Let \mathfrak{g} be a reductive Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ the Cartan subalgebra, $k[\mathfrak{g}^{\vee}], k[\mathfrak{h}^{\vee}]$ the rings of polynomial functions on \mathfrak{h} and \mathfrak{h} and $k[\mathfrak{g}^{\vee}]^{\mathfrak{g}} \subset k[\mathfrak{g}^{\vee}], k[\mathfrak{g}^{\vee}]^W \subset k[\mathfrak{h}^{\vee}]$ the subrings of invariant polynomial functions. The Chevalley theorem sais that the restriction $k[\mathfrak{g}^{\vee}] \to k[\mathfrak{h}^{\vee}]$ induces an isomorphism $\tilde{r}: k[\mathfrak{g}^{\vee}]^{\mathfrak{g}} \to k[\mathfrak{h}^{\vee}]^W$. It is easy to prove the injectivity of r.

In the case when $\mathfrak{g} = gl_n$ we have to show that for any S_n -invariant polynomial function f on \mathfrak{h} there exists an ad-invariant polynomial function \tilde{f} on \mathfrak{g} such that $f = r(\tilde{f})$.

Let E, E' be the fields of fractions of the rings $k[\mathfrak{g}^{\vee}]^{\mathfrak{g}}$ and $k[\mathfrak{g}^{\vee}]^W$ in the case $\mathfrak{g} = gl_n$. The morphism \tilde{r} induces a field homomorphism $r: E \to E'$. I'll show that [in the case when $\mathfrak{g} = gl_n$] the homomorphism r is surjective. That is I'll will show that for any S_n -invariant polynomial function f on \mathfrak{h} there exists $\tilde{f} \in E$ such that $f = r(\tilde{f})$.

By the construction E is the field of conjugacy invariant rational functions on gl_n . We denote by $F \supset E$ the Galois extension corresponding to the polynomial $P_A(t) := det(A - tId) \in E[t]$. By the construction the roots $\lambda_i, 1 \le i \le n$ of the polynomial $P_A(t)$ are elements of the field F, $Gal(F/E) = S_n$ and $\sigma(\lambda_i) = \lambda_{\sigma(i)}, \sigma \in S_n, 1 \le i \le n$. If f is an S_n -invariant polynomial function on \mathfrak{h} then $\tilde{f} := f(\lambda_i) \in F$ is Gal(F/E)-invariant. So [by the Galois theory] it lies in E. It is clear that $f = r(\tilde{f})$.