
We start with some definitions and problems from linear algebra.
For simplicity I assume that char(k) 6= 2. Please notice that a number
of definitions are in the middle of homework assignments.

Definition 0.1. Let V, W be k-vector spaces.

a) We denote by V ∨ := Hom(V, k) the dual vector space of linear
functionals λ : V → k.

b) For any linear map T : V → W we denote by T∨ : W∨ → V ∨ the
map given by T∨(λ)(v) := λ(T (v)), λ ∈ W∨, v ∈ V . We say that T∨ is
the map dual to T .

c) Let B : V ×V → k be a bilinear form. We say that Q is non degen-
erate if for any v′ ∈ V −{0} there exists v′′ ∈ V such that B(v′, v′′) 6= 0.

d) Let Q : V → k be a quadratic form. We associate with Q a
symmetric bilinear form

BQ : V × V → k, BQ(v, w) := Q(v + w) − Q(v) − Q(w)

We say that the quadratic form Q is non-degenerate if the bilinear form
BQ is non-degenerate.

e) We say that a skew-symmetric bilinear form B : V × V → k is
symplectic if it is non-degenerate.

Problem 0.2. a) Construct a natural linear map V → (V ∨)∨ and
show that this map is an isomorphism if V is finite-dimensional.

b) If U, V, W are k-vector spaces and S : U → V, V → W are linear
maps then (T ◦ S)∨ = S∨ ◦ T∨.

c) Let V be a finite-dimensional vector space, B : V × V → k a
non-degenerate bilinear form. Show that for any v′′ ∈ V − {0} there
exists v′ ∈ V such that B(v′, v′′) 6= 0.

d⋆) Is the assumption of the finite-dimensionality is important for
the validity of c).

Let k be a field, V ′, V ′′ be k-vector spaces. For any k-vector space
W we denote by B(V ′, V ′′; W ) the k-vector space of bilinear forms
b : V ′ × V ′′ → W .

Definition 0.3. A tensor product of V ′ and V ′′ is a pair (V, m) where
V is a k-vector space and m : V ′ × V ′′ → V a bilinear form such that
for any k-vector space W and a bilinear form b : V ′ × V ′′ → W there
exists unique linear map T : V → W such that b(v′, v′′) ≡ T (m(v′, v′′)).
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Problem 0.4. Show that

a) In the case when a tensor product (V, m) of vector spaces V ′ and
V ′′ exists it is well defined

[ you have to show that if (Ṽ , m̃) is an another tensor product (V, m)

of V ′ and V ′′ then there exists unique linear map S : V → Ṽ such that

S((m(v′, v′′)) ≡ m̃(v′, v′′)

and moreover the map S is an isomorphism].

Since the tensor product (V, m) of V ′ and V ′′ is well defined we can
talk about the tensor product of vector spaces V ′ and V ′′ which we
denote by V ′⊗V ′′ [ we did not yet show that the tensor product V ′⊗V ′′

exists] and write v′ ⊗ v′′ ∈ V ′ ⊗ V ′′ instead of m(v′, v′′).

b) for any k-vector spaces V ′ and V ′′ the tensor product V ′ ⊗ V ′′

exists

[A hint: Use the existence of bases e′i, e
′′

j for vector spaces V ′, V ′′.]

c) If V ′, V ′′ are finite-dimensional k-vector spaces then

dim(V ′ ⊗ V ′′) = dim(V ′)dim(V ′′)

d∗) Let A be a commutative ring and M ′, M ′′ be A-modules. Give
a definition of the tensor product M ′ ⊗A M ′′ and prove the uniqueness
and the existence of the tensor product M ′ ⊗A M ′′.

Definition 0.5. a) Let k be a field. A k-Lie algebra is a pair (g, [, ])
where g is a k-vector space and [, ] : g × g → g is a bilinear map such
that

[x, x] = 0, x ∈ g ( that is [,] is skew-symmetric) and
[[x, y], z] + [[z, x], y] + [[y, z], x] = 0, x, y, z ∈ g ( the Jacobi identity).

We often say ”a Lie algebra” instead of ”a k-Lie algebra” and write
g instead of (g, [, ]).

b) We define z(g) := {x ∈ g|[x, y] = 0, ∀y ∈ g. We say that z(g) is
the center of g.

c) Let (g, [, ]) be a Lie algebra and h ⊂ g be a subspace. We say that
h is a Lie subalgebra if [h′, h′′] ∈ h, ∀h′, h′′ ∈ h and say that h is an
ideal if [x, h] ∈ h, ∀x ∈ g, h ∈ h.

d) Let h, g be Lie algebras. A linear map f : h → g is called a Lie
algebra homomorphism ( or simply a homomorphism) if

[f(x), f(y)] = f([x, y]), x, y ∈ h.
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e) We say that a homomorphism f is an isomorphism if f is one-to-one
and onto.

Problem 0.6. a) Show that for any Lie algebra homomorphism f :
h → g the image Im(f) ⊂ g of a homomorphism f is a Lie subalgebra
and the kernel Ker(f) ⊂ h is an ideal.

b) Let A be an associative k-algebra. We define the map [, ] : A×A →
A by [a, b] := ab − ba, a, b ∈ A. Show that (A, [, ]) is a Lie algebra.

Definition 0.7. a) In the case when A = Endk(V ) is the algebra
of endomorphisms of a k- vector space V we denote the Lie algebra
(End(V ), [, ]) by gl(V ).

b) In the case when V is finite-dimensional we denote by sln(V ) ⊂
gl(V ) the subspace of endomorphisms T ∈ End(V ) such that Tr(T ) =
0.

c) If V = kn we write gln(k) instead of gl(kn).

d) If Q : V → k is a non-degenerate quadratic form we denote by
soQ ⊂ gl(V ) of endomorphisms T ∈ End(V ) such that BQ(Tv′, v′′) +
BQ(v′, T v′′) = 0, ∀v′, v′′ ∈ V .

e) If B : V × V → k is a symplectic form we denote by spB ⊂ gl(V )
of endomorphisms T ∈ End(V ) such that B(Tv′, v′′) + B(v′, T v′′) =
0, ∀v′, v′′ ∈ V .

Problem 0.8. Show that y

a) sln(k) is an ideal of gln(k).

b) Let g be the 3-dimensional k-vector space with the basis (f, e, h)
and [, ] be the bilinear skew-symmetric map such that

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

Prove that (g, [, ]) is a Lie algebra and that it is isomorphic to the Lie
algebra sl2(k).

c) Let son := soQn
where Qn is the quadratic form on V = kn given

by Q(x1, ..., xn) :=
∑n

i=1 x2
i . Show that son is the set of skew-symmetric

matrices.

d) Let sp2n := spBn
where Bn is the symplectic form on V = k2n

given by

Bn(x1, ..., x2n; y1, ..., y2n) :=
n∑

i=1

(xiyi+n − xi+nyi)

Describe the subset spB ⊂ gl2n(k).
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e) Show that for soQ ⊂ gl(V ) is a Lie subalgebra for any quadratic
form Q.

f) Show that for spB ⊂ gl(V ) is a Lie subalgebra for any symplectic
form B.

g) Find all the ideals and subalgebras of the Lie algebra sl2(k)

h)∗ Classify all the Lie algebras of dimension ≤ 3 over an algebraicly
closed field k.

[ that is construct a set of k-Lie algebras gi, 1 ≤ i ≤ N such that
the Lie algebras gi, gj are not isomorphic for i 6= j and
any k-Lie algebra of dimension ≤ 3 is isomorphic to gi for some

i, 1 ≤ i ≤ N ].

i) Show that Lie algebras so3 and sl2 are isomorphic iff [if and only
if ] there exists i, j ∈ k such that i2 + j2 = −1.

Definition 0.9. Let g be a k-Lie algebra. We denote by D(g) the set
of k-linear maps D : g → g such that D([x, y]) = [x, Dy] + [Dx, y] for
all x, y ∈ g. We call elements of the set D(g) differentiations of g.

Problem 0.10. Show that

a) For any D′, D′′ ∈ D(g) the map

[D′, D′′] : g → g, [D′, D′′](x) := D′ ◦ D′′(x) − D′′ ◦ D′(x)

belongs to D(g).

b) The map (D′, D′′) → [D′, D′′] defines a Lie algebra structure on
the vector space D(g). We call it the Lie algebra of differentiations of
g and denote by Diff(g).

c) For any x ∈ g the map

adg(x) : g → g, y → [x, y]

belongs to Diff(g) and the map adg : h → Diff(g) is a Lie algebra
homomorphism.

d) The map adsl2(k) is an isomorphism iff [=if and only if ] char(k) 6=
2

Definition 0.11. Let g be a k-Lie algebra.

a) A representation of g on a k- vector space V is a Lie algebra
homomorphism ρ : g → End(V ).

b) A subspace W ⊂ V is ρ − invariant if ρ(x)w ⊂ W for all x ∈
g, w ∈ W .
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We often say ”invariant” instead of ”ρ -invariant”.

c) A representation ρ : g → End(V ) is irreducible if for any ρ -
invariant subspace W ⊂ V either W = V or W = {0}

Let Vn be the space of homogeneous polynomial P (u, v) of degree n
over the filed k. Consider a k-linear map ρn : sl2(k) → End(Vn) given
by

ρn(f)(P ) = u∂/∂v(P ),

ρn(e)(P ) = v∂/∂u(P )

,
ρn(h)(P ) = −u∂/∂u(P ) + v∂/∂v(P )

Problem 0.12. Show that

a) the map ρn is a representation of the Lie algebra sl2(k).

b) the representation ρn is irreducible if char(k) = 0.

c⋆) If p := char(k) 6= 0 then the representation ρn is irreducible if
and only if p > n.


