We assume that $char(k) \neq 2$ and k is algebraically closed.

We will introduce notations

 $A_n = sl_{n+1},$

 $B_n = so_Q$ when Q is a non-degenerate quadratic form on a vector space V of dimension 2n + 1

 $C_n = sp_B$ when B is a non-degenerate symplectic form on a vector space V, dim(V) = 2n and

 $D_n = so_Q$ when Q is a non-degenerate quadratic form on a vector space V of dimension 2n [see Lecture 1].

The Lie algebras A_n, B_n, C_n, D_n are called the *classical* Lie algebras. Since classical Lie algebras are presented as subalgebras of End(V) they have the *standard* representation on V.

Let <, > be the symplectic form on k^{2n} such that $< v_i, v_{2n-i+1} >= 1$ for $1 \le i \le n, < v_i, v_{2n-i+1} >= -1$ for $n+1 \le i \le 2n$ and $< v_i, v_j >= 0$ if $i+j \ne 2n+1$. Let $\mathfrak{g} := sp_{<,>}$.

Problem 0.1. a) If we write $2n \times 2n$ matrix $x \in End(k^{2n})$ in the form

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where A, B, C, D are $n \times n$ matrices then $x \in \mathfrak{g}$ iff

 $D = -{}^{t}A, B = {}^{t}B$ and $C = {}^{t}C$ where ${}^{t}A$ is the transpose of A in repect of the second diagonal.

- b) The the subset \mathfrak{h} of diagonal matrices in \mathfrak{g} is a Cartan subalgebra of \mathfrak{g} .
- c) \mathfrak{h} consists of diagonal matrices $\{\lambda_i\}$, $1 \leq i \leq 2n$ such that $\lambda_{2n-i} = -\lambda_i$.
 - d) The set R of roots in \mathfrak{g} in respect to \mathfrak{h} is a union

 $R = R' \cup R'', R' := \{e_i - e_j\}, R'' := \{\pm(e_i + e_j)\} 1 \le i, j \le n, i1 \ne jj$ where $e_i \in \mathfrak{h}^{\vee}, 1 \le i \le n$ are linear functionals on \mathfrak{h} such that $e_{i_0}(\{\lambda_i\}) := \lambda_{i_0}$.

Problem 0.2. a) Show that

- a) The Lie algebras A_n, B_n, C_n and D_n are reductive for all n > 0.
- b) The Lie algebras A_n , B_n and C_n are simple for all n > 0 and $A_1 = B_1 = C_1$.
- c) $D_1 = k, D_2 = A_1 \times A_1$ and the Lie algebras D_n are simple for n > 2.
 - d)* Construct isomorphisms $D_3 = A_3$ and $B_2 = C_2$.

A hint. Consider the exterior square $\Lambda^2(V)$ where V is the standard representation of A_3 and C_2 .

For any Lie algebra $\mathfrak{g} \subset End(V)$ and $v \in V$ we define

$$\mathfrak{g}_v := \{ x \in \mathfrak{g} | xv \in kv \}$$

e) Find $r_v := r(\mathfrak{g}_v) \subset \mathfrak{g}_v, s_v := \mathfrak{g}_v/r(\mathfrak{g}_v)$ and construct explicitly the imbedding $s_v \hookrightarrow \mathfrak{g}_v$ for standard representations of classical Lie algebras.

A hint. In the case when $\mathfrak{g} = B_n$ or $\mathfrak{g} = D_n$ one should consider separately the case when Q(v) = 0 and the case when $Q(v) \neq 0$.

- f) Problems 6.5 and 6.6.
- g) Find a Cartan subalgebras for Lie algebras $\mathfrak{g}=sl_n,so_Q$ and construct the root decomposition.

A hint. Choose convenient bilinear and quadratic forms. The easiest quadratic forms to use are $Q(x_1,...,x_{2n}) = \sum_{i=1}^n x_i x_{2n-i+1}$ and $Q(x_1,...,x_{2n+1}) = \sum_{i=1}^n x_i x_{2n-i+2} + x_{n+1}^2$

In the next problem we have $k = \mathbb{R}$. So k is not algebraically closed.

h) Find a Cartan subalgebra for Lie algebras so_Q in the case when $k = \mathbb{R}, Q(x_1, ..., x_n) = \sum_{i=1}^n x_i^2$.