, y, a ∈ Fq and (x, y; a)(x′, y′; a′) = (x+x′, y+y′; a+a′+xy′−
x′y/2) . Let

R := {(0, y)}, y ∈ Fq ⊂ L, R̃ = {(0, y; a)}, y, a ∈ Fq ⊂ H,S := {(x, 0; 0)}, x, a ∈ Fq ⊂ H

Then R̃S = H and R̃ ∩ S = {e}. Let V be the space of the induced

represenation indH
R̃
ψ̃. We can identify V with the space of functions

f : H → C such that f((0, y′; a′)(x, y; a)) = ψ(a′)f(x, y; a). The map
r : V → C[Fq], r(f)(u) := f(u, 0, 0) identifies the space V with the
space of functions of Fq and we obtain a representation π : H →
Gl(C[Fq]).

Claim 1.23. C:rH π(x, y; a)(φ)(u) = ψ(xy/2 + yu+ a)φ(x+ u)

Proof. Let f = r−1(φ) ∈ V . Since (x, y; a) = (0, y; a+xy/2)(x, 0; 0) we
have f(x, y; a) = ψ(a+ xy/2)φ(x). So we have

π(x, y; a)(f)(u, 0; 0) = f((u, 0; 0)(x, y; a)) =
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f(x+ u, y, a+ uy/2) = ψ(a+ xy/2 + yu)φ(x+ u)

�


