
Definition 0.1. Let k be a field and V a k-vector space.

a) A subset M ⊂ End(V ) is nilpotent of level N if A1...AN = 0 for
any A1...AN ∈ M . M is nilpotent if it is nilpotent of level N for some
N

b) A subset M ⊂ End(V ) is weakly closed if [M, M ] ⊂ M (that is
[m′, m′′] ∈ M, ∀m′, m′′ ∈ M).

c) For a weakly closed subset M ⊂ End(V ) we denote by M̃ ⊂
End(V ) the Lie subalgebra generated by M .

Problem 0.2. a) If M ⊂ End(V ) is weakly closed, N ⊂ M and

A ∈ M be such that [A, Ñ ] ⊂ Ñ then ÑA ⊂ AÑ + Ñ .

b) If N ⊂ End(V ) is a nilpotent subset subset then there exists k > 0
such that any product of k endomorphisms of V such that k−1 of them
belong to N is equal to zero.

Given M ⊂ End(V ), W ⊂ V such that MW ⊂ W we denote by
MW ⊂ End(W ), MV/W ⊂ End(V/W ) the induced sets of operators.

c) If MW ⊂ End(W ), MV/W ⊂ End(V/W ) are nilpotent then M ⊂
End(V ) is nilpotent.

Lemma 0.3. If M ⊂ End(V ) is a weakly closed subset, N ⊂ M is
such that Ñ is nilpotent and Ñ 6= M̃ then there exists A ∈ M −M ∩ Ñ
such that [A, N ] ⊂ Ñ .

Proof. Since Ñ 6= M̃ there exists A1 ∈ M − M ∩ Ñ . If [A1, N ] ⊂ Ñ
we can take A = A1. Otherwise there exists X1 ∈ N such that A2 :=
[A1, X1] /∈ Ñ . Since M is weakly closed we have A2 ∈ M − M ∩ Ñ . If

[A2, N ] ⊂ Ñ we take A = A2 otherwise we repeat the construction. It
is clear that either this procedure leads in a finite number of steps to
a required element A or we obtain an infinite sequence A1...An, .. ∈ M
such that Ai = [Ai−1, Xi−1] where Xi−1 ∈ N, Ai /∈ Ñ .

To see that the last possibility does not occur observe that for any
k > 0 the operator Ak is a linear combination of products of A1 and
k− 1 factors belonging to N . But it follows from the problem 2b) that
Ak = 0 for k >> 0. �

Theorem 0.4. Let k be a field and M ⊂ End(V ) a weakly closed

subset such that any element A ∈ M is nilpotent. Then M̃ ⊂ End(V )
is nilpotent.

Proof. The proof is by induction in dim(V ). The result is true when
dim(V ) = 0 or M = ∅. So we may assume that dim(V ) > 0 and
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M 6= ∅. Let Ω be the collection of subsets N ⊂ M such that Ñ is
nilpotent. It is easy to see [please show] that Ω contains a maximal
element N [that is N ⊂ M is such that Ñ is nilpotent but for any

N ′ ⊂ M, N ′ 6= N the set Ñ ′ is not nilpotent] and Ñ 6= {0}. It is
sufficient to show that Ñ = M̃ .

Let W := ÑV ⊂ V . W 6= {0} since Ñ 6= {0}. Moreover W 6= V .
For otherwise we could write any v ∈ in the form v =

∑
Xivi, Xi ∈

Ñ, vi ∈ V . Repeating the procedure we will see that for any k > 0 we
could write any v ∈ V in the form v =

∑
i

∏k
j=1 Xj

i vi, X
j
i ∈ Ñ, vi ∈ V .

Since Ñ is nilpotent this would imply that V = {0}. So W 6= V .

Let R := {A ∈ M |AW ⊂ W}. By the construction N ⊂ R.

Problem 0.5. Show that R̃ is nilpotent.

A hint. Use the inductive assumptions.

If N 6= M then by Lemma 3 there exists A ∈ M −M ∩ Ñ such that
[A, N ] ⊂ Ñ . I claim that A ∈ R [that is AW ⊂ W ]. Since W = ÑV I

have to show that AY v ∈ W for all Y ∈ Ñ , v ∈ V . By Lemma 2a) we
have AY v = Y1Av + Y2v, Y1, Y2 ∈ Ñ . So AW ⊂ W and A ∈ R.

Since N a maximal element of Ω and [by Problem 5] R̃ is nilpotent
we see that R = N . So A ∈ Ñ . But by the construction A ∈ M −M ∩
Ñ . �

Remark The Engel’s theorem follows immediately from the proof
Theorem 4[ please explain].

Problem 0.6. Let α be an automorphism of a Lie algebra g. For any
λ ∈ k we define gλ := {x ∈ g|α(x) = λx}.

a) Show that [gλ, gµ] ⊂ gλµ.

b)⋆ If g1 = {0} and there exists a prime number p such that αp = Idg

then g is nilpotent.

c) Construct a Lie algebra g and an automorphism α of g such that
g1 = {0}, α4 = Idg but g is not nilpotent.

Problem 0.7. a) Let g be a nilpotent Lie algebra. Show the existence
of a chain of ideals h0 ⊂ h1 ⊂ ...hd = g such that dim(hi) = i, 0 ≤ i ≤
d = dim(g).

b) Let g be a solvable Lie algebra and k is algebraically close. Show
the existence of a chain of ideals h0 ⊂ h1 ⊂ ...hd = g such that
dim(hi) = i, 0 ≤ i ≤ d = dim(g).
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c) Give an example of solvable Lie g over R such that there is no
chain of ideals h0 ⊂ h1 ⊂ ...hd = g such that dim(hi) = i, 0 ≤ i ≤ d =
dim(g).

d) Let g be a Lie algebra over an algebraically closed field. Show that
g is not nilpotent iff it contains a two-dimensional non-commutative
subalgebra.

I assume that you know the following result.

Lemma 0.8. Let k be a perfect field, K ⊃ k an algebraically closed
field containing k. Then any element x ∈ K such that γ(x) = x for all
γ ∈ Aut(K/k) belongs to k.

Remark. Any field of characteristic zero is perfect.

Problem 0.9. Let K ⊃ k be as in Lemma 8

a) Let L ⊂ K n be a line such that γ(V ) = V for all γ ∈ Aut(K/k).
Show the existence of a line L ⊂ kn such that L̃ = L ⊗k K.

b)⋆ Let Ṽ ⊂ Kn be a subspace such that γ(V ) = V for all γ ∈
Aut(K/k). Show the existence of a k-subspace V ⊂ kn such that Ṽ =
V ⊗k K.

c) Show that for any Lie algebra g over a field k and an extension
K ⊃ k there exists unique Lie algebra structure [, ] : g⊗k K×g⊗k K →
g ⊗k K such that

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab, x, y ∈ g, a, b ∈ K

We say that the Lie algebra g ⊗k K is obtained from g by extension of
scalars from k to K.

d) Show that a k-Lie algebra g is solvable iff the -Lie algebra g⊗k K
is solvable.

e) Show that rad(g ⊗k K) = rad(g) ⊗k K if k is a perfect field.

A hint. Use the part b) of the problem.

f)⋆ Prove the Cartan criterion for all fields k of characteristic zero
of cardinality not greater the the continuum.

Jordan normal form.

For any λ ∈ k, n ≥ 0 we denote by Aλ,n the linear operator in
the linear space Wn such that Vn has a basis w0, ..., wn and Aλ,nwi =
λwi + wi+1 where wn+1 := 0.



4

Theorem 0.10. Let k be an algebraically closed field, V a finite-
dimensional k-vector space and A ∈ End(V ). Then there exists a
decomposition V = ⊕r

i=1Vi of V into a direct sum of A-invariant sub-
spaces such that for any i, 1 ≤ i ≤ r the restriction of of A on Vi is
equivalent to Aλ,n for some λ ∈ k, n ≥ 0.

Proof. Let λ1, ..., λs be the set of roots of the characteristic polynomial
PA(t) := det(A − tIdV ). For any i, 1 ≤ i ≤ s we define

V i := {v ∈ V |(A − λiIdV )dim(V )v = 0

Problem 0.11. V = ⊕s
i=1V

i

We see that it is sufficient to prove the theorem for such operators A
that (A − λiIdV )dim(V ) = 0 for some λ ∈ k. Therefore we can assume
that Adim(V ) = 0. Let n ≥ 0 be such that An 6= 0 but An+1 = 0. Choose
a vector w0 ∈ V such that Anw0 6= 0. Let wi := Aiw0 and W ⊂ V be
the span of of w0, ..., wn. It is clear that W is an A-invariant subspace
of V and the restriction of of A on W is equivalent to A0,n. Therefore
for the proof of the theorem it is sufficient to show the existence of an
A-invariant subspace W ′ of V such that V = W ⊕ W ′.

To construct W ′ we fix an linear functional f : V → k such that
f(wn) = 1 and f(wi) = 0 for i < n and consider a linear map p : V →
W given by p(v) :=

∑n
i=0 f(An−iv)wi.

Problem 0.12. a) pW = IdW .

b) Ap = pA.

c) W ′ := Ker(p) is A-invariant and V = W ⊕ W ′.

�

Problem 0.13. Exercises 5.1 and 5.4 from the Kirillov’s book.

The following result is used in the proof of Theorem 5.43 in Kirillov.

Problem 0.14. Let g ⊂ V be a Lie subalgebra over a field of char-
acteristic zero, R ⊂ g is an ideal and v ∈ V − {0} a vector such
that rv = λ(r)v, λ(r) ∈ k, ∀r ∈ R. Fix x ∈ g and define W :=
span{v, xv, , x2v, ...}. Then

a) W is stable under the action of any r ∈ R.

b) λ([x, r]) = 0, ∀x ∈ g, r ∈ R.

c) rvk = λ(r)vk, ∀k ≥ 0 if λ(r) = 0.
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Now we can prove Theorem 5.43. I’ll consider g/Ker(ρ) as a sub-
algebra in End(V ). Let R = rad(g). Choose v ∈ V − {0} a vector
such that rv = λ(r)v, λ(r) ∈ k, ∀r ∈ R. It follows from Problem 14
b) that λ([x, r]) = 0 for any x ∈ g, r ∈ R. Define R̃ := [R, g], W :=

{w ∈ V |r̃v = 0, ∀r̃ ∈ R̃. Since R̃ ⊂ g is an ideal gW ⊂ W . Since V is
irreducible and v ∈ W we see that W = V . So ρ(R̃) = 0.


