1. Examples

Definition 1.1. a) For any finite set X we denote by $\mathbb{C}[X]$ the space of complex-valued functions on X.

b) We define the Hermitian scalar product (,) on $\mathbb{C}[X]$ by

$$(f', f'') := 1/|X| \sum_{x \in X} f'(x)\bar{f}''(x)$$

c) If a group G acts on the set X we define a function $\rho:G\to Aut(\mathbb{C}[X])$ by

$$\rho(g)f(x) := f(xg), f \in \mathbb{C}[X], x \in X$$

Please check that $\rho: G \to Aut(\mathbb{C}[X])$ is a representation of G on $(\mathbb{C}[X])$ which preserves the scalar product (,).

Remark 1.2. If X = G and the action of G on X is by left shifts $(g,x) \to gx$ then the map $e_g \to \delta_g, g \in G$ where

$$\delta_g(x) = 0 \text{ if } x \neq g \text{ and } \delta_g(g) = 1$$

defines an equivalence between the representation ρ and the regular representation of the group G. [see [S]1.2].

1.1. Commutative groups. Let G be a finite commutative group. Then [see Th.7 in [S]] any irreducible representation of G is one-dimensional and is given by a function $\chi: G \to \mathbb{C}^*$ such that $\chi(g'g'') = \chi(g')\chi(g'')$ for all $g', g'' \in G$. Since a representation of G is one-dimensional the character of the representation χ is equal to χ . So for commutative groups G we can identify irreducible representation of G with its character.

Definition 1.3. For a commutative group G we denote by \hat{G} the set of irreducible representations of G and for any $\chi', \chi'' \in \hat{G}$ we define the product $\chi' \circ \chi'' \in \hat{G}$ by

$$(\chi' \circ \chi'')(g) := \chi'(g)\chi''(g), g \in G$$

It is easy to see that the operation $\chi', \chi'' \to \chi' \circ \chi''$ defines a structure of an abelian group on the set \hat{G} with the unit being the function 1. We say that \hat{G} is the group dual to G.

Remark 1.4. The dual group \hat{G} is defined only for abelian groups G.

The right action of G on itself defines a representation ρ of G on $\mathbb{C}[G]$. On the other hand the map $\rho^{\vee}: G \to Aut(\mathbb{C}[\hat{G}])$ given by

$$(\rho^{\vee}(g)\phi)(\chi) := \chi(g^{-1})\phi(\chi), \phi \in \mathbb{C}[\hat{G}], g \in G$$

defines a representation ρ^{\vee} of G on $\mathbb{C}[\hat{G}]$) [please check]. We define the Fourier transforms $\mathcal{F}: \mathbb{C}[G] \to \mathbb{C}[\hat{G}]$ and $\mathcal{F}^{\vee}: \mathbb{C}[\hat{G}] \to \mathbb{C}[G]$ by

$$\mathcal{F}(f)(\chi) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(g) f(g), \chi \in \hat{G}, f \in \mathbb{C}[G]$$

and

$$\mathcal{F}^{\vee}(\phi)(x) := \frac{1}{\sqrt{|G|}} \sum_{\chi \in \hat{G}} \chi^{-1}(x)\phi(\chi), \phi \in \mathbb{C}[\hat{G}]), x \in G$$

Proposition 1.5. P:fou a) $\mathcal{F} \circ \rho(g) = \rho(g)^{\vee} \circ \mathcal{F}$.

b) \mathcal{F} and \mathcal{F}^{\vee} are unitary linear maps which are inverse to each other.

Proof. a)
$$\mathcal{F} \circ \rho(g_0)(g)(\chi) = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(g)(\rho(g_0)f(g)) = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(g)f(gg_0) = \frac{1}{\sqrt{|G|}} \sum_{g' \in G} \chi(gg_0^{-1})f(g)) = \chi(g_0^{-1}) \frac{1}{\sqrt{|G|}} \sum_{g' \in G} \chi(g)f(g) = \rho^{\vee}(g_0)(\mathcal{F}(f))$$

b) To prove that $\mathcal{F}^{\vee} \circ \mathcal{F} = Id_{\mathbb{C}[G]}$ it is sufficient to show that $\mathcal{F}^{\vee} \circ \mathcal{F}(\delta_g) = \delta_g$ for all $g \in G$. By the definition for all $\chi \in \hat{G}$ we have

$$\mathcal{F}(\delta_g)(\chi) = \frac{1}{\sqrt{|G|}}\chi(g)$$

Therefore

$$\mathcal{F}^{\vee} \circ \mathcal{F}(\delta_g)(x) = 1/|G| \sum_{\chi \in \hat{G}} \chi^{-1}(x)\chi(g) = 1/|G| \sum_{\chi \in \hat{G}} \chi(x^{-1}g)$$

Now the equality follows from Proposition 7 in [S].

The proof of the equlity $\mathcal{F} \circ \mathcal{F}^{\vee} = Id_{\mathbb{C}[\hat{G}]}$ is completely analogous.

Since functions $\{|G|\delta_x\}, x \in G \text{ is an orthonormal basis of the space } \mathbb{C}[G] \text{ it is sufficient to check that for any } x \neq y \in G \text{ we have } (\mathcal{F}(\delta_x), \mathcal{F}(\delta_y)) = 0 \text{ and that } (\mathcal{F}(\delta_x), \mathcal{F}(\delta_x)) = 1/|G|^2 \text{ for all } x \in G. \text{ But this follows from the equlity } \mathcal{F}(\delta_g)(\chi) = \frac{1}{\sqrt{|G|}}\chi(g), g \in G \text{ and Theorem 3 in [S].} \square$

1.2. One-dimensional representations. Let G be a finite group, $[G,G] \subset G$ the subgroup generated by elements of the form $aba^{-1}b^{-1}$ for $a,b \in G$. As you know [G,G] is a normal subgroup of G and the quotient group $\bar{G} = G/[G,G]$ is commutative. Let $p:G \to \bar{G}$ be the natural projection. For any one-dimensional representation χ of the group $\bar{G}, \chi \circ p$ is an one-dimensional representation of the group G.

Lemma 1.6. L:com Any one-dimensional representation π of the group G has a form $\chi \circ p$ where χ is an one-dimensional representation of the group \bar{G} .

Proof. Since the representation π is one-dimensional we have

$$\pi(aba^{-1}b^{-1}) = \pi(a)\pi(b)\pi(a^{-1})\pi(b^{-1}) = 1$$

for all $a,b \in G$. So $\pi_{[G,G]} \equiv 1$. Since π is a representation we see that $\pi(g\gamma) = \pi(g) \forall g \in G, \gamma \in [G,G]$. But this show that Therefore there exists a function $\chi : \bar{G} \to \mathbb{C}^*$ such that $\pi = \chi \circ p$. Since π is a representation of G, χ is also a representation of G.

1.3. The additive group. Let p be a prime number $q = p^r, r > 0$ and \mathbb{F}_q be the field of order q. We will study representations of different groups over \mathbb{F}_q . Let will denote the additive group of the field \mathbb{F}_q simply by \mathbb{F}_q . This is a commutative group of order q. Since the group \mathbb{F}_q is commutative all it irreducible representations are one-dimensional. As we know there exist q one-dimensional representations of the group \mathbb{F}_q . We fix one non-trivial such representation $\psi: \mathbb{F}_q \to \mathbb{C}^*$. By the definition $\psi: \mathbb{F}_q \to \mathbb{C}^*$ is a function such that $\psi(x+y) = \psi(x)\psi(y)$ for all $x, y \in \mathbb{F}_q$. For any $c \in \mathbb{F}_q$ we denote by $\psi_c: \mathbb{F}_q \to \mathbb{C}^*$ the function given by

$$\psi_c(x) := \psi(cx), x \in \mathbb{F}_q$$

It is clear that for any $c \in \mathbb{F}_q$ the function ψ_c defines an one-dimensional representations of the group \mathbb{F}_q .

Lemma 1.7. L:ad Any irreducible representation of the group \mathbb{F}_q is equal to ψ_c for some $c \in \mathbb{F}_q$.

Proof. Since [please check] all the functions $\psi_c, c \in \mathbb{F}_q$ are distinct we obtain q distinct irreducible representations of the group \mathbb{F}_q . Since we know the group \mathbb{F}_q has q distinct irreducible representations [see Th.7 in [S]] the Lemma is proven.

Remark 1.8. Since Since $\psi_{c'}\psi_{c''} = \psi_{c'+c''}$ for any $c', c'' \in \mathbb{F}_q$ [please check] we see that a choice of non-trivial elements $\psi \in \mathbb{F}_q^{\vee}$ defines an isomorphsim $c \to \psi_c$ between the groups \mathbb{F}_q and \mathbb{F}_q^{\vee} .

Let L be a finite-dimensional \mathbb{F}_q -vector space. We can consider L as a finite abelian group. How to describe the dual group? Let L^{\vee} be the space of \mathbb{F}_q -linear functionals $\lambda: L \to \mathbb{F}_q$. If we fix a non-trivial character $\psi: \mathbb{F}_q \to \mathbb{C}^*$ we can associate to any $\lambda \in L^{\vee}$ a function $\tilde{\lambda}: L \to \mathbb{C}^*$ where $\tilde{\lambda}(l):=\psi(\lambda(l))$.

Problem 1.9. P:1 a) For any $\lambda \in L^{\vee}$ the function $\tilde{\lambda} : L \to \mathbb{C}^{\star}$ is a character of the group L.

b) The map $\lambda \to \tilde{\lambda}$ defines an isomorphism between the groups L^{\vee} and \hat{L} .

As follows from Proposition 1.9 we can consider the Fourier transform $\mathcal{F}: \mathbb{C}[L] \to \mathbb{C}[\hat{L}]$ as a map from $\mathcal{F}: \mathbb{C}[L] \to \mathbb{C}[L^{\vee}]$.

Definition 1.10. a) For any bilinear form $B: L \times L \to \mathbb{F}_q$ we denote by $\tilde{B}: L \to L^{\vee}$ the \mathbb{F}_q -linear map given by

$$\tilde{B}(l)(l') := B(l, l'), l, l' \in L$$

- b) A bilinear form B is non-degenerate if $\tilde{B}:L\to L^\vee$ is an isomorphism of vector spaces.
- c) For any non-degenerate bilinear form $B: L \times L \to \mathbb{F}_q$ we define a linear map $\mathbb{F}_B: \mathbb{C}[L] \to \mathbb{C}[L]$ by

$$\mathbb{F}_B(f)(l) := \mathbb{F}(f)(\tilde{B}(l)), f \in \mathbb{C}[L], l \in L$$

In other words

$$\mathbb{F}_B(f)(l) := \frac{1}{\sqrt{|L|}} \sum_{l' \in L} \psi(B(l, l')) f(l')$$

Problem 1.11. P:2 a) If the form B is symmetric then for any $f \in \mathbb{C}[L], l \in L$ we have $\mathbb{F}_B(f)(l) = f(-l)$.

b) If the form B is anti-symmetric then $\mathbb{F}_B(f)(l) = f(l)$ for any $f \in \mathbb{C}[L], l \in L$.

We denote simply by $\mathcal{F}: \mathbb{C}[\mathbb{F}_q] \to \mathbb{C}[\mathbb{F}_q]$ the Fourier transform corresponding to the bilinear form $(x,y) \to -xy, x,y \in \mathbb{F}_q$. In other words

$$\mathcal{F}(f)(x) = \frac{1}{\sqrt{q}} \sum_{y \in \mathbb{F}_q} \psi(-xy) f(y)$$

1.4. The group of affine transformation of a line. Consider now the group P of 2×2 -matricies over \mathbb{F}_q of the form

$$p_{a,b} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \quad , a \in \mathbb{F}_q^*, b \in \mathbb{F}_q$$

We define $U := \{p_{1,b}\}, b \in \mathbb{F}_q \text{ and } H := \{p_{a,0}\}, a \in \mathbb{F}_q^{\star}.$

Problem 1.12. P:3 a) U is a commutative normal subgroup of P isomorphic to \mathbb{F}_q . Moreover U = [P, P]

- b) The group $\bar{P} := P/[P, P]$ is isomorphic to \mathbb{F}_q^* and the map $p : P \to \bar{P} := P/[P, P]$ is given by $p_{a,b} \to a$. The map p defines an isomorphism $H \to \bar{P}$.
- c) Any $p \in P$ can be written in the form $p = hu, h \in H, u \in U$ and such a decomposition is unique.

As follows from Lemma 1.6 the number of one-dimensional representation of the group P is equal to the number of one-dimensional representation of the commutative group $\bar{P} = \text{has } q - 1$ one-dimensional representations of the group P which have the form $\chi \circ p$ where $\chi \in (\mathbb{F}_q^{\star})^{\vee}$.

Lemma 1.13. L:P The group P has one equivalence classe of irreducible representations of dimension > 1 and they have dimension q-1.

Proof. I'll give two proofs of Lemma 1.13. The first work for finite field [the only ones we study in this course] and the second works also for real and p-adic fields.

The first proof. We start with the following result

Claim 1.14. a) If two elements $p_{a,b}, p_{a',b'} \in P$ are conjugate then a = a'

- b) If $a \neq 1$ then all the elements $p_{a,b}, b \in \mathbb{F}_q$ are conjugate.
- c) All elements $p_{1,b}, b \in \mathbb{F}_q^*$ are conjugate.

Proof. The result follows from an explict formula

$$p_{x,y}^{-1}p_{a,b}p_{x,y} = p_{a,c}, c = x^{-1}[(a-1)y + by]$$

So we see that the group P has q conjugacy classes. Therefore (by Theorem 7 in [S]) the group P has q equivalence classes of irreducible representations. Since P has q-1 distinct 1-dimensional representations we see that it has unique equivalence class of $[\rho]$ of irreducible representations of dimension > 1. Let d be it's dimension. In follows from Corollary 2 to Proposition 5 in [S] that $d^2 + (q-1) = |P|$. So $d^2 + (q-1) = q(q-1)$ and d = q-1.

Corollary 1.15. C:P Any representation π of P of dimension q-1 whose restriction on the subgroup $U \subset P$ is not trivial is irreducible and therefore belongs to $[\rho]$.

Proof. If π is reducible then all it summands have dimension smaller then q-1. In this case it would follow from Lemma 1.13 that all this summands were trivial on $U\square$.

The second proof. Since U is a normal commutative subgroup of P the group H acts on the group U^{\vee} by

$$\chi \to \chi^h, \chi^h(u) := \chi(h^{-1}uh), h \in H, u \in U$$

As follows from Lemma 1.7 the group H acts simply transitively on the set $U^{\vee} - \{e\}$.

Fix any non-trivial character $\chi:U\to\mathbb{C}^*$ and consider the induced representation $\tau=ind_U^P\chi$. Since the group H acts simply transitively on $U^\vee-\{e\}$ it follows from the Corollary 0.15 in in the section of induced representations that the representation τ is irreducible and does not depend on a choice of $\chi\in U^\vee-\{e\}$.

Now we want to prove that any irreducible representation (π, V) of P of dimension > 1 is equivaent to τ . Since both π and τ are irreducible it is sufficient to prove that $Hom_P(\tau, \pi) \neq = \{0\}$.

Since U is a normal subgroup of P the subspace $V^U \subset V$ of U-invariant vectors is a P-invariant subspace of V. Since V is irreducible either $V = V^U$ or $V^U = \{0\}$. In the first case we obtain an irreducible representation of \bar{P} on V. Since \bar{P} is commutative this would contradict the assumption that dim(V) > 1. So $V^U = \{0\}$.

Since $V^U = \{0\}$ and the group U is commutative we have a decomposion $V = \sum_{\chi \in U^{\vee} - \{e\}} V_{\chi}$ where $V_{\chi} \subset V$ is U-invariant and $\pi(u)_{|V_{\chi}} = \chi(u)Id_{V_{\chi}}$. Choose $\chi \in U^{\vee} - \{e\}$ such that $V_{\chi} \neq \{0\}$. Since $\tau = ind_{U}^{P}\chi$ we have $Hom_{P}(\tau, \pi) \neq = Hom_{U}(\chi, V) = V_{\chi}$.

To describe an other way of construction of an irreducible representation of P of dimension q-1 consider the action of the group P on the set \mathbb{F}_q . To any element $p_{a,b} \in P$ we can associate an affine transformation $\tilde{p}_{a,b} : \mathbb{F}_q \to \mathbb{F}_q$ by

$$\tilde{p}_{a,b}(x) = ax + b, a \in \mathbb{F}_q^*, b, x \in \mathbb{F}_q$$

Problem 1.16. P:4 a) The map $p_{a,b} \to \tilde{p}_{a,b}$ defines an action of the group P on \mathbb{F}_q . In other words

$$p_{a,b}\tilde{p}_{a',b'} = \tilde{p}_{a,b}\tilde{p}_{a',b'}$$

for any $p_{a,b}, p_{a',b'} \in P$

b) One can identify this action of P on \mathbb{F}_q with the action of P on P/H.

Since the group P acts on the set \mathbb{F}_q we obtain a homomorphism $\tilde{\rho}: P \to Aut\mathbb{C}[\mathbb{F}_q]$ by

$$\tilde{\rho}(p_{a,b})(f)(x) = f(\tilde{p}_{a,b}^{-1}(x), f \in \mathbb{C}[\mathbb{F}_q], x \in \mathbb{F}_q$$

[In other words $\tilde{\rho}(p_{a,b})(f)(x) = f(a^{-1}x - a^{-1}b)$.] Let $V \subset \mathbb{C}[\mathbb{F}_q]$ be the subspace of functions $f \in \mathbb{C}[\mathbb{F}_q]$ such that $\sum_{x \in \mathbb{F}_q} f(x) = 0$. Since the group P acts on the set \mathbb{F}_q by permutaions the subspace $V \subset \mathbb{C}[\mathbb{F}_q]$ is P-invariant. We denote by $\rho' : P \to Aut(V)$ the corresponding subrepresentation. Since dim(V) = q - 1 and the restriction of ρ' on U is not trivial it follows from Construction 1.15 that the representation $\rho' : P \to Aut(V)$ is irreducible and belongs to $[\rho]$.

Since the representations $\rho': P \to Aut(V)$ and $\tau P \to GL(W)$ are equivalent and irreducible it follows from the Schur's lemma that the spaces $Hom_P(V, W)$ is one-dimensional. How to construct a non-trivial element of this space?

Since $P = HU, H \cap U = \{e\}$ we can identify W with the space of functions on H. The map $a \to p_{a,0}$ identifies H with \mathbb{F}_q^* . This gives an identification of W with the space of functions on \mathbb{F}_q^* .

Problem 1.17. After this identification of W with the space of functions on \mathbb{F}_a^* we have

$$(\tau(p_{a,b})f)(x) = \chi(bx)(f(ax), f \in W \ x \in \mathbb{F}_q^*$$

Let $T:V'\to V''$ be the map given by $f\to \bar f, \bar f(a):=\mathcal F(f)(a), a\in \mathbb F_q^\star.$

Claim 1.18. $T \in Hom_P(V', V'')$.

Proof. Since elements $p_{1,b}$ and $p_{a,0}, a \in \mathbb{F}_q^*, b \in \mathbb{F}_q$ generate the group P it is sufficient to check that $T \circ \rho'(p_{a,0}) = \rho''(p_{a,0}) \circ T$ for all $a \in \mathbb{F}_q^*$ and $T \circ \rho'(p_{1,b}) = \rho''(p_{1,b}) \circ T$ for all $b \in \mathbb{F}_q$.

To show that $T \circ \rho'(p_{a,0})(f)(x) = \rho''(p_{a,0}) \circ T(f)(x)$ consider the function Let $f'(x) := \rho'(p_{a,0})(f)(x) = f(ax)$. Then

$$T \circ \rho'(p_{a,0})(f)(x) = \frac{1}{\sqrt{q}} \sum_{y \in \mathbb{F}_q} \psi(-xy)(f')(y) = \frac{1}{\sqrt{q}} \sum_{y \in \mathbb{F}_q} \psi(-xy)f(ay) = \frac{1}{\sqrt{q}} \sum_{z \in \mathbb{F}} \psi(-xaz)f(z) = T(f)(ax) = \rho''(p_{a,0}) \circ T$$

Analogously $T \circ \rho'(p_{1,b})(f)(x) = T(f''(x))$ where f''(x) = f(x+b). So

$$T \circ \rho'(p_{1,b})(f)(x) = \frac{1}{\sqrt{q}} \sum_{y \in \mathbb{F}_q} \psi(-xy)(f'')(y) = \frac{1}{\sqrt{q}} \sum_{y \in \mathbb{F}_q} \psi(-xy)f(y+b) = \frac{1}{\sqrt{q}$$

$$\frac{1}{\sqrt{q}} \sum_{z \in \mathbb{F}_q} \psi(-x(z-b)) f(z) = \frac{1}{\sqrt{q}} \sum_{z \in \mathbb{F}_q} \psi(xb) \psi(-xz) f(z) = \rho''(p_{1,b}) \circ T$$

1.5. The Heisenberg group. In this section we assume that q is odd and fix a non-trivial character ψ of \mathbb{F}_q .

Let L be a 2-dimnsional \mathbb{F}_q -vector space, and $<,>:L\times L\to \mathbb{F}_q$ on L be a non-zero skew-symmetric bilinear form. If you fix a basis e_1,e_2 in L then

$$< ae_1 + be_2, ce_1 + de_2 > = \alpha(ad - bc)$$
 where $\alpha = < e_1, e_2 >$

Let H be the product $L \times \mathbb{F}_q$. We define the group structure on H by

$$(l, a) \times (l', a') \rightarrow (l + l', a + a' + 1/2 < l, l' >)$$

I'll leave for you to check the parts a)-d) of the following

Claim 1.19. C:H a) The map m defines a group structure on H such that (0,0) is the unit.

- b) The subgroup $Z := \{(0, a)\}, a \in \mathbb{F}_q$ is the center of H.
- c) For any line $R \subset L$ the subset $\tilde{R} := R \times \mathbb{F}_q \subset H$ is a normal subgroup of H and

$$(r,a)(r',a') = (r+r',a+a'), r,r' \in R, a,a' \in \mathbb{F}_q$$

We denote by Ψ be the set of characters $\tilde{\psi}: \tilde{R} \to \mathbb{C}^*$ of \tilde{R} such that $\tilde{\psi}(0,a) = \psi(a)$ for any $a \in \mathbb{F}_q$. For any $h = (l,b) \in H$ and $\tilde{\psi} \in \Psi$ we define a character $\tilde{\psi}^h: \tilde{R} \to \mathbb{C}^*$ by

$$\tilde{\psi}^h(\tilde{r}) := \tilde{\psi}(h^{-1}\tilde{r}h), \tilde{r} \in \tilde{R}$$

- d) $\tilde{\psi}^h \in \Psi$ for all $\tilde{\psi} \in \Psi, h \in H$.
 - e) The group H acts transitively on the set Ψ .

Proof. of e). For any two characters $\tilde{\psi}, \tilde{\psi}' \in \Psi$ the ratio $\tilde{\psi}/\tilde{\psi}'$ is character χ of \tilde{R} trivial on Z. So we can consider it as a character of $R = \tilde{R}/Z$. Since $h^{-1}\tilde{r}h = (r, a+ < r, l >), \tilde{r} = (r, a), h = (l, b)$ we have

$$\tilde{\psi}^h(r) = \psi(< l, r >) \tilde{\psi}(r)$$

As follows from Lemma 1.7 the map from L to characters of R given by $l \to \chi_l, \chi_l(r) := \psi(\langle l, r \rangle)$ is surjective and we can find $l \in L$ such that $\tilde{\psi}/\tilde{\psi}'(r) = \psi(\langle l, r \rangle)$. But then $\tilde{\psi}' = \tilde{\psi}^h, h = (l, 0)$.

Corollary 1.20. C:ind Let π be representation of H such that $\pi_{\psi}^{R}(0, a) = \psi(a)Id$ for any $a \in \mathbb{F}_q$. Then the restriction of π on \tilde{R} contains $\tilde{\psi}$ for any $\tilde{\psi} \in \Psi$.

Proof. Consider the restriction of π to \tilde{R} . Since the group \tilde{R} is commutative there exists a character $\tilde{\psi}_0$ of \tilde{R} which is contained in $res_{\tilde{R}}(\pi)$. Since $\pi_{\psi}^R(0,a) = \psi(a)Id$ for any $a \in \mathbb{F}_q$ we see that $\tilde{\psi}_0 \in \Psi$. The result follows now from the part e) of the Claim.

Proposition 1.21. P:Hei a) The induced representation $\pi_{\psi}^{R} = ind_{\tilde{R}}^{H}\tilde{\psi}$ does not depend on a choice of $\tilde{\psi} \in \Psi$, it is irreducible.

- b) $\pi_{\psi}^{R}(0, a) = \psi(a)Id$ for any $a \in \mathbb{F}_q$.
- c) Any irreducible representation π of H such that $\pi_{\psi}^{R}(0, a) = \psi(a)Id$ for any $a \in \mathbb{F}_q$ is equivalent to π_{ψ}^{R} .

Proof. The part a) follows from the Collorary 0.15 in the section of induced representations and Claim 1.19. The part b) is clear since Z is [in] the center of H.

c) Let (π, V) be an irreducible representation of H such that $\pi_{\psi}^{R}(0, a) = \psi(a)Id$ for all $a \in \mathbb{F}_{q}$. We want to show that π is equivalent to $ind_{\tilde{R}}^{H}\tilde{\psi}$. Since both representations are irreducible it sufficient to show that $Hom_{H}(ind_{\tilde{R}}^{H}\tilde{\psi},\pi) \neq \{0\}$. By the definition of an induced representation we have $Hom_{H}(ind_{\tilde{R}}^{H}\tilde{\psi},\pi) = Hom_{\tilde{R}}(\tilde{\psi},res_{\tilde{R}}\pi)$. But by Corollary 1.20 there is an \tilde{R} -invariant subspace $W \subset V$ such that \tilde{R} acts on W by the multiplication by a character $\tilde{\psi}$.

Example 1.22. Let's describe the construction of the representation π of H more explicitely. We choose a basis e_1, e_2 in L such that $\langle e_1, e_2 \rangle = 1$. Then we identify elements of L with pairs $(x, y), x, y \in \mathbb{F}_q, \langle (x, y), (x', y') \rangle = xy' - x'y$ and identify elements of H with triples $(x, y; a), x, y, a \in \mathbb{F}_q$ and (x, y; a)(x', y'; a') = (x + x', y + y'; a + a' + xy' - x'y/2). Let

$$R := \{(0, y)\}, y \in \mathbb{F}_q \subset L, \tilde{R} = \{(0, y; a)\}, y, a \in \mathbb{F}_q \subset H, S := \{(x, 0; 0)\}, x, a \in \mathbb{F}_q \subset H\}$$

Then $\tilde{R}S = H$ and $\tilde{R} \cap S = \{e\}$. Let V be the space of the induced representation $ind_{\tilde{R}}^H\tilde{\psi}$. We can identify V with the space of functions $f: H \to \mathbb{C}$ such that $f((0,y';a')(x,y;a)) = \psi(a')f(x,y;a)$. The map $r: V \to \mathbb{C}[\mathbb{F}_q], r(f)(u) := f(u,0,0)$ identifies the space V with the space of functions of \mathbb{F}_q and we obtain a representation $\pi: H \to Gl(\mathbb{C}[\mathbb{F}_q])$.

Claim 1.23. C:rH $\pi(x, y; a)(\phi)(u) = \psi(xy/2 + yu + a)\phi(x + u)$

Proof. Let $f = r^{-1}(\phi) \in V$. Since (x, y; a) = (0, y; a + xy/2)(x, 0; 0) we have $f(x, y; a) = \psi(a + xy/2)\phi(x)$. So we have

$$\pi(x, y; a)(f)(u, 0; 0) = f((u, 0; 0)(x, y; a)) =$$

$$f(x+u, y, a+uy/2) = \psi(a+xy/2+yu)\phi(x+u)$$