In this lecture we describe finite-dimensional representations of the
Lie algebra sly(k) in the case when char(k) = 0 and k is algebraically
closed.

The algebra sls(k) has a basis e, f, h such that
[euf] - h7 [h,@] :267 [huf] = _2f

For any n we denote by V,, the n 4+ 1-dimensional space with a basis
Un—2k, 0 < k < n and denote by p, : sla(k) — End(V,) the linear map
such that

Pr(h)Un—or = (N — 2K)Un_ok, pn(f)Vn—2k = Un—2k—2,

pn(€)Vn—2k = k(n —k + 1)v,_ok10

Theorem 0.1. p, is an irreducible representation of the Lie algebra
sly(k). Moreover any irreducible representation of sla(k) is equivalent
to p, for somen > 0.

Remark 0.2. Vo =k and py =0

Proof. 1 leave for you to check that p, is a representation of Lie algebra
sly(k). To prove the irreduciblity of p, we have to show that any
invariant non-zero subspace W C V is equal to V. Choose a non-zero
pn(h)-eigenvector w € W. Since all eigenvalues of the operator p,(h)
are distinct we have w = cvy_g for some k,0 < k£ < n and some
non-zero ¢ € k. But then vectors p,(f)%w, p,(€)’w € W span V.

Let p : sly(k) — End(V) be an irreducible finite-dimensional repre-
sentation of sly(k). We write E = p(e), F = p(f), H = p(h). For any
A € k we define

VA :={v e V|Hv=\}
Lemma 0.3. EV[\| C VIA+2], FV[A] C VA — 2]

Proof. If v € V[A] we have HEv = [H,E|lv + EHv = 2Ev + EXv =
(A +2)EV. Analogous arguments show that HFv = (A —2)FV. O

Since V' is finite-dimensional and char(k) = 0 there exists A € k
such that V[\] # {0} and VA + 2] = {0}. Choose a non-zero vector
vy € V[A]. Since VX + 2] = {0} we have Fv, = {0}. For any k& > 0
define vy_o 1= F¥(vy).

Lemma 0.4.

Huvy_op = (A= 2)k, Fuy_or, = Un_og—2, BEva—or = k(A — k 4+ 1)ua_og12
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Proof. The first equality follows from Lemma 2, the second from the
definition of vectors vy_o,. We prove the equality

(*k) EU)\_gk = k()\ —k + 1)UA—2k+2

by induction in k. By the definition of vy the equality (%) is true.
Assume that Evy_opio = (A — k)(k — 1)va_o4 the equality (x,_1) is
true. Then we have

Evy_op = EFvy_gky2 = [E, Flox_opio + FEUA o120 =
Huy g2+ F(A = k)(k — 1)va—opqsa =
()\ — 2k + 2)1})\_%4_2 + ()\ - k)(k - 1)FU>\_2k+4 =
k’[()\ — 2/{3 + 2) + ()\ — k‘)(k‘ — 1)]”)\—2k+2 = k’()\ — k’ + 1)21)\_2]<;+2
O

Since V' is finite-dimensional and [by Lemma 2] FFuvy € V[\ — 2k]
there exists n > 0 such that F™vy # {0} but F"*v, = {0}.

I claim that A € Z>. Really if A ¢ Z>( then (A —k+ 1)k # 0 for all
k > 0. From this we deduce by induction in k that v,_ox # 0,Vk > 0.
But is impossible since dimV < oo.

So we can assume that A =n € Z>. I claim that the set
{vn-ok},0 < k < nyv,_op, = F¥(vy)

is a basis of V. Really it follows from Lemma 3 that vectors v,,_ox, 0 <
k < n are linearly independent and that they generate an sly(k)-
invariant subspace of V. Since V is irreducible vectors v,,_o,0 < k < n
span V. It is clear now that the representation p is equivalent to the
representation p,.

O

Definition 0.5. We define the Casimir element A € Ul(sly(k)) by
A:=ecf+ fe+ h?/2 € U(sly(k))
Problem 0.6. Show that

a) The representations p, are equivalent to ones constructed in the
end of the lecture 1.

b) A belongs to the center of the algebra U(sly(k)).
¢) pu(A) = 22 14y,

2
Lemma 0.7. Every exact sequence
{0} = V' -V — k— {0}

of finite-dimensional representations of sla(k) splits [that is V' is equiv-
alent to the direct sum V' @ kJ.
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Proof. a) Consider first the case when the representation V' is irre-
ducible. As follows from Theorem 1 it is sufficient to show that any
exact sequence of representations of sly(k) of the form

{0} -V, -V =k — {0}
splits. We consider separately the cases n = 0 and n # 0.

a’) Assume that n = 0. So we have an exact sequence
{0} - Vo =V =k — {0}

[T write Vj instead of k to distinguish between the subspace ( V) and
the quotient space ( k) of V.] Choose a a basis vy, vy of V' such that
v; € Vp. Then we can write elements of End(V') as 2 X 2 matrices. Let
p be the representation of sly(k) on V. Since py = 0 we obtain

oo = (o ) o e sttt

So plzy]) = [p(@).py)] = 0.¥z,y € sla(k) and therefore p(e) =
p(f) = p(h) =0. So r =0 and any linear section s : k — V defines a
splitting V' = Vj @ k representations of sly(k).

a”) If n # 0 consider the operator A := p(A) € End(V). It is clear
that the subspace V,, C V' is A-invariant and it follows from Problem
5 ¢) that the restriction of A on V,, is equal to @Idvn. On the
other hand A acts on the quotient space V/V,, = k as py(A) = 0.
Since w # 0 the space W :={v € V|Av = 0} C V is a non-zero
and V =V, @ W. As follows from Problem 5 b) the subspace W is
sly(k)-invariant. So V =1V, @ k.

Now we prove Lemma 7 by induction in dim (V). Consider an exact
sequence {0} — V' — V — k — {0} of representations of sly(k). We
know that it splits if the representation of sly(k) on V' is irreducible.
If V' is reducible choose an irreducible subrepresentation W C V' and
consider the exact sequence {0} — V'/W — V/W — k — {0}. By
the inductive assumptions it splits and there exist an sly(k)-equivariant
section s : k < V/W. Let V C V be the preimage of Im(s). We have
an exact sequence {0} — V' — V — k — {0}. Using once more
the inductive assumption we see that there exists an sly(k)-equivariant
section 5§ : k — V.

O

Theorem 0.8. Any finite-dimensional representation of the Lie alge-
bra sly(k) is completely reducible.
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Proof. We have to show that for any exact sequence
{0} = V' =V = V"= {0}
of representations of sla(k) there exists an sly(k)-equivariant section
5: V" — V of the projection p: V — V".
Consider the exact sequence
{0} N V/ ® V//V SV® V//V N V// ® V//V N {0}

Let kIdy» C V" ®@V" = End(V") be the subspace of scalar operators
and {0} —» V'@ V" — W — kldy» — {0} be the exact sequence
where W := ¢~ (kldy) CV@V"™ and ¢ : V@ V" = V'@ V" is
the map induced by the projection p : V. — V" = V/V'. As follows
from Lemma 7 there exists an sly(k)-equivariant section s : kldy» —
V @ V" of the projection q. Let s’ :=s®@ Idy» : V"' >V V"V @ V"
and

§:=Idy@Tryn)os V"=V
where

Tryn - V"™ @ V' = End(V") — k
is the trace map. I'll leave for you to prove that § : V” — V is an
sly(k)-equivariant section of the projection p : V — V7. O

Problem 0.9. a) Complete the proof of Theorem 8.

b) Extend the proof of Theorems 1 and 8 to the case when k is an
arbitrary field of characteristic zero.

c) Let p : sla(k) — End(V) be a finite-dimensional representation.
Show that the operators p(e), p(f) € End(V') are nilpotent and there
exists unique representation p: SK(2,k) — Aut(V') such that

5 (é Oll)) — exp(ap(e))
and ﬁ((é (1))) = exp(bp([))

From now on we assume that k is an arbitrary closed field of arbitrary
characteristic.

d) Let g be a Lie algebra, p : g — End(V) a finite-dimensional
irreducible representation and A € Endg(V') [ that is A is a linear

operator such that Ap(z) = p(xz)A,Vx € g]. Show that A = cldy for
some c € k.

e) Give an example of a reducible 2-dimensional representation p of
a Lie algebra g such that Endy(V') = kIdy .
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f) Let ZU(g) be the center of U(g). Show that for any irreducible
representation p : g — End(V') and any z € ZU(g) we have p(u) =
cp(2)1d, cp(2) € k.

g) Assume that char(k) = p >. Show that €?, fP, h* — h € Zsly(k).

h)* Show that any irreducible representations of sla(k) such that
p(e?) = p(fP) = p(h?» — h) = 0 is equivalent to a representation p,
from the problem 12 in the first lecture for unique n < p.

i) Show that any ezact sequences {0} — V; — V — V; — {0} of
representations of sla(k) splits if i+ j # p — 2.

J)* Construct an example of a non-split ezact sequences {0} — V; —
V-V, = {0} fori+j=p—2

k) The Lie algebra sly(k) is solvable if char(k) = 2. Where does the
proof of theorem of Lie fail?

l) Prove theorem 5.33 from the book of A.Kirillov.

From now on [at least for a while] we will follow the book of A.Kirillov
available on www.math.sunysb.edu/ kirillov/liegroups/. We start from
the chapter 5.3 [page 75]. A couple of remarks. When written

a) complex read an algebraically closed field k of characterisitc zero.

b) real read a field k of characterisitc zero such that k is the closure
of k.

¢) complezification of a k-Lie algebra g read the k-Lie algebra g;, ® k.
An explanation [the proof of Proposition 5.31]. One should say

We claim that W is stable under the action of any h € g’;

(5.10) ho* = A(h)v* + 32, 4 ar(h)v' and moreover if A(adi(h) =
0,Vj > 0 then ho* = A(R)v*,VE >0

The proof is by induction in k.



