We start with some definitions and problems from linear algebra.
For simplicity I assume that char(k) # 2. Please notice that a number
of definitions are in the middle of homework assignments.

Definition 0.1. Let V,W be k-vector spaces.

a) We denote by VV := Hom(V, k) the dual vector space of linear
functionals X\ :'V — k.

b) For any linear map T : V — W we denote by TV : WY — V'V the
map given by TV(A)(v) := AT (v)),A € WY, v € V. We say that TV is
the map dual to T'.

c) Let B : VXV — k be a bilinear form. We say that Q) is non degen-
erate if for anyv' € V. —{0} there existsv” € V' such that B(v',v") # 0.

d) Let Q : V. — k be a quadratic form. We associate with @ a
symmetric bilinear form

Bg:V xV = k,Bg(v,w) = Q(v+w)—Qv) — Q(w)

We say that the quadratic form () is non-degenerate if the bilinear form
B is non-degenerate.

e) We say that a skew-symmetric bilinear form B -V x V — k is
symplectic if it is non-degenerate.

Problem 0.2. a) Construct a natural linear map V- — (VV)V and
show that this map is an isomorphism if V' is finite-dimensional.

b) If U, V,W are k-vector spaces and S : U — V.,V — W are linear
maps then (T o S)Y =S¥ oTV.

c) Let V' be a finite-dimensional vector space, B : V xV — k a
non-degenerate bilinear form. Show that for any v" € V — {0} there
exists v' € V' such that B(v',v") # 0.

d*) Is the assumption of the finite-dimensionality is important for
the validity of c).

Let k be a field, V', V" be k-vector spaces. For any k-vector space
W we denote by B(V',V";W) the k-vector space of bilinear forms
b: V' xV"—=W.

Definition 0.3. A tensor product of V' and V" is a pair (V,m) where

V' is a k-vector space and m : V' x V" — V a bilinear form such that

for any k-vector space W and a bilinear form b : V' x V" — W there

exists unique linear map T : V' — W such that b(v',v") = T(m(v',v")).
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Problem 0.4. Show that

a) In the case when a tensor product (V,m) of vector spaces V' and
V" exists it is well defined

[ you have to show that if (V1) is an another tensor product (V,m)
of V! and V" then there exists unique linear map S : V. — V such that

S((m(v',0") = m(v',v")
and moreover the map S is an isomorphism/.

Since the tensor product (V,m) of V' and V" is well defined we can
talk about the tensor product of vector spaces V' and V" which we
denote by V' @ V" [we did not yet show that the tensor product V'@ V"
ezists| and write v' ® v" € V' @ V" instead of m(v',v").

b) for any k-vector spaces V' and V" the tensor product V' @ V"

exists

[A hint: Use the existence of bases e}, e for vector spaces V', V" ]

c) If V!, V" are finite-dimensional k-vector spaces then
dim(V' @ V") = dim(V")dim(V")

d*) Let A be a commutative ring and M', M" be A-modules. Give
a definition of the tensor product M' @4 M" and prove the uniqueness
and the existence of the tensor product M' @4 M" .

Definition 0.5. a) Let k be a field. A k-Lie algebra is a pair (g, [,])
where g is a k-vector space and [,] : g X g — @ is a bilinear map such
that

[x,2] =0,z € g ( that is [,] is skew-symmetric) and

[z, v], z] + [[z, z], y] + [[, 2], ] = 0,z,y,2 € g ( the Jacobi identily).

We often say "a Lie algebra” instead of "a k-Lie algebra” and write
g instead of (g, [,])-

b) We define 3(g) := {x € g|[z,y] = 0,Yy € g. We say that 3(g) is
the center of g.

c) Let (g,[,]) be a Lie algebra and b C g be a subspace. We say that
b is a Lie subalgebra if [B',h"] € b,VR' h" € b and say that b is an
ideal if [z, h] € h,Vx € g,h € b.

d) Let b, g be Lie algebras. A linear map f : h — g is called a Lie
algebra homomorphism ( or simply a homomorphism,) if

[f (@), f()] = flz,9]), 2,y €D
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e) We say that a homomorphism f is an isomorphism if f is one-to-one
and onto.

Problem 0.6. a) Show that for any Lie algebra homomorphism f :
h — g the image Im(f) C g of a homomorphism f is a Lie subalgebra
and the kernel Ker(f) C b is an ideal.

b) Let A be an associative k-algebra. We define the map [,] : AXA —
A by [a,b] :== ab — ba,a,b € A. Show that (A,[,]) is a Lie algebra.

Definition 0.7. a) In the case when A = Endi(V) is the algebra
of endomorphisms of a k- vector space V' we denote the Lie algebra
(End(V),[.]) by gl(V).

b) In the case when V is finite-dimensional we denote by sl, (V') C
gl(V') the subspace of endomorphisms T € End(V') such that Tr(T) =
0.

c) If V.= k™ we write gl, (k) instead of gl(k™).

d) If Q : V — k is a non-degenerate quadratic form we denote by
sog C gl(V) of endomorphisms T € End(V') such that Bo(Tv',v") +
Bo(',Tv") =0,V v" € V.

e) If B:V xV — k is a symplectic form we denote by spg C gl(V)
of endomorphisms T € End(V) such that B(Tv',v") + B(v',Tv") =
0,Vo' 0" e V.

Problem 0.8. Show that y
a) sl (k) is an ideal of gl, (k).

b) Let g be the 3-dimensional k-vector space with the basis (f,e,h)
and [,] be the bilinear skew-symmetric map such that

le, /1= h, [h,e] = 2e,[h, ] = =2f
Prove that (g,],]) is a Lie algebra and that it is isomorphic to the Lie
algebra sly(k).

¢) Let so, == sog, where @Q,, is the quadratic form on'V = k™ given
by Q(x1, .oy Tn) i= Yo @2, Show that so, is the set of skew-symmetric
matrices.

d) Let spy, := spp, where B, is the symplectic form on V = k**
given by
Bn(xla ws Lons Y1, .-y y2n) = Z(ﬂfzywn - xz-l—nyl)
i=1

Describe the subset spp C glan (k).



e) Show that for sog C gl(V') is a Lie subalgebra for any quadratic
form Q.

f) Show that for spp C gl(V') is a Lie subalgebra for any symplectic
form B.

g) Find all the ideals and subalgebras of the Lie algebra sla(k)

h)* Classify all the Lie algebras of dimension < 3 over an algebraicly
closed field k.

[ that is construct a set of k-Lie algebras g;,1 <1 < N such that

the Lie algebras g;,g; are not isomorphic for i # j and

any k-Lie algebra of dimension < 3 is isomorphic to g; for some
i,1 <i<NJ.

i) Show that Lie algebras sos and sly are isomorphic iff [if and only
if| there exists i,j € k such that i* + j% = —1.

Definition 0.9. Let g be a k-Lie algebra. We denote by D(g) the set
of k-linear maps D : g — g such that D([x,y]) = [z, Dy] + [Dx,y] for
all z,y € g. We call elements of the set D(g) differentiations of g.
Problem 0.10. Show that
a) For any D', D" € D(g) the map
[D',D"]:g —g,[D',D"|(x) := D o D"(x) — D" o D'(x)
belongs to D(g).

b) The map (D', D") — [D', D"] defines a Lie algebra structure on
the vector space D(g). We call it the Lie algebra of differentiations of
g and denote by Dif f(g).

c) For any x € g the map
adg(x> : g - gvy - [%y]
belongs to Dif f(g) and the map adg : ) — Dif f(g) is a Lie algebra

homomorphism.

d) The map adg, ) is an isomorphism iff [=if and only if| char(k) #
2
Definition 0.11. Let g be a k-Lie algebra.

a) A representation of g on a k- vector space V' is a Lie algebra
homomorphism p : g — End(V').

b) A subspace W C V is p — invariant if p(x)w C W for all z €
g,weWw.



We often say “invariant” instead of "p -invariant”.
c) A representation p : g — End(V) is irreducible if for any p -
invariant subspace W C V' either W =V or W = {0}

Let V,, be the space of homogeneous polynomial P(u,v) of degree n
over the filed k. Consider a k-linear map p, : slo(k) — End(V},) given
by

pn(f)(P) = ud/0v(P),
pn(€)(P) = vd/0u(P)

pn(h)(P) = —ud/0u(P) + vd/ov(P)
Problem 0.12. Show that
a) the map p,, is a representation of the Lie algebra sly(k).
b) the representation p, is irreducible if char(k) = 0.

c*) If p := char(k) # 0 then the representation p, is irreducible if
and only if p > n.



