From now on we will always assume that k is a field of characteristic zero.

- **Definition 0.1.** a) A grading on a vector space V is a choice of subspaces $V^n \subset V, 0 \leq n < \infty$ such that $V = \bigoplus_{n=0}^{\infty} V^n$. In this case we say that elements of V^n are homogeneous elements of degree n. If $v \in V$ is homogeneous denote by $|v| \in \mathbb{N}$ the number such that $v \in V^{|v|}$. We say that a subspace $W \subset V$ is graded if $W = \bigoplus_{n=0}^{\infty} W^n$ where $W^n := W \cap V^n$. In this case the quotient space $V/W = \bigoplus_{n=0}^{\infty} V^n/W^n$ is also graded.
- b) For a graded vector space $V = \bigoplus_{n=0}^{\infty} V^n$ we denote by \hat{V} the completion $\hat{V} = \prod_{n=0}^{\infty} V^n$. In other words elements of \hat{V} are sequences $\hat{v} = (v_0, v_1, ..., v_n, ...), v_n \in V^n$.
- c) We consider the topology on \hat{V} such for any $\hat{v} \in \hat{V}$ the sets $U_r(\hat{v}) := \hat{v} + \prod_{n=r}^{\infty} V^n$ constitute the fundamental set of open neighborhoods of \hat{v} . It is easy to see that V is dense in \hat{V} and that the operations of the addition and the scalar multiplication on V extend to a continuous operations on \hat{V} . [Please check]
- d) We say that a Lie algebra \mathfrak{g} is graded if \mathfrak{g} is graded as a vector space [so $\mathfrak{g} = \bigoplus_{n=1}^{\infty} \mathfrak{g}^n$], $\mathfrak{g}_0 = \{0\}$ and $[\mathfrak{g}^n, \mathfrak{g}^m] \subset \mathfrak{g}^{m+n}, \forall m, n > 0$. It is easy to see that for any graded Lie algebra \mathfrak{g} the operation [,]: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ extends to a continuous operation [,]: $\hat{\mathfrak{g}} \times \hat{\mathfrak{g}} \to \hat{\mathfrak{g}}$ which defines a Lie algebra structure on $\hat{\mathfrak{g}}$.
- e) We say that a algebra A is graded if A is graded as a vector space in such a way that $A^mA^n \subset A^{m+n}, \forall m, n > 0$. We say that an ideal $I \subset A$ if I is graded subspace of A. In this case the quotient algebra A/I is also graded. [Please check]
- f) If $V = \bigoplus_{n=0}^{\infty} V^n$ is a graded vector space we define a grading on T(V) in such a way for any homogeneous elements $v_1, ..., v_r \in V$ the tensor product $v_1 \otimes ... \otimes v_r \in T(V)$ is homogeneous and $|v_1 \otimes ... \otimes v_r| = |v_1| + ... + |v_r|$. [Please check that T(V) has a structure of a graded algebra].
- **Problem 0.2.** a) Let $V = \bigoplus_{n=0}^{\infty} V^n$ be a graded vector space, $W = \bigoplus_{n=0}^{\infty} W^n$ a graded subspace. Show that $V/W = \bigoplus_{n=0}^{\infty} V^n/W^n$ [so V/W is a graded vector space] and that for any homogeneous $v \in V W$ we have $|\bar{v}| = |v|$ where \bar{v} is the image of v in V/W.

- b) Let A be a graded algebra. Show that the multiplication $m: A \times A \to A, (a,b) \to ab$ extends to a continuous operation $m: \hat{A} \times \hat{A} \to \hat{A}$ which defines an algebra structure on \hat{A} .
- c) Let $\mathfrak{g} = \bigoplus_{n=1}^{\infty} \mathfrak{g}^n$ be a graded Lie algebra. Show that the kernel I of the natural homomorphism $T(\mathfrak{g}) \to U(\mathfrak{g})$ is a graded ideal of $T(\mathfrak{g})$ and that the imbedding $i : \mathfrak{g} \hookrightarrow U(\mathfrak{g})$ preserves the grading. Moreover the imbedding $i : \mathfrak{g} \hookrightarrow U(\mathfrak{g})$ extends to a continuous imbedding $\hat{i} : \hat{\mathfrak{g}} \hookrightarrow \hat{U}(\mathfrak{g})$.
- d) For any homogeneous $u', u'' \in U(\mathfrak{g})$ the product $u' \otimes u'' \in U(\mathfrak{g}) \otimes U(\mathfrak{g})$ is homogeneous and $|u' \otimes u''| = |u'| + |u''|$.
- e) Let A be a graded algebra, $\mathcal{M} \subset \hat{A}$ the set of elements of the form $\bar{u} = (0, u_1, ..., u_n, ...), u_n \in A^n$. Show that the maps

$$\exp: \mathcal{M} \to 1 + \mathcal{M}, \exp(x) := \sum_{n=0}^{\infty} x^n / n!$$

$$\ln : 1 + \mathcal{M} \to \mathcal{M}, \ln(1+x) := \sum_{n=1}^{\infty} (-1)^{n-1} x^n / n$$

are well defined and $\exp \circ \ln = Id_{1+\mathcal{M}}, \ln \circ \exp = Id_{\mathcal{M}}.$

f) Define an algebra homomorphism $U(\hat{\mathfrak{g}}) \to \hat{U}(\mathfrak{g})$ and check whether it is always an isomorphism.

Example Let $V = k[t], V^n = kt^n$. In this case \hat{V} is the ring k[[t]] of Taylor power series.

Let $\mathfrak{g} = \bigoplus_{n=1}^{\infty} \mathfrak{g}^n$ be a graded Lie algebra, $U(\mathfrak{g})^n \subset U(\mathfrak{g})$ the grading as in Problems 2 c). The isomorphism $U(\mathfrak{g}) \otimes U(\mathfrak{g}) = U(\mathfrak{g} \oplus \mathfrak{g})$ provides the definition of a grading $U(\mathfrak{g} \oplus \mathfrak{g})^n \subset U(\mathfrak{g} \oplus \mathfrak{g})$.

Lemma 0.3.
$$\Delta(U(\mathfrak{g})^n) \subset U(\mathfrak{g} \oplus \mathfrak{g})^n$$

Proof. Since the graded algebra $U(\mathfrak{g})$ is generated as a graded algebra by the graded subspace $\mathfrak{g} \subset U(\mathfrak{g})$ it is sufficient to check that $|\Delta(x)| = |x|$ for any homogeneous element $x \in \mathfrak{g}$. But this follows from the part d) of the previous problem and the equality $\Delta(x) = x \otimes 1 + 1 \otimes x$. \square

Let $\mathfrak{g} = \bigoplus_{n=1}^{\infty} \mathfrak{g}^n$ be a graded Lie algebra. As follows from the Lemma 3 the diagonal map $\Delta : U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$ extends to a continuous map $\hat{\Delta} : \hat{U}(\mathfrak{g}) \to \hat{U}(\mathfrak{g}) \otimes \hat{U}(\mathfrak{g})$.

Definition 0.4. We say that an element $\hat{u} \in \hat{U}(\mathfrak{g})$ is primitive if $\Delta(\hat{u}) = \hat{u} \otimes 1 + 1 \otimes \hat{u}$ and we say that \hat{u} is of a group if $\Delta(\hat{u}) = \hat{u} \otimes \hat{u}$.

Lemma 0.5. The set of primitive elements of $\hat{U}(\mathfrak{g})$ coincides with $\hat{\mathfrak{g}} \subset \hat{U}(\mathfrak{g})$

Proof. Let $\hat{u} = (t_0, t_1, ..., t_n, ...), t_n \in U(\mathfrak{g})^n(X)$ be a primitive element. Since

$$\hat{\Delta}(u_0, u_1, ..., u_n, ...) = (\Delta(u_0), \Delta(u_1), ..., \Delta(u_n), ...)$$

where [by Lemma 3] $\Delta(u_n) \in U(\mathfrak{g})^n(X)$ we have $\Delta(u_n) \in = u_n \otimes 1 + 1 \otimes u_n$. So \hat{u} is primitive iff all elements $u_n \in U(\mathfrak{g})$ are primitive. It follows from Theorem 5.4 in Serre that $u_n \in \mathfrak{g}^n(X)$. So $\hat{u} \in \hat{\mathfrak{g}}$.

Lemma 0.6. The map $\exp : \mathcal{M} \to 1 + \mathcal{M}$ defines a bijection between primitive elements in \mathcal{M} and group elements in $1 + \mathcal{M}$

Proof. a) Let $\hat{u} \in \mathcal{M}$ an element such that $\Delta(\hat{u}) = \hat{u} \otimes 1 + 1 \otimes \hat{u}$. We have to show that $\Delta(\exp(\hat{u})) = \exp(\hat{u}) \otimes \exp(\hat{u})$. Since Δ is an algebra isomorphism we have to show

$$\Delta(\exp(\hat{u})) = \exp(\Delta(\hat{u})) = \exp(\hat{u} \otimes 1 + 1 \otimes \hat{u})$$

Since the elements $\hat{u} \otimes 1, 1 \otimes \hat{u} \in \hat{U}(\mathfrak{g})$ commute we have

$$\exp(\hat{u} \otimes 1 + 1 \otimes \hat{u}) = \exp(\hat{u} \otimes 1) \exp(1 \otimes \hat{u}) = \exp(\hat{u}) \otimes \exp(\hat{u})$$

b) Let $\hat{u} \in 1 + \mathcal{M}$ a group element. We have to show that $\ln(\hat{u})$ is primitive. I leave for you to finish the proof.

Corollary 0.7. (Campbell-Hausdorff) For any $x, y \in \hat{\mathfrak{g}}$ there exists $z \in \hat{\mathfrak{g}}$ such $\exp(x) \exp(y) = \exp(z)$

Proof. By Lemma 6 we $\exp(x), \exp(y)$ are group elements. Since Δ is an algebra isomorphism we see that $\exp(x) \exp(y)$ is also a group element. So by Lemma 5 there exists $z \in \hat{\mathfrak{g}}$ such $\exp(x) \exp(y) = \exp(z)$.

To show that there exists a universal formula for z(x, y) we introduce the notion of a *free Lie algebra*.

Definition 0.8. a) Let X be a set.

- a) A free Lie algebra on X is a pair (i, L(X)) where L(X) is a Lie algebra and $i: X \to L(X)$ is a map such that for any Lie algebra $\mathfrak g$ and any map $j: X \to \mathfrak g$ there exists unique Lie algebra homomorphism $f: L(X) \to \mathfrak g$ such that $j = f \circ i$.
- b) Let V_X be the space with a basis $e_x, x \in X, V_X \hookrightarrow Ass_X := T(V_X)$ be the tensor algebra and $i: X \to Ass_X$ be the imbedding $i(x) := e_x, x \in X$. We denote by $\tilde{L}(X) \subset Ass_X$ the Lie subalgebra generated by $e_x, x \in X$. (That is $\tilde{L}(X) \subset Ass_X$ is the subspace spanned by the commutators of $e_x, x \in X$.)

Lemma 0.9. $(i, \tilde{L}(X))$ is a free Lie algebra on X.

Proof. We have to show that for any Lie algebra \mathfrak{g} and a map $j: X \to \mathfrak{g}$ there exists unique Lie algebra homomorphism $f: \tilde{L}(V) \to \mathfrak{g}$ such that $f(e_x) = j(x), \forall x \in X$. Since the Lie algebra $\tilde{L}(V)$ is generated by by $e_x, x \in X$ the uniqueness of f is obvious. To prove the existence of f consider the algebra homomorphism $\tilde{f}: Ass_X \to U(\mathfrak{g})$ such that $\tilde{f}(e_x) = j(x) \in \mathfrak{g} \subset U(\mathfrak{g})$ [see Lemma 4 in the Lecture 2]. It is clear that the restriction f of \tilde{f} on $\tilde{L}(X) \subset Ass_X$ is a Lie algebra homomorphism and $f(e_x) = j(x), \forall x \in X$.

By the definition of U(L(X)) the imbedding $L(X) \hookrightarrow Ass_X$ extends uniquely to an algebra homomorphism $\phi: U(L(X)) \to Ass_X$. On the other hand the linear map $V_X \to L(X) \subset U(L(X))$ extends uniquely to an algebra homomorphism $\psi: Ass_X \to U(L(X))$.

Lemma 0.10. Homomorphisms ϕ and ψ provide an isomorphism between associative algebras U(L(X)) and Ass_X .

Proof. It is sufficient to show that $\phi \circ \psi = Id_{Ass_X}, \psi \circ \phi = Id_{U(L(X))}$. By the construction $\phi \circ \psi : Ass_X \to Ass_X$ is an algebra homomorphism such that $\phi \circ \psi(e_x) = e_x, \forall x \in X$. Since the set $e_x, x \in X$ generates the algebra Ass_X we see that $\phi \circ \psi = Id_{Ass_X}$. The analogous arguments show that $\psi \circ \phi = Id_{U(L(X))}$

We will identify the algebras U(L(X)) and Ass_X . In particular we consider the diagonal map $\Delta: U(L(X)) \to U(L(X)) \otimes U(L(X))$ as a algebra homomorphism $\Delta: Ass_X \to Ass_X \otimes Ass_X$.

Definition 0.11. a) A Lie polynomial in two variables is a element $P \in L(X), X = (x, y)$. For any Lie algebra, a Lie polynomial P in two variables and elements $a, b \in \mathfrak{g}^1$ we define the evaluation $P(a, b) \in \mathfrak{g}$ as follows. By the definition of a free Lie algebra L(X) there exists unique homomorphism $f_{a,b}: L(X) \to \mathfrak{g}$ of graded Lie algebras such that $f_{a,b}(x) = a, f_{a,b}(y) = b$. For any Lie polynomial P in two variables we define $P(a,b) := f_{a,b}(P)$.

b) A formal Lie polynomial in two variables is a element $P \in \hat{L}(X), X = (x,y)$. For any graded Lie algebra \mathfrak{g} , a formal Lie polynomial P(x,y) in two variables and any elements $a,b \in \mathfrak{g}, |a| = |b| = 1$ we can define the evaluation $P(a,b) \in \hat{\mathfrak{g}}$ [please give a definition]

Theorem 0.12. There exists a a formal Lie polynomial Q(x,y) such that for any graded Lie algebra \mathfrak{g} and any homogeneous elements $a, b \in \mathfrak{g}$ we have $\exp(a) \exp(b) = \exp(z), z = Q(a,b)$

On can write explicitly a formula for Q(x, y). An algorithm for the computation of Q(x, y) is in the end of portion of the Serre's book which I posted.

Problem 0.13. Show that

- a) $Q(x,y) = x + y + 1/2[x,y] + 1/12[x,[x,y]] + 1/12[y,[y,x]] + \dots$ where we omit terms of degree bigger then three. [You can prove this equality without looking in the Serre's book].
 - b) $L^{1}(X)$ is the span of $e_{x}, x \in X$ and $L^{n}(X) = [L^{1}(X), L^{n-1}(X)].$
 - c) The center of L(X) is equal to $\{0\}$ if Card(X) > 1.
- d) Let \mathfrak{g} be a graded Lie algebra, $u', u'' \in \hat{U}(\mathfrak{g})$ group elements. Then $u'u'' \in \hat{U}(\mathfrak{g})$ is also a group element.
 - e) Let \mathfrak{g} be the graded Lie algebra with a basis x, y, z such that

$$[x, y] = z, [x, z] = [z, y] = 0, |x| = |y| = 1, |z| = 2$$

Using the part a) describe the subgroup $G \subset \hat{U}(\mathfrak{g})$ of group elements.

- $f)^{\star\star}$. Let X be a finite set, d = |X|. Show that $\dim L(X)^n = 1/n \sum_{m|n} \mu(m) d^{n/m}$ where the function μ is defined as follows
- (n) = 1 if n is a square-free positive integer with an even number of distinct prime factors.
- (n) = -1 if n is a square-free positive integer with an odd number of distinct prime factors.
 - (n) = 0 if n is not square-free.