We start with some definitions and problems from linear algebra. For simplicity I assume that $char(k) \neq 2$. Please notice that a number of definitions are in the middle of homework assignments.

Definition 0.1. Let V, W be k-vector spaces.

- a) We denote by $V^{\vee} := Hom(V, k)$ the dual vector space of linear functionals $\lambda : V \to k$.
- b) For any linear map $T:V\to W$ we denote by $T^\vee:W^\vee\to V^\vee$ the map given by $T^\vee(\lambda)(v):=\lambda(T(v)), \lambda\in W^\vee, v\in V$. We say that T^\vee is the map dual to T.
- c) Let $B: V \times V \to k$ be a bilinear form. We say that Q is non degenerate if for any $v' \in V \{0\}$ there exists $v'' \in V$ such that $B(v', v'') \neq 0$.
- d) Let $Q:V\to k$ be a quadratic form. We associate with Q a symmetric bilinear form

$$B_O: V \times V \rightarrow k, B_O(v, w) := Q(v + w) - Q(v) - Q(w)$$

We say that the quadratic form Q is non-degenerate if the bilinear form B_Q is non-degenerate.

- e) We say that a skew-symmetric bilinear form $B: V \times V \to k$ is symplectic if it is non-degenerate.
- **Problem 0.2.** a) Construct a natural linear map $V \to (V^{\vee})^{\vee}$ and show that this map is an isomorphism if V is finite-dimensional.
- b) If U, V, W are k-vector spaces and $S: U \to V, V \to W$ are linear maps then $(T \circ S)^{\vee} = S^{\vee} \circ T^{\vee}$.
- c) Let V be a finite-dimensional vector space, $B: V \times V \to k$ a non-degenerate bilinear form. Show that for any $v'' \in V \{0\}$ there exists $v' \in V$ such that $B(v', v'') \neq 0$.
- d^*) Is the assumption of the finite-dimensionality is important for the validity of c).

Let k be a field, V', V'' be k-vector spaces. For any k-vector space W we denote by B(V', V''; W) the k-vector space of bilinear forms $b: V' \times V'' \to W$.

Definition 0.3. A tensor product of V' and V'' is a pair (V, m) where V is a k-vector space and $m: V' \times V'' \to V$ a bilinear form such that for any k-vector space W and a bilinear form $b: V' \times V'' \to W$ there exists unique linear map $T: V \to W$ such that $b(v', v'') \equiv T(m(v', v''))$.

Problem 0.4. Show that

a) In the case when a tensor product (V, m) of vector spaces V' and V'' exists it is well defined

[you have to show that if (\tilde{V}, \tilde{m}) is an another tensor product (V, m) of V' and V'' then there exists unique linear map $S: V \to \tilde{V}$ such that

$$S((m(v',v'')) \equiv \tilde{m}(v',v'')$$

and moreover the map S is an isomorphism].

Since the tensor product (V, m) of V' and V'' is well defined we can talk about the tensor product of vector spaces V' and V'' which we denote by $V' \otimes V''$ [we did not yet show that the tensor product $V' \otimes V''$ exists] and write $v' \otimes v'' \in V' \otimes V''$ instead of m(v', v'').

- b) for any k-vector spaces V' and V'' the tensor product $V' \otimes V''$ exists
 - [A hint: Use the existence of bases e'_i, e''_i for vector spaces V', V''.]
 - c) If V', V'' are finite-dimensional k-vector spaces then

$$dim(V' \otimes V'') = dim(V')dim(V'')$$

 d^*) Let A be a commutative ring and M', M'' be A-modules. Give a definition of the tensor product $M' \otimes_A M''$ and prove the uniqueness and the existence of the tensor product $M' \otimes_A M''$.

Definition 0.5. a) Let k be a field. A k-Lie algebra is a pair $(\mathfrak{g}, [,])$ where \mathfrak{g} is a k-vector space and $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ is a bilinear map such that

$$[x,x]=0, x\in\mathfrak{g}$$
 (that is [,] is skew-symmetric) and $[[x,y],z]+[[z,x],y]+[[y,z],x]=0, x,y,z\in\mathfrak{g}$ (the Jacobi identity).

We often say "a Lie algebra" instead of "a k-Lie algebra" and write \mathfrak{g} instead of $(\mathfrak{g}, [,])$.

- b) We define $\mathfrak{z}(\mathfrak{g}) := \{x \in \mathfrak{g} | [x,y] = 0, \forall y \in \mathfrak{g}. \text{ We say that } \mathfrak{z}(\mathfrak{g}) \text{ is the center of } \mathfrak{g}.$
- c) Let $(\mathfrak{g}, [,])$ be a Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ be a subspace. We say that \mathfrak{h} is a Lie subalgebra if $[h', h''] \in \mathfrak{h}, \forall h', h'' \in \mathfrak{h}$ and say that \mathfrak{h} is an ideal if $[x, h] \in \mathfrak{h}, \forall x \in \mathfrak{g}, h \in \mathfrak{h}$.
- d) Let $\mathfrak{h}, \mathfrak{g}$ be Lie algebras. A linear map $f : \mathfrak{h} \to \mathfrak{g}$ is called a Lie algebra homomorphism (or simply a homomorphism) if

$$[f(x), f(y)] = f([x, y]), x, y \in \mathfrak{h}.$$

e) We say that a homomorphism f is an isomorphism if f is one-to-one and onto.

Problem 0.6. a) Show that for any Lie algebra homomorphism $f: \mathfrak{h} \to \mathfrak{g}$ the image $Im(f) \subset \mathfrak{g}$ of a homomorphism f is a Lie subalgebra and the kernel $Ker(f) \subset \mathfrak{h}$ is an ideal.

- b) Let A be an associative k-algebra. We define the map $[,]: A \times A \rightarrow A$ by [a,b] := ab ba, $a,b \in A$. Show that (A,[,]) is a Lie algebra.
- **Definition 0.7.** a) In the case when $A = End_k(V)$ is the algebra of endomorphisms of a k- vector space V we denote the Lie algebra (End(V), [,]) by gl(V).
- b) In the case when V is finite-dimensional we denote by $sl_n(V) \subset gl(V)$ the subspace of endomorphisms $T \in End(V)$ such that Tr(T) = 0.
 - c) If $V = k^n$ we write $gl_n(k)$ instead of $gl(k^n)$.
- d) If $Q: V \to k$ is a non-degenerate quadratic form we denote by $so_Q \subset gl(V)$ of endomorphisms $T \in End(V)$ such that $B_Q(Tv', v'') + B_Q(v', Tv'') = 0, \forall v', v'' \in V$.
- e) If $B: V \times V \to k$ is a symplectic form we denote by $sp_B \subset gl(V)$ of endomorphisms $T \in End(V)$ such that $B(Tv', v'') + B(v', Tv'') = 0, \forall v', v'' \in V$.

Problem 0.8. Show that y

- a) $sl_n(k)$ is an ideal of $gl_n(k)$.
- b) Let \mathfrak{g} be the 3-dimensional k-vector space with the basis (f, e, h) and [,] be the bilinear skew-symmetric map such that

$$[e, f] = h, [h, e] = 2e, [h, f] = -2f$$

Prove that $(\mathfrak{g},[,])$ is a Lie algebra and that it is isomorphic to the Lie algebra $sl_2(k)$.

- c) Let $so_n := so_{Q_n}$ where Q_n is the quadratic form on $V = k^n$ given by $Q(x_1, ..., x_n) := \sum_{i=1}^n x_i^2$. Show that so_n is the set of skew-symmetric matrices.
- d) Let $sp_{2n} := sp_{B_n}$ where B_n is the symplectic form on $V = k^{2n}$ given by

$$B_n(x_1, ..., x_{2n}; y_1, ..., y_{2n}) := \sum_{i=1}^n (x_i y_{i+n} - x_{i+n} y_i)$$

Describe the subset $sp_B \subset gl_{2n}(k)$.

- e) Show that for $so_Q \subset gl(V)$ is a Lie subalgebra for any quadratic form Q.
- f) Show that for $sp_B \subset gl(V)$ is a Lie subalgebra for any symplectic form B.
 - g) Find all the ideals and subalgebras of the Lie algebra $sl_2(k)$
- h)* Classify all the Lie algebras of dimension ≤ 3 over an algebraicly closed field k.

[that is construct a set of k-Lie algebras \mathfrak{g}_i , $1 \leq i \leq N$ such that the Lie algebras \mathfrak{g}_i , \mathfrak{g}_j are not isomorphic for $i \neq j$ and any k-Lie algebra of dimension ≤ 3 is isomorphic to \mathfrak{g}_i for some $i, 1 \leq i \leq N$].

i) Show that Lie algebras so₃ and sl₂ are isomorphic iff [if and only if] there exists $i, j \in k$ such that $i^2 + j^2 = -1$.

Definition 0.9. Let \mathfrak{g} be a k-Lie algebra. We denote by $\mathcal{D}(\mathfrak{g})$ the set of k-linear maps $D: \mathfrak{g} \to \mathfrak{g}$ such that D([x,y]) = [x,Dy] + [Dx,y] for all $x,y \in \mathfrak{g}$. We call elements of the set $\mathcal{D}(\mathfrak{g})$ differentiations of \mathfrak{g} .

Problem 0.10. Show that

a) For any $D', D'' \in \mathcal{D}(\mathfrak{g})$ the map

$$[D', D'']: \mathfrak{g} \to \mathfrak{g}, [D', D''](x) := D' \circ D''(x) - D'' \circ D'(x)$$

belongs to $\mathcal{D}(\mathfrak{g})$.

- b) The map $(D', D'') \to [D', D'']$ defines a Lie algebra structure on the vector space $\mathcal{D}(\mathfrak{g})$. We call it the Lie algebra of differentiations of \mathfrak{g} and denote by $Diff(\mathfrak{g})$.
 - c) For any $x \in \mathfrak{g}$ the map

$$ad_{\mathfrak{g}}(x): \mathfrak{g} \to \mathfrak{g}, y \to [x, y]$$

belongs to $Diff(\mathfrak{g})$ and the map $ad_{\mathfrak{g}}:\mathfrak{h}\to Diff(\mathfrak{g})$ is a Lie algebra homomorphism.

d) The map $ad_{sl_2(k)}$ is an isomorphism iff [=if and only if] $char(k) \neq 2$

Definition 0.11. Let \mathfrak{g} be a k-Lie algebra.

- a) A representation of \mathfrak{g} on a k-vector space V is a Lie algebra homomorphism $\rho: \mathfrak{g} \to End(V)$.
- b) A subspace $W \subset V$ is $\rho invariant$ if $\rho(x)w \subset W$ for all $x \in \mathfrak{g}, w \in W$.

We often say "invariant" instead of " ρ -invariant".

c) A representation $\rho: \mathfrak{g} \to End(V)$ is irreducible if for any ρ -invariant subspace $W \subset V$ either W = V or $W = \{0\}$

Let V_n be the space of homogeneous polynomial P(u,v) of degree n over the filed k. Consider a k-linear map $\rho_n: sl_2(k) \to End(V_n)$ given by

$$\rho_n(f)(P) = u\partial/\partial v(P),$$

$$\rho_n(e)(P) = v\partial/\partial u(P)$$

$$\rho_n(h)(P) = -u\partial/\partial u(P) + v\partial/\partial v(P)$$

Problem 0.12. Show that

- a) the map ρ_n is a representation of the Lie algebra $sl_2(k)$.
- b) the representation ρ_n is irreducible if char(k) = 0.
- c^*) If $p := char(k) \neq 0$ then the representation ρ_n is irreducible if and only if p > n.