1. EXAMPLES

Definition 1.1. a) For any finite set X we denote by C[X] the space
of complex-valued functions on X.

b) We define the Hermitian scalar product (,) on C[X] by

(1 f") = 1/IX[ Y f (@) f (x)
reX
c) If a group G acts on the set X we define a function p : G —
Aut(C[X]) by

p(g)f(z) = f(xg), f € CX],x e X

Please check that p : G — Aut(C[X]) is a representation of G on (C[X]
which preserves the scalar product (, ).

Remark 1.2. If X = G and the action of G on X is by left shifts
(g,z) — gx then the map e; — d,, g € G where

dg(x) =01if z # g and §,(g) =1

defines an equivalence between the representation p and the regular
representation of the group G. [see [S]1.2].

1.1. Commutative groups. Let G be a finite commutative group.
Then [see Th.7 in [S]] any irreducible representation of G is one-dimensional
and is given by a function y : G — C* such that x(¢'¢"”) = x(¢')x(g")
for all ¢’,¢” € G. Since a representation of GG is one-dimensional the
character of the representation x is equal to x. So for commutative
groups G we can identify irreducible representation of G with its char-

acter.

Definition 1.3. For a commutative group G we denote by G the set
of irreducible representations of GG and for any x’, x" € G we define the
product x' o X" € G by

(X" ox")(g) = X(9)x"(9),9 € G
It is easy to see that the operation ', x" — X’ o x” defines a structure

of an abelian group on the set GG with the unit being the function 1.
We say that G is the group dual to G.

Remark 1.4. The dual group G is defined only for abelian groups G.

The right action of G on itself defines a representation p of G on

~

C[G]. On the other hand the map p¥ : G — Aut(C[G]) given by

(P (9)0)(x) = X(g‘l)lfb(x), ¢ €C[Gl.ge G
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defines a representation p¥ of G on C[G]) [please check]. We define the
Fourier transforms F : C[G] — C[G] and F¥ : C[G] — C[G] b

F(Hx) = \/@;x 9),x € G, f € C[G]
and
FY(8)(x) = Zx X),¢ € C[G]),z € G

xEG

Proposition 1.5. P:fou a) F o p(g) = p(g)Y o F.

b) F and FV are unitary linear maps which are inverse to each other.
Proof. a) F o p(go)(9)(x) = \/% > gec X(9)(p(g0) f(9)) =

ﬁ > gec X(9)f(990) = \/\E S yea x990 )1 (9) =

x(go‘l)ﬁ > gea X(9)1(9) = p¥(90)(F(f))

b) To prove that F¥ o F = Idgjq it is sufficient to show that F" o
F(d4) = 0,4 for all g € G. By the definition for all x € G we have

1

F(0g)(x) = \/|—ax(g)
Therefore
F¥ o F(dg)(x) = 1/|G] Z X" (x)x(g) = 1/|G] Z x(z7'g)

Now the equality follows from Proposition 7 in [S].
The proof of the equlity F o FY =1 dgje 1s completely analogous.

Since functions {|G|d,},z € G is an orthonormal basis of the space
C|G] it is sufficient to check that for any = # y € G we have (F(6,), F(d,)) =
0 and that (F(d,), F(0,)) = 1/|G|* for all z € G. But this follows from
the equlity F(d,)(x) = ﬁx(g),g € G and Theorem 3 in [S]. O

1.2. One-dimensional representations. Let G be a finite group,
|G, G] C G the subgroup generated by elements of the form aba='b~?
for a,b € G. As you know |G, G] is a normal subgroup of G and the
quotient group G = G/[G,G] is commutative. Let p : G — G be the
natural projection. For any one-dimensional representation x of the
group G, x o p is an one-dimensional representation of the group G.
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Lemma 1.6. L:com Any one-dimensional representation m of the
group G has a form x op where x is an one-dimensional representation
of the group G.

Proof. Since the representation 7 is one-dimensional we have

m(aba”'b"") = w(a)m(b)m(a ) (b™") = 1

for all a,b € G. So mge = 1. Since 7 is a representation we see
that 7(gy) = 7(g)Vg € G,7 € [G,G]. But this show thatwTherefore
there exists a function y : G — C* such that 7 = x o p. Since 7 is a
representation of GG, x is also a representation of G. 0

1.3. The additive group. Let p be a prime number ¢ = p”,r > 0 and
F, be the field of order q. We will study representations of different
groups over FF,. Let will denote the additive group of the field [F, simply
by F,. This is a commutative group of order ¢. Since the group F, is
commutative all it irreducible representations are one-dimensional. As
we know there exist ¢ one-dimensional representations of the group
F,. We fix one non-trivial such representation ¢ : F, — C*. By the
definition ¢ : F, — C* is a function such that ¢ (z +y) = ¥(x)y(y) for
all z,y € F,. For any ¢ € [F, we denote by 1, : F, — C* the function
given by

Ye(z) == Y(cx),z € F,

It is clear that for any ¢ € I, the function ). defines an one-dimensional
representations of the group F,.

Lemma 1.7. L:ad Any irreducible representation of the group F, is
equal to . for some c € IFy.

Proof. Since [please check] all the functions v, ¢ € F, are distinct we
obtain ¢ distinct irreducible representations of the group F,. Since we
know the group F, has ¢ distinct irreducible representations [see Th.7
in [S]] the Lemma is proven. O

Remark 1.8. Since Since Yotpr = Yoy for any ¢, " € F, [please
check] we see that a choice of non-trivial elements 1 € F, defines an
isomorphsim ¢ — 1), between the groups F, and F.

Let L be a finite-dimensional F,-vector space. We can consider L
as a finite abelian group. How to describe the dual group? Let LV be
the space of F,-linear functionals A : L — F,. If we fix a non-trivial
character ¢ : F, — C* we can associate to any A € LY a function

A : L — C* where \(1) := ¢(A(1)).
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Problem 1.9. P:1 a) For any A € LY the function AN L—>Crisa
character of the group L.

b) The map A — A defines an isomorphism between the groups LY
and L.

As follows from Proposition 1.9 we can consider the Fourier trans-
form F : C[L] — C|[L] as a map from F : C[L] — C[L"].

Definition 1.10. a) For any bilinear form B : L x L — F, we denote
by B : L — LY the F,-linear map given by

B)(I') == B(,1N,1,I'e L
b) A bilinear form B is non-degenerateif B : L — L is an isomorphism
of vector spaces.

¢) For any non-degenerate bilinear form B : L x L — F, we define a
linear map Fp : C[L] — C[L] by

Fs(f)(1) = F(f)(BW), f € C[L],l € L

In other words

Fp(f) WZ¢ ()

el

Problem 1.11. P:2 a) If the form B is symmetric then for any f €
C[L],l € L we have Fg(f)(l) = f(-1).

b) If the form B is anti-symmetric then Fg(f)(l) = f(I) for any
feC[L],l e L.

We denote simply by F : C[F,] — C[F,] the Fourier transform corre-
sponding to the bilinear form (93 y) — —zy,x,y € F,. In other words

§:¢ —xy) f
yEFq

1.4. The group of affine transformation of a line. Consider now
the group P of 2 x 2-matricies over F, of the form

a b "
Pab = (O 1) ,aEFq,bEFq
We define U := {p1},b € Fy and H := {pao},a € F}.

Problem 1.12. P:3 a) U is a commutative normal subgroup of P
isomorphic to F,. Moreover U = [P, P|
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b) The group P := P/[P, P) is isomorphic to Fy and the mapp : P —
P .= P/[P, P is given by pay — a. The map p defines an isomorphism
H— P.

c) Any p € P can be written in the form p = hu,h € Hyu € U and
such a decomposition is unique.

As follows from Lemma 1.6 the number of one-dimensional represen-
tation of the group P is equal to the number of one-dimensional repre-
sentation of the commutative group P = has ¢— 1 one-dimensional rep-
resentations of the group P which have the form y op where y € (F;)V.

Lemma 1.13. L:P The group P has one equivalence classe of ir-
reducible representations of dimension > 1 and they have dimension

qg—1.

Proof. T'll give two proofs of Lemma 1.13. The first work for finite field
[the only ones we study in this course] and the second works also for
real and p-adic fields.

The first proof. We start with the following result

Claim 1.14. a) If two elements pap, pory € P are conjugate then a = a

b) If a # 1 then all the elements p,p,b € F, are conjugate.
c) All elements p1,b € F; are conjugate.

Proof. The result follows from an explict formula

PisPatbry = Pacs ¢ = 7 [(a = 1)y + by]
O

So we see that the group P has ¢ conjugacy classes. Therefore (by
Theorem 7 in [S]) the group P has ¢ equivalence classes of irreducible
representations. Since P has ¢ — 1 distinct 1-dimensional representa-
tions we see that it has unique equivalence class of [p] of irreducible
representations of dimension > 1. Let d be it’s dimension. In follows
from Corollary 2 to Proposition 5 in [S] that d? + (¢ — 1) = |P|. So
>+ (q—1)=q(g—1) andd=q— 1. O

Corollary 1.15. C:P Any representation m of P of dimension q — 1
whose restriction on the subgroup U C P is not trivial is irreducible
and therefore belongs to [p).

Proof. If 7 is reducible then all it summands have dimension smaller
then ¢ — 1. In this case it would follow from Lemma 1.13 that all this
summands were trivial on ULI.



The second proof. Since U is a normal commutative subgroup of P
the group H acts on the group U" by

X — X" X" () = x(h'uh),h € HiueU

As follows from Lemma 1.7 the group H acts simply transitively on
the set UY — {e}.

Fix any non-trivial character xy : U — C* and consider the induced
representation 7 = ind%y. Since the group H acts simply transitively
on UY — {e} it follows from the Corollary 0.15 in in the section of
induced representations that the representation 7 is irreducible and
does not depend on a choice of x € UY — {e}.

Now we want to prove that any irreducible representation (7, V') of P
of dimension > 1 is equivaent to 7. Since both 7 and 7 are irreducible
it is sufficient to prove that Homp(1,m) #= {0}.

Since U is a normal subgroup of P the subspace VY C V of U-
invariant vectors is a P-invariant subspace of V. Since V' is irreducible
either V =V or VY = {0}. In the first case we obtain an irreducible
representation of P on V. Since P is commutative this would contradict
the assumption that dim(V) > 1. So V¥ = {0}.

Since VY = {0} and the group U is commutative we have a decom-
posion V' = 3" ;v (. Vi where V, C V is U-invariant and 7 (u)y, =
x(u)Idy,. Choose x € U — {e} such that V, # {0}. Since 7 = ind{ x
we have Homp(7, ) #= Homy(x, V) = V,. O

To describe an other way of construction of an irreducible repre-
sentation of P of dimension ¢ — 1 consider the action of the group P
on the set F,. To any element p,;, € P we can associate an affine
transformation p,; : Fy — F, by

Pap(r) = ar +b,a €F; b,x €F,

Problem 1.16. P:4 a) The map p.p — Dap defines an action of the
group P on F,. In other words

DabDa’ p = DapDa’
for any pap, pury € P
b) One can identify this action of P on F, with the action of P on
P/H.
Since the group P acts on the set F, we obtain a homomorphism

p: P — AutC[F,| by
p(pap)(f)(x) = f(Pay(2), f € C[Fy),x € F,
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[In other words p(pap)(f)(x) = f(a™ 'z —a™'b).] Let V C C[F,] be the
subspace of functions f € C[F,] such that > p f(z) = 0. Since the
group P acts on the set F, by permutaions the subspace V' C C[F,]
is P-invariant. We denote by p' : P — Aut(V) the corresponding
subrepresentation. Since dim (V) = g — 1 and the restriction of p’ on U
is not trivial it follows from Construction 1.15 that the representation
P+ P — Aut(V) is irreducible and belongs to [p].

Since the representations p' : P — Aut(V) and 7P — GL(W) are
equivalent and irreducible it follows from the Schur’s lemma that the
spaces Homp(V, W) is one-dimensional. How to construct a non-trivial
element of this space?

Since P = HU,H N U = {e} we can identify W with the space of
functions on H. The map a — p, o identifies H with F;. This gives an
identification of W with the space of functions on Fy.

Problem 1.17. After this identification of W with the space of func-
tions on Fy we have

(7(Pas) f)(@) = X (bx)(f(az), f € Wz € F]
Let T : V' — V" be the map given by f — f, f(a) :== F(f)(a),a €
F*.
Claim 1.18. T'€ Homp(V',V").

Proof. Since elements py; and pao,a € Fy;,b € F, generate the group
P it is sufficient to check that T'o p'(pa0) = p"(pap) o T for all a € Fy
and T o p'(p1p) = p"(p1p) o T for all b € F,.

To show that T o p'(pao)(f)(x) = p"(Pao) © T(f)(x) consider the
hnction Lot 1(2) = #nal( /()= ff)- T

T o p(pao)(f Zw —zy)( Zw —ay)flay) =

yeF yeF

— Z W(~2az)f(2) = T(f)(az) = ¢ (pao) o T

zE]Fq

. Analogously T'o p'(p1y)(f)(2) = T(f"(x)) where f"(z) = f(x + ).

Top (o) (@) = —= 3 w(—am)(f Z (=) f(y+b) =

—ZEZFM (= — b)) <>=%§Mw<xbw<—m>ﬂz>=p"<p1,b>oT
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1.5. The Heisenberg group. In this section we assume that ¢ is odd
and fix a non-trivial character ¢ of F,.

Let L be a 2-dimnsional [F -vector space, and <,>: L x L — F, on
L be a non-zero skew-symmetric bilinear form. If you fix a basis ey, s
in L then

< aey + bey, cey + dey >= a(ad — be) where o =< e, €5 >

Let H be the product L x F,. We define the group structure on H
by
(l,a) x (I';a') = (I +1U,a+d +1/2 <1l >)
I'll leave for you to check the parts a)-d) of the following

Claim 1.19. C:H a) The map m defines a group structure on H such
that (0,0) is the unit.

b) The subgroup Z = {(0,a)},a € F, is the center of H.

¢) For any line R C L the subset R == R x F, C H is a normal
subgroup of H and

(T7 a)(rlu CL/) - (7’ + Tlu a+ CL,), r, T/ € R> a, CL/ € IFq
_ We denote by W be the set of characters ¢ : R — C* of R such that
¥(0,a) = ¢(a )foranyaGIF For any h = (1,b) € H and ¢ € U we
define a character ¥" : R — C* by
PM(F) == Y(hTTh), 7 € R
d)QZhE\IfforalMZEKII,hEH.
e) The group H acts transitively on the set .

Proof. of e). For any two characters b, 19’ € U the ratio ¢/1 is char-

acter x of R trivial on Z. So we can consider it as a character of
R = R/Z. Since h™'th = (r,a+ < r,l >),7 = (r,a), h = (I,b) we have

() = (< L >)d(r)
As follows from Lemma 1.7 the map from L to characters of R given
by | — xi, xi(r) =(< l,r>)is surjective and we can find [ € L such
that ¢ /¢/(r) = ¥(< I,r >). But then ¢/ =" h = (1,0). O
Corollary 1.20. C:ind Let w be representation of H such that w0, a) =

Y(a )Id for any a € F,. Then the restriction of m on R contains 1 for
any w eVv.
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Proof. Consider the restriction of 7 to~R. Since the group R is commu-
tative there exists a character ¢y of R which is contained in resg(m).
Since Wf((), a) = ¢ (a)ld for any a € F, we see that ¢y € U. The result
follows now from the part e) of the Claim. O

Proposition 1.21. P:Hei a) The induced representation 7T£ = ’mdglﬁ

does not depend on a choice szz e W, it is irreducible.
b) m}(0,a) = ¢(a)ld for any a € F,.

¢) Any irreducible representation w of H such that 7}(0,a) = 1 (a)ld
for any a € F, is equivalent to Wﬁ.

Proof. The part a) follows from the Collorary 0.15 in the section of
induced representations and Claim 1.19. The part b) is clear since Z
is [in] the center of H.

c) Let (7, V') be an irreducible representation of H such that 7[/(0,a) =
Y(a)ld for all a € F,. We want to show that 7 is equivalent to indg ).
Since both representations are irreducible it sufficient to show that
H omH(indg@, m) # {0}. By the definition of an induced representa-
tion we have HomH(indgﬁz,w) = Homp(¢, respm). But by Corollary
1.20 there is an R-invariant subspace W C V such that R acts on W
by the multiplication by a character . O

Example 1.22. Let’s describe the construction of the representation
m of H more explicitely. We choose a basis ey, e; in L such that <
e1,e2 >= 1. Then we identify elements of L with pairs (x,y),z,y €
F,, < (z,y), (2',y") >= 2y’ —2'y and identify elements of H with triples
(z,y;0),2,y,a € Fgand (z,y;0)(2",y; ) = (x+2, y+y'a+d +ay' —
2'y/2) . Let

R:={0,9)},yeF,C L,R={(0,y;a)},y,a € F, C H,S := {(x,0;,0)},z,a € F, C H
Then RS = H and ﬁ NS = {e}. Let V be the space of the induced
represenation indgw. We can identify V' with the space of functions
f+ H — C such that f((0,y;d')(z,y;a)) = ¢(d') f(z,y;a). The map
r:V — ClF,r(f)(uv) = f(u,0,0) identifies the space V with the
space of functions of F, and we obtain a representation = : H —
GIU(CIF,)).

Claim 1.23. C:rH 7(x,y;a)(¢)(u) = ¥ (xy/2 + yu + a)p(x + u)
Proof. Let f =r~1(¢) € V. Since (z,y;a) = (0,y;a+zy/2)(z,0;0) we
have f(z,y;a) = ¥(a + zy/2)p(x). So we have

m(z,y;a)(f)(u, 0;0) = f((u, 0;0)(z,y; 0)) =
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[l +u,y,a+uy/2) =P(a+ 2y/2 4+ yu)d(x + u)



