For any root $\alpha \in R$ the imbedding $i_{\alpha}: sl_2(k) \to \mathfrak{g}$ defines a representation $\rho_{\alpha}: sl_2(k) \to End(\mathfrak{g})$ where $\rho_{\alpha}:= ad \circ i_{\alpha}$ and therefore [see Problem 9 c) in Lecture 4] a representation $\tilde{\rho}_{\alpha}: SL(2,k) \to Aut(\mathfrak{g})$. We define

$$S_{\alpha} := \tilde{\rho}_{\alpha}(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}) \in Aut(\mathfrak{g})$$

and denote by $S_{\alpha}(h)^{\vee} \in Aut(\mathfrak{g}^{\vee})$ the corresponding automorphism of the dual space \mathfrak{g}^{\vee} . [If $\kappa : \mathfrak{g} \to \mathfrak{g}^{\vee}$ is an isomorphism defined by a non-degenerate invariant form $(,) : \mathfrak{g} \times \mathfrak{g} \to k$ then $S_{\alpha}(h)^{\vee} := \kappa^{-1} \circ S_{\alpha} \circ \kappa$].

Problem 0.1. Show that

- a) $S_{\alpha}(h_{\alpha}) = h_{\alpha}$.
- b) $S_{\alpha}(h) = -h \text{ if } (h, h_{\alpha}) = 0.$
- c) $S_{\alpha}(\mathfrak{h}) \subset \mathfrak{h}$ and $S_{\alpha}|_{\mathfrak{h}} = s_{\alpha}$.

The rest of homeworks are from the Kirillov's book.

Homeworks: 7.1-7.6; 7.15; 7.17