
From now on we will always assume that k is a field of characteristic
zero.

Definition 0.1. a) A grading on a vector space V is a choice of sub-
spaces V n ⊂ V, 0 ≤ n <∞ such that V = ⊕∞

n=0V
n. In this case we say

that elements of V n are homogeneous elements of degree n. If v ∈ V
is homogeneous denote by |v| ∈ N the number such that v ∈ V |v|.
We say that a subspace W ⊂ V is graded if W = ⊕∞

n=0W
n where

W n := W ∩ V n. In this case the quotient space V/W = ⊕∞
n=0V

n/W n

is also graded.

b) For a graded vector space V = ⊕∞
n=0V

n we denote by V̂ the com-

pletion V̂ =
∏∞

n=0 V
n. In other words elements of V̂ are sequences

v̂ = (v0, v1, ..., vn, ...), vn ∈ V n.

c) We consider the topology on V̂ such for any v̂ ∈ V̂ the sets
Ur(v̂) := v̂ +

∏∞
n=r V

n constitute the fundamental set of open neigh-

borhoods of v̂. It is easy to see that V is dense in V̂ and that the
operations of the addition and the scalar multiplication on V extend to
a continuous operations on V̂ .[Please check]

d) We say that a Lie algebra g is graded if g is graded as a vector
space [ so g = ⊕∞

n=1g
n], g0 = {0} and [gn, gm] ⊂ g

m+n, ∀m,n > 0. It is
easy to see that for any graded Lie algebra g the operation [, ] : g×g → g

extends to a continuous operation [, ] : ĝ × ĝ → ĝ which defines a Lie
algebra structure on ĝ.

e) We say that a algebra A is graded if A is graded as a vector space
in such a way that AmAn ⊂ Am+n, ∀m,n > 0. We say that an ideal
I ⊂ A if I is graded subspace of A. In this case the quotient algebra
A/I is also graded. [Please check]

f) If V = ⊕∞
n=0V

n is a graded vector space we define a grading on
T (V ) in such a way for any homogeneous elements v1, ..., vr ∈ V the
tensor product v1 ⊗ ...⊗ vr ∈ T (V )is homogeneous and |v1 ⊗ ...⊗ vr| =
|v1| + ... + |vr|. [Please check that T (V ) has a structure of a graded
algebra].

Problem 0.2. a) Let V = ⊕∞
n=0V

n be a graded vector space, W =
⊕∞

n=0W
n a graded subspace. Show that V/W = ⊕∞

n=0V
n/W n [ so V/W

is a graded vector space] and that for any homogeneous v ∈ V −W we
have |v̄| = |v| where v̄ is the image of v in V/W .
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b) Let A be a graded algebra. Show that the multiplication m : A ×

A → A, (a, b) → ab extends to a continuous operation m : Â× Â → Â

which defines an algebra structure on Â.

c) Let g = ⊕∞
n=1g

n be a graded Lie algebra. Show that the kernel I
of the natural homomorphism T (g) → U(g) is a graded ideal of T (g)
and that the imbedding i : g →֒ U(g) preserves the grading. Moreover

the imbedding i : g →֒ U(g) extends to a continuous imbedding î : ĝ →֒

Û(g).

d) For any homogeneous u′, u′′ ∈ U(g) the product u′ ⊗ u′′ ∈ U(g) ⊗
U(g) is homogeneous and |u′ ⊗ u′′| = |u′| + |u′′|.

e) Let A be a graded algebra, M ⊂ Â the set of elements of the form
ū = (0, u1, ..., un, ..), un ∈ An. Show that the maps

exp : M → 1 + M, exp(x) :=

∞∑

n=0

xn/n!

ln : 1 + M → M, ln(1 + x) :=
∞∑

n=1

(−1)n−1xn/n

are well defined and exp ◦ ln = Id1+M, ln ◦ exp = IdM.

f) Define an algebra homomorphism U(ĝ) → Û(g) and check whether
it is always an isomorphism.

Example Let V = k[t], V n = ktn. In this case V̂ is the ring k[[t]] of
Taylor power series.

Let g = ⊕∞
n=1g

n be a graded Lie algebra, U(g)n ⊂ U(g) the grading
as in Problems 2 c). The isomorphism U(g)⊗U(g) = U(g⊕g) provides
the definition of a grading U(g ⊕ g)n ⊂ U(g ⊕ g).

Lemma 0.3. ∆(U(g)n) ⊂ U(g ⊕ g)n

Proof. Since the graded algebra U(g) is generated as a graded algebra
by the graded subspace g ⊂ U(g) it is sufficient to check that |∆(x)| =
|x| for any homogeneous element x ∈ g. But this follows from the part
d) of the previous problem and the equality ∆(x) = x⊗ 1 + 1⊗ x. �

Let g = ⊕∞
n=1g

n be a graded Lie algebra. As follows from the Lemma
3 the diagonal map ∆ : U(g) → U(g) ⊗ U(g) extends to a continuous

map ∆̂ : Û(g) → Û(g) ⊗ Û(g).

Definition 0.4. We say that an element û ∈ Û(g) is primitive if
∆(û) = û⊗ 1 + 1⊗ û and we say that û is of a group if ∆(û) = û⊗ û.
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Lemma 0.5. The set of primitive elements of Û(g) coincides with

ĝ ⊂ Û(g)

Proof. Let û = (t0, t1, ..., tn, ...), tn ∈ U(g)n(X) be a primitive element.
Since

∆̂(u0, u1, ..., un, ...) = (∆(u0),∆(u1), ...,∆(un), ...)

where [by Lemma 3] ∆(un) ∈ U(g)n(X) we have ∆(un) ∈= un ⊗ 1 +
1 ⊗ un. So û is primitive iff all elements un ∈ U(g) are primitive. It
follows from Theorem 5.4 in Serre that un ∈ g

n(X). So û ∈ ĝ. �

Lemma 0.6. The map exp : M → 1 + M defines a bijection between
primitive elements in M and group elements in 1 + M

Proof. a) Let û ∈ M an element such that ∆(û) = û⊗ 1 + 1 ⊗ û. We
have to show that ∆(exp(û)) = exp(û)⊗ exp(û). Since ∆ is an algebra
isomorphism we have to show

∆(exp(û)) = exp(∆(û)) = exp(û⊗ 1 + 1 ⊗ û)

Since the elements û⊗ 1, 1 ⊗ û ∈ Û(g) commute we have

exp(û⊗ 1 + 1 ⊗ û) = exp(û⊗ 1) exp(1 ⊗ û) = exp(û) ⊗ exp(û)

b) Let û ∈ 1 + M a group element. We have to show that ln(û) is
primitive. I leave for you to finish the proof. �

Corollary 0.7. (Campbell-Hausdorff) For any x, y ∈ ĝ there exists
z ∈ ĝ such exp(x) exp(y) = exp(z)

Proof. By Lemma 6 we exp(x), exp(y) are group elements. Since ∆
is an algebra isomorphism we see that exp(x) exp(y) is also a group
element. So by Lemma 5 there exists z ∈ ĝ such exp(x) exp(y) =
exp(z). �

To show that there exists a universal formula for z(x, y) we introduce
the notion of a free Lie algebra.

Definition 0.8. a) Let X be a set.

a) A free Lie algebra on X is a pair (i, L(X)) where L(X) is a Lie
algebra and i : X → L(X) is a map such that for any Lie algebra g

and any map j : X → g there exists unique Lie algebra homomorphism
f : L(X) → g such that j = f ◦ i.

b) Let VX be the space with a basis ex, x ∈ X, VX →֒ AssX := T (VX)
be the tensor algebra and i : X → AssX be the imbedding i(x) :=

ex, x ∈ X. We denote by L̃(X) ⊂ AssX the Lie subalgebra generated
by ex, x ∈ X. (That is L̃(X) ⊂ AssX is the subspace spanned by the
commutators of ex, x ∈ X.)
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Lemma 0.9. (i, L̃(X)) is a free Lie algebra on X.

Proof. We have to show that for any Lie algebra g and a map j : X → g

there exists unique Lie algebra homomorphism f : L̃(V ) → g such that

f(ex) = j(x), ∀x ∈ X. Since the Lie algebra L̃(V ) is generated by
by ex, x ∈ X the uniqueness of f is obvious. To prove the existence
of f consider the algebra homomorphism f̃ : AssX → U(g) such that

f̃(ex) = j(x) ∈ g ⊂ U(g) [ see Lemma 4 in the Lecture 2]. It is

clear that the restriction f of f̃ on L̃(X) ⊂ AssX is a Lie algebra
homomorphism and f(ex) = j(x), ∀x ∈ X. �

By the definition of U(L(X)) the imbedding L(X) →֒ AssX extends
uniquely to an algebra homomorphism φ : U(L(X)) → AssX . On the
other hand the linear map VX → L(X) ⊂ U(L(X)) extends uniquely
to an algebra homomorphism ψ : AssX → U(L(X)).

Lemma 0.10. Homomorphisms φ and ψ provide an isomorphism be-
tween associative algebras U(L(X)) and AssX .

Proof. It is sufficient to show that φ◦ψ = IdAssX
, ψ◦φ = IdU(L(X)). By

the construction φ ◦ ψ : AssX → AssX is an algebra homomorphism
such that φ◦ψ(ex) = ex, ∀x ∈ X. Since the set ex, x ∈ X generates the
algebra AssX we see that φ ◦ ψ = IdAssX

. The analogous arguments
show that ψ ◦ φ = IdU(L(X)) �

We will identify the algebras U(L(X)) and AssX . In particular we
consider the diagonal map ∆ : U(L(X)) → U(L(X)) ⊗ U(L(X)) as a
algebra homomorphism ∆ : AssX → AssX ⊗ AssX .

Definition 0.11. a) A Lie polynomial in two variables is a element
P ∈ L(X), X = (x, y). For any Lie algebra, a Lie polynomial P in two
variables and elements a, b ∈ g

1 we define the evaluation P (a, b) ∈ g

as follows. By the definition of a free Lie algebra L(X) there exists
unique homomorphism fa,b : L(X) → g of graded Lie algebras such
that fa,b(x) = a, fa,b(y) = b. For any Lie polynomial P in two variables
we define P (a, b) := fa,b(P ).

b) A formal Lie polynomial in two variables is a element P ∈ L̂(X), X =
(x, y). For any graded Lie algebra g, a formal Lie polynomial P (x, y)
in two variables and any elements a, b ∈ g, |a| = |b| = 1 we can define
the evaluation P (a, b) ∈ ĝ [ please give a definition]

Theorem 0.12. There exists a a formal Lie polynomial Q(x, y) such
that for any graded Lie algebra g and any homogeneous elements a, b ∈
g we have exp(a) exp(b) = exp(z), z = Q(a, b)
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Proof. Follows from Corollary 7 �

On can write explicitly a formula for Q(x, y).An algorithm for the
computation of Q(x, y) is in the end of portion of the Serre’s book
which I posted.

Problem 0.13. Show that

a) Q(x, y) = x + y + 1/2[x, y] + 1/12[x, [x, y]] + 1/12[y, [y, x]] + ...
where we omit terms of degree bigger then three. [ You can prove this
equality without looking in the Serre’s book].

b) L1(X) is the span of ex, x ∈ X and Ln(X) = [L1(X), Ln−1(X)].

c) The center of L(X) is equal to {0} if Card(X) > 1.

d) Let g be a graded Lie algebra, u′, u′′ ∈ Û(g) group elements. Then

u′u′′ ∈ Û(g) is also a group element.

e) Let g be the graded Lie algebra with a basis x, y, z such that

[x, y] = z, [x, z] = [z, y] = 0, |x| = |y| = 1, |z| = 2

Using the part a) describe the subgroup G ⊂ Û(g) of group elements.

f)⋆⋆. Let X be a finite set, d = |X|. Show that dimL(X)n =
1/n

∑
m|n µ(m)dn/m where the function µ is defined as follows

(n) = 1 if n is a square-free positive integer with an even number of
distinct prime factors.

(n) = -1 if n is a square-free positive integer with an odd number of
distinct prime factors.

(n) = 0 if n is not square-free.


