Let R C E be a reduced root system, R = R* U R~ a polarization,
Y = {a;},7 € I the simple roots, C* C E the positive Weyl chamber,
W the Weyl group. You know that W is generated by simple reflections
si,1 € I which satisfy the relations [see the problem 7.11]

s?=e,(sis;)™ =e,i,j €1
Let W be the group generated by elements 3;,i € I and relations

~9 ~ o~ NN .o
5. =¢€,(58)" =ei,jel

It is clear that there exists unique group homomorphism p : W — W
such that p(s;) = s;,4 € I.

Theorem 0.1. The map p : W — W is an 1somorphism.

Proof. Since the group W is generated by s;,7 € I the homomorphism
p is surjective. So we have to show that Ker(p) = {e}. The proof will
use the following result from Topology.

Lemma 0.2. Let X C R? be a finite union of linear [or affine] sub-
spaces of dimension < d —2. Then m (R? — X) = {e}.

Let Z := Ugeg+ Lg, E° := E — Z be the set of regular elements of
E. For any pair § # ' € R" we define Yz := LgN Ly, write Y :=
Ug#g/Ygﬂ/ and define X := Uﬂﬂ/’ﬂ//Lﬂ N Lﬁ/ N Lg// where ﬂ, ﬂ,, ﬂ” € R*
run through all distinct triples. We write Y35 = Yz — (Ypg N X). It
is clear that Y — X is a disjoint union of Y.

Let v : [0,1] - E —Y be a continuous map [a curve] such that
f(0) € C, and f(1) € E°. Then we can define @, € W as follows.
Let 0 < a3 < --- < a, < 1 be points such that f(a;) € Z. Since
fla;) € Z =Y there exists unique 3; € R* such that f(a;) € Lg,. As
in Lemma 7.31 we obtain a sequence of simple roots «;,, ..., a; such
that

We define 1, := §, ...5;, € W.

Conversely given an elements @ € W and a represtnation [w] of
as a product @ = 3;,...5;, € W we define a curve y([0]) C E —Y as
the union of intervals connecting w,(t) with w,;1t,1 < r < r where
t € C" is a regular element. [Please check that v([w]) C E —Y]. It is
easy to see that w.a) = w.

Example.1) Assume that dim(FE) = 2 and - is a simple loop around
0 such that f(0) € C}. Then @, = (s;5;)™ =e.
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2) For an arbitrary root system choose a pair of distinct simple root
a;,a;; and consider a simple loop v in £ — Y around Yog_aj with the

beginning in C*. Then 0, = e.
Claim. If vy is a loop [f(0) = f(1)] then w, = e.
The Claim implies the Theorem.

Proof. Let @ € W be such that p(@) = e. Choose a represtnation [i]

[
of @ as a product w = §;,...5;, € W and consider the curve ~([@]).
Since p(w) = e it is a loop. Therefore w.(z)) = e. But Wy = w. O

Proof of the Claim. Let S! be the circle obtained from the interval
[0,1] by gluing together 0 and 1. We can consider v as a continuous
map f:S' — E—Y. By Lemma 2, m(E — X) = {e} and therefore
the loop 7 is contractible in £ — X . So there exists a continuous family
fa: S' — E—X of loops such that fo = f, fo(0) = fu(1) =tand f; =¢.
We can assume that there is a finite set A C (0,1),A={a; < ...an}
such that Im(f,) C E =Y fora € [0,1] — A and for any ¢,1 < ¢ < N
and f,(z) € E—Y,Va € [0,1],z # 1/2. For any ¢,1 < ¢ < N we
write vy := f,,(1/2) € Y. [Students who took topology please check
the validity of this claim].

Since v, € Y — X there exist unique pair 3, # 3; € R* such that
vy € Yp,p. For any ¢,1 < ¢ < N we choose b, € (ag,a441) and
define by = 0,by41 = 1. We define v, := f,, and w, := w,,. By
the construction wy = w and w; = e. So it is sufficient to show that
Wy = Wg4q for all ¢,0 < g < N.

The loop 7441 C X — Y is obtained from the e loop v, by crossing
V5,5 which is a linear subspace of codimension 2 [dim(Ys,g ) = r —2].
So we can think that v, consists of a curve 7" from ¢ to a point s near
Yjs,p, and a curve 7, from s to ¢ while the loop 741 is obtained from 7,
by insertion of a small loop 7 which starts in s and goes around Yy, g .
But it is easy to see [please check] that

~—1 ~ o~ ~ o~
Wy W41 = W, Dy -

/- . AN

Here 7' is a loop around Y, [as in the Example 2] where (o, o) =

wg(ﬁq, B,). Since we know [see Example 2)] that ., = e we see that
W=e U



