
In this lecture we describe finite-dimensional representations of the
Lie algebra sl2(k) in the case when char(k) = 0 and k is algebraically
closed.

The algebra sl2(k) has a basis e, f, h such that

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

For any n we denote by Vn the n + 1-dimensional space with a basis
vn−2k, 0 ≤ k ≤ n and denote by ρn : sl2(k) → End(Vn) the linear map
such that

ρn(h)vn−2k = (n − 2k)vn−2k, ρn(f)vn−2k = vn−2k−2,

ρn(e)vn−2k = k(n − k + 1)vn−2k+2

Theorem 0.1. ρn is an irreducible representation of the Lie algebra
sl2(k). Moreover any irreducible representation of sl2(k) is equivalent
to ρn for some n ≥ 0.

Remark 0.2. V0 = k and ρ0 ≡ 0

Proof. I leave for you to check that ρn is a representation of Lie algebra
sl2(k). To prove the irreduciblity of ρn we have to show that any
invariant non-zero subspace W ⊂ V is equal to V . Choose a non-zero
ρn(h)-eigenvector w ∈ W . Since all eigenvalues of the operator ρn(h)
are distinct we have w = cvλ−2k for some k, 0 ≤ k ≤ n and some
non-zero c ∈ k. But then vectors ρn(f)aw, ρn(e)

bw ∈ W span V .

Let ρ : sl2(k) → End(V ) be an irreducible finite-dimensional repre-
sentation of sl2(k). We write E = ρ(e), F = ρ(f), H = ρ(h). For any
λ ∈ k we define

V [λ] := {v ∈ V |Hv = λ}

Lemma 0.3. EV [λ] ⊂ V [λ + 2], FV [λ] ⊂ V [λ − 2]

Proof. If v ∈ V [λ] we have HEv = [H, E]v + EHv = 2Ev + Eλv =
(λ + 2)EV . Analogous arguments show that HFv = (λ − 2)FV . �

Since V is finite-dimensional and char(k) = 0 there exists λ ∈ k
such that V [λ] 6= {0} and V [λ + 2] = {0}. Choose a non-zero vector
vλ ∈ V [λ]. Since V [λ + 2] = {0} we have Evλ = {0}. For any k ≥ 0
define vλ−2k := F k(vλ).

Lemma 0.4.

Hvλ−2k = (λ − 2)k, Fvλ−2k = vλ−2k−2, Evλ−2k = k(λ − k + 1)vλ−2k+2
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Proof. The first equality follows from Lemma 2, the second from the
definition of vectors vλ−2k. We prove the equality

(⋆k) Evλ−2k = k(λ − k + 1)vλ−2k+2

by induction in k. By the definition of vλ the equality (⋆0) is true.
Assume that Evλ−2k+2 = (λ − k)(k − 1)vλ−2k+4 the equality (⋆k−1) is
true. Then we have

Evλ−2k = EFvλ−2k+2 = [E, F ]vλ−2k+2 + FEvλ−2k+2 =

Hvλ−2k+2 + F (λ − k)(k − 1)vλ−2k+4 =

(λ − 2k + 2)vλ−2k+2 + (λ − k)(k − 1)Fvλ−2k+4 =

k[(λ − 2k + 2) + (λ − k)(k − 1)]vλ−2k+2 = k(λ − k + 1)vλ−2k+2

�

Since V is finite-dimensional and [by Lemma 2] F kvλ ∈ V [λ − 2k]
there exists n ≥ 0 such that F nvλ 6= {0} but F n+1vλ = {0}.

I claim that λ ∈ Z≥0. Really if λ /∈ Z≥0 then (λ− k + 1)k 6= 0 for all
k > 0. From this we deduce by induction in k that vn−2k 6= 0, ∀k ≥ 0.
But is impossible since dimV < ∞.

So we can assume that λ = n ∈ Z≥0. I claim that the set

{vn−2k}, 0 ≤ k ≤ n, vn−2k := F k(vλ)

is a basis of V . Really it follows from Lemma 3 that vectors vn−2k, 0 ≤
k ≤ n are linearly independent and that they generate an sl2(k)-
invariant subspace of V . Since V is irreducible vectors vn−2k, 0 ≤ k ≤ n
span V . It is clear now that the representation ρ is equivalent to the
representation ρn.

�

Definition 0.5. We define the Casimir element ∆ ∈ U(sl2(k)) by
∆ := ef + fe + h2/2 ∈ U(sl2(k))

Problem 0.6. Show that

a) The representations ρn are equivalent to ones constructed in the
end of the lecture 1.

b) ∆ belongs to the center of the algebra U(sl2(k)).

c) ρn(∆) = n(n+2)
2

IdVn

Lemma 0.7. Every exact sequence

{0} → V ′ → V → k → {0}

of finite-dimensional representations of sl2(k) splits [that is V is equiv-
alent to the direct sum V ′ ⊕ k].
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Proof. a) Consider first the case when the representation V ′ is irre-
ducible. As follows from Theorem 1 it is sufficient to show that any
exact sequence of representations of sl2(k) of the form

{0} → Vn → V → k → {0}

splits. We consider separately the cases n = 0 and n 6= 0.

a’) Assume that n = 0. So we have an exact sequence

{0} → V0 → V → k → {0}

[I write V0 instead of k to distinguish between the subspace ( V0) and
the quotient space ( k ) of V .] Choose a a basis v1, v2 of V such that
v1 ∈ V0. Then we can write elements of End(V ) as 2× 2 matrices. Let
ρ be the representation of sl2(k) on V . Since ρ0 ≡ 0 we obtain

ρ(x) =

(

0 a(x)
0 0

)

, x ∈ sl2(k)

So ρ([x, y]) = [ρ(x), ρ(y)] = 0, ∀x, y ∈ sl2(k) and therefore ρ(e) =
ρ(f) = ρ(h) = 0. So r ≡ 0 and any linear section s : k → V defines a
splitting V = V0 ⊕ k representations of sl2(k).

a”) If n 6= 0 consider the operator A := ρ(∆) ∈ End(V ). It is clear
that the subspace Vn ⊂ V is A-invariant and it follows from Problem

5 c) that the restriction of A on Vn is equal to n(n+2)
2

IdVn
. On the

other hand A acts on the quotient space V/Vn = k as ρ0(∆) = 0.

Since n(n+2)
2

6= 0 the space W := {v ∈ V |Av = 0} ⊂ V is a non-zero
and V = Vn ⊕ W . As follows from Problem 5 b) the subspace W is
sl2(k)-invariant. So V = Vn ⊕ k.

Now we prove Lemma 7 by induction in dim(V ). Consider an exact
sequence {0} → V ′ → V → k → {0} of representations of sl2(k). We
know that it splits if the representation of sl2(k) on V ′ is irreducible.
If V ′ is reducible choose an irreducible subrepresentation W ⊂ V ′ and
consider the exact sequence {0} → V ′/W → V/W → k → {0}. By
the inductive assumptions it splits and there exist an sl2(k)-equivariant
section s : k →֒ V/W . Let Ṽ ⊂ V be the preimage of Im(s). We have

an exact sequence {0} → V ′ → Ṽ → k → {0}. Using once more
the inductive assumption we see that there exists an sl2(k)-equivariant
section s̃ : k →֒ V .

�

Theorem 0.8. Any finite-dimensional representation of the Lie alge-
bra sl2(k) is completely reducible.
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Proof. We have to show that for any exact sequence

{0} → V ′ → V → V ′′ → {0}

of representations of sl2(k) there exists an sl2(k)-equivariant section
s̃ : V ′′ → V of the projection p : V → V ′′.

Consider the exact sequence

{0} → V ′ ⊗ V ′′∨ → V ⊗ V ′′∨ → V ′′ ⊗ V ′′∨ → {0}

Let kIdV ′′ ⊂ V ′′⊗V ′′∨ = End(V ′′) be the subspace of scalar operators
and {0} → V ′ ⊗ V ′′∨ → W → kIdV ′′ → {0} be the exact sequence
where W := q−1(kIdV ′′) ⊂ V ⊗ V ′′∨ and q : V ⊗ V ′′∨ → V ′′ ⊗ V ′′∨ is
the map induced by the projection p : V → V ′′ = V/V ′. As follows
from Lemma 7 there exists an sl2(k)-equivariant section s : kIdV ′′ →֒
V ⊗ V ′′∨ of the projection q. Let s′ := s⊗ IdV ′′ : V ′′ →֒ V ⊗ V ′′∨ ⊗ V ′′

and
s̃ := (IdV ⊗ TrV ′′) ◦ s′ : V ′′ → V

where
TrV ′′ : V ′′∨ ⊗ V ′ = End(V ′′) → k

is the trace map. I’ll leave for you to prove that s̃ : V ′′ → V is an
sl2(k)-equivariant section of the projection p : V → V ′′. �

Problem 0.9. a) Complete the proof of Theorem 8.

b) Extend the proof of Theorems 1 and 8 to the case when k is an
arbitrary field of characteristic zero.

c) Let ρ : sl2(k) → End(V ) be a finite-dimensional representation.
Show that the operators ρ(e), ρ(f) ∈ End(V ) are nilpotent and there
exists unique representation ρ̃ : SK(2, k) → Aut(V ) such that

ρ̃(

(

1 a
0 1

)

) = exp(aρ(e))

and

ρ̃(

(

1 0
b 1

)

) = exp(bρ(f))

From now on we assume that k is an arbitrary closed field of arbitrary
characteristic.

d) Let g be a Lie algebra, ρ : g → End(V ) a finite-dimensional
irreducible representation and A ∈ Endg(V ) [ that is A is a linear
operator such that Aρ(x) = ρ(x)A, ∀x ∈ g]. Show that A = cIdV for
some c ∈ k.

e) Give an example of a reducible 2-dimensional representation ρ of
a Lie algebra g such that Endg(V ) = kIdV .
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f) Let ZU(g) be the center of U(g). Show that for any irreducible
representation ρ : g → End(V ) and any z ∈ ZU(g) we have ρ(u) =
cρ(z)Id, cρ(z) ∈ k.

g) Assume that char(k) = p >. Show that ep, f p, hp − h ∈ Zsl2(k).

h)⋆ Show that any irreducible representations of sl2(k) such that
ρ(ep) = ρ(f p) = ρ(hp − h) = 0 is equivalent to a representation ρn

from the problem 12 in the first lecture for unique n < p.

i) Show that any exact sequences {0} → Vi → V → Vj → {0} of
representations of sl2(k) splits if i + j 6= p − 2.

j)⋆ Construct an example of a non-split exact sequences {0} → Vi →
V → Vj → {0} for i + j = p − 2

k) The Lie algebra sl2(k) is solvable if char(k) = 2. Where does the
proof of theorem of Lie fail?

l) Prove theorem 5.33 from the book of A.Kirillov.

From now on [at least for a while] we will follow the book of A.Kirillov
available on www.math.sunysb.edu/ kirillov/liegroups/. We start from
the chapter 5.3 [page 75]. A couple of remarks. When written

a) complex read an algebraically closed field k̄ of characterisitc zero.

b) real read a field k of characterisitc zero such that k̄ is the closure
of k.

c) complexification of a k-Lie algebra g read the k̄-Lie algebra gk ⊗ k̄.

An explanation [the proof of Proposition 5.31]. One should say

We claim that W is stable under the action of any h ∈ g
′;

(5.10) hvk = λ(h)vk +
∑

l<k akl(h)vl and moreover if λ(adj
x(h) =

0, ∀j > 0 then hvk = λ(h)vk, ∀k ≥ 0

The proof is by induction in k.


