Definition 0.1. Let k be a field and V' a k-vector space.

a) A subset M C End(V') is nilpotent of level N if Ay...Axy =0 for
any Ai...Axy € M. M is nilpotent if it is nilpotent of level N for some
N

b) A subset M C End(V) is weakly closed if [M, M] C M (that is
m/,m"] € M,Ym/,m" € M).

¢) For a weakly closed subset M C End(V) we denote by M C
End(V) the Lie subalgebra generated by M.

Problem 0.2. a) If M C End(V) is weakly closed, N C M and
A e M be such that [A,N] C N then NAC AN + N.

b) If N C End(V) is a nilpotent subset subset then there ezists k > 0
such that any product of k endomorphisms of V' such that k—1 of them
belong to N s equal to zero.

Given M C End(V),W C V such that MW C W we denote by
My C End(W), Myw C End(V/W) the induced sets of operators.

c) If My C End(W), My,w C End(V/W) are nilpotent then M C
End(V) is nilpotent.

Lemma 0.3. If M C End(V) is a weakly closed subset, N C M is
such that N is nilpotent and N # M then there evists A € M — M NN
such that [A, N] C N.

Proof. Since N # M there exists Ay € M — M N N. If [A;, N] C N
we can take A = A;. Otherwise there exists X; € N such that Ay :=
[A1, X1] ¢ N. Since M is weakly closed we have Ay € M — M N N. If
[A3, N] € N we take A = A, otherwise we repeat the construction. It
is clear that either this procedure leads in a finite number of steps to
a required element A or we obtain an infinite sequence A;...A,,.. € M

such that Az = [Az'—hXi—l] where Xz’—l € N, Az ¢ N

To see that the last possibility does not occur observe that for any
k > 0 the operator A; is a linear combination of products of A; and
k — 1 factors belonging to N. But it follows from the problem 2b) that
A =0 for k£ >> 0. O

Theorem 0.4. Let k be a field and M C End(V) a weakly closed
subset such that any element A € M is nilpotent. Then M C End(V)
18 nilpotent.

Proof. The proof is by induction in dim(V'). The result is true when

dim(V) = 0 or M = ). So we may assume that dim(V) > 0 and
1



2

M # (. Let Q be the collection of subsets N C M such that N is
nilpotent. It is easy to see [please show| that {2 contains a maximal
clement N [that is N C M is such that N is nilpotent but for any
N’ C M,N' # N the set N’ is not nilpotent] and N # {0}. It is
sufficient to show that N = M.

Let W:=NV CV. W # {0} since N + {0}. Moreover W # V.
For otherwise we could write any v € in the form v = > X;u;, X; €
N,v; € V. Repeating the procedure we will see that for any k& > 0 we
could write any v € V' in the form v =), H?Zl X/v, X] € Nyu; € V.
Since N is nilpotent this would imply that V = {0}. So W # V.

Let R :={A € M|AW C W}. By the construction N C R.
Problem 0.5. Show that R is nilpotent.

A hint. Use the inductive assumptions.

If N # M then by Lemma 3 there exists A € M — M N N such that
[A,N] € N. I claim that A € R [that is AW C W]. Since W = NV 1
have to show that AYv € W for all Y € N,v € V. By Lemma 2a) we
have AYv = Y, Av + Yo, Y1, Yo € N. So AW C W and A € R.

Since N a maximal element of {2 and [by Problem 5] R is nilpotent
we see that R = N. So A € N. But by the construction A € M — M N
N. O

Remark The Engel’s theorem follows immediately from the proof
Theorem 4] please explain].

Problem 0.6. Let o be an automorphism of a Lie algebra g. For any
A € k we define g, = {x € gla(zx) = A\z}.

a) Show that [gx, 8,] C gru-

b)* If g1 = {0} and there exists a prime number p such that o = Id,
then g is nilpotent.

c) Construct a Lie algebra g and an automorphism « of g such that
g1 = {0}, a* = Idg but g is not nilpotent.

Problem 0.7. a) Let g be a nilpotent Lie algebra. Show the existence
of a chain of ideals hy C by C ...hg = g such that dim(h;) =i,0 < i <
d = dim(g).

b) Let g be a solvable Lie algebra and k is algebraically close. Show

the existence of a chain of ideals by C by C ..hgy = g such that
dim(b;) =1,0 <1 < d = dim(g).
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c) Give an example of solvable Lie g over R such that there is no
chain of ideals ho C by C ..hg = g such that dim(h;) =i,0 <i < d =
dim(g).

d) Let g be a Lie algebra over an algebraically closed field. Show that
g is not nilpotent iff it contains a two-dimensional non-commutative
subalgebra.

I assume that you know the following result.

Lemma 0.8. Let k be a perfect field, K D k an algebraically closed

field containing k. Then any element v € K such that y(x) = = for all
v € Aut(K/k) belongs to k.

Remark. Any field of characteristic zero is perfect.

Problem 0.9. Let K D k be as in Lemma 8

a) Let L C K™ be a line such that v(V) =V for all v € Aut(K/k).
Show the existence of a line L C k™ such that L = L ®; K.

b)* Let V. C K" be a subspace such that (V) = V for all v €
Aut(K/k). Show the existence of a k-subspace V- C k"™ such that V =
Ver K.

¢) Show that for any Lie algebra g over a field k and an extension
K D k there exists unique Lie algebra structure [,] : g® K X g®j K —
g ®k K such that

[T®a,y®b =[x,y @ab,z,y € g,a,b € K

We say that the Lie algebra g ® K is obtained from g by extension of
scalars from k to K.

d) Show that a k-Lie algebra g is solvable iff the -Lie algebra g @y K
1s solvable.

e) Show that rad(g @y K) = rad(g) @k K if k is a perfect field.
A hint. Use the part b) of the problem.

f)* Prove the Cartan criterion for all fields k of characteristic zero
of cardinality not greater the the continuum.

Jordan normal form.

For any A € k,n > 0 we denote by A,, the linear operator in
the linear space W, such that V,, has a basis wy, ..., w, and A, ,w; =
Aw; + w1 where w, 1 := 0.
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Theorem 0.10. Let k be an algebraically closed field, V a finite-
dimensional k-vector space and A € End(V'). Then there exists a
decomposition V = ®;_,V; of V into a direct sum of A-invariant sub-
spaces such that for any i,1 < i < r the restriction of of A on V; is
equivalent to Ay, for some X\ € k,n > 0.

Proof. Let Ay, ..., A\s be the set of roots of the characteristic polynomial
Pu(t) :=det(A — tldy). For any i,1 < i < s we define

Vii={v e V|(A = \Idy)"™V)y =0
Problem 0.11. V = @;_, V!

We see that it is sufficient to prove the theorem for such operators A
that (A — N\ Idy)®™) = 0 for some A € k. Therefore we can assume
that A%™(V) = (0. Let n > 0 be such that A™ # 0 but A”*! = 0. Choose
a vector wy € V such that A"wy # 0. Let w; := Awy and W C V be
the span of of wy, ..., w,. It is clear that W is an A-invariant subspace
of V and the restriction of of A on W is equivalent to Ag,. Therefore

for the proof of the theorem it is sufficient to show the existence of an
A-invariant subspace W' of V such that V =W & W'.

To construct W’ we fix an linear functional f : V' — k such that
f(w,) =1 and f(w;) =0 for i <n and consider a linear map p : V' —

W given by p(v) := Y1 f(A" v)w;.
Problem 0.12. a) py = Idy .
b) Ap = pA.
c) W' := Ker(p) is A-invariant and V. =W & W'.

Problem 0.13. Ezxercises 5.1 and 5.4 from the Kirillov’s book.

The following result is used in the proof of Theorem 5.43 in Kirillov.

Problem 0.14. Let g C V be a Lie subalgebra over a field of char-
acteristic zero, R C g is an ideal and v € V — {0} a vector such
that rv = Ar)v,\(r) € k,¥Yr € R. Fiz x € g and define W :=

span{v, xv, v, ...}. Then
a) W is stable under the action of any r € R.
b) AN[z,r]) =0,Vz € g,r € R.
c) rof = \(r)v*, Yk > 0 if A\(r) = 0.
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Now we can prove Theorem 5.43. T'll consider g/Ker(p) as a sub-
algebra in End(V). Let R = rad(g). Choose v € V — {0} a vector
such that rv = A(r)v, A\(r) € k,Vr € R. It follows from Problem 14
b) that A([z,7]) = 0 for any = € g,r € R. Define R := [R,g],W :=
{w € V|fv = 0,VF € R. Since R C g is an ideal gl C W. Since V is

irreducible and v € W we see that W = V. So p(R) = 0.



