
Lemma 0.1. a) Let S ⊂ T be a singular torus. There exists α ∈ X⋆

such that S = Ker0(α) and Lie(ZG(S)/Ru(ZG(S))) = Lie(ZG(T )) ⊕
kXα ⊕ kX−α where Xα, X−α ∈ G are weight vectors for α and −α
respectively.

b) The subgroups ZG(S) ⊂ G where S runs through the set of singular
subtori of T generate G.

Definition 0.2. a) Characters α ∈ X⋆ as in Lemma 1 are roots of G.

b) We denote by R = R(G, T ) ⊂ X⋆ the set of roots.

c) We define the action of the Weyl group W = NG(T )/T on X⋆ and
X⋆ by

(wx⋆)(t) := x(w−1t), (wx⋆)(a) := w(x⋆(a))

Lemma 0.3. For any α ∈ R there exists unique α∨ ∈ X⋆ such that
< α, α∨ >= 2 and

sαx = x− < x, α∨ > α, sαx∨ = x∨− < α, x∨ >, x ∈ X⋆, x∨ ∈ X⋆

Definition 0.4. a) Elements α∨ ∈ X⋆, α ∈ R are coroots of G.

b) A root datum is a quadruple Ψ = (X, R, X∨, R∨) where X, X∨

are finitely generated free abelian groups in duality <, >: X × X∨ →
Z, R ⊂ X, R∨ ⊂ X∨ finite subsets and an bijection R → R∨, α → α∨

such that < α, α∨ >= 2, α ∈ R and sα(R) = R, sα(R∨) = R∨ where

sαx = x− < x, α∨ > α, sαx∨ = x∨− < α, x∨ >, x ∈ X⋆, x∨ ∈ X⋆.

c) A root datum is reduced if for any α ∈ R, c ∈ R such that cα ∈ R
we have c = ±1.

d) We define W (Ψ) ⊂ Aut(X) as the group W is generated by
sα, α ∈ R.

e) A subset R+ ⊂ R is a system of positive roots if R = R+ ∪ −R+

and no nontrivial linear combination
∑

niαi, αi ∈ R+, ni ≥ 0 vanishes.

Lemma 0.5. a) For any reductive group G the quadruple Ψ = (X⋆, R, X⋆, R
∨)

is a reduced root datum and the group W is generated by sα, α ∈ R.

b) For any reduced root datum, system R+ ⊂ R of positive roots
and any α, β ∈ R, α 6= −β there exists w ∈ W such that such that
wα, wβ ∈ R+.

c) There exists a positive definite W -invariant form (, ) on X ⊗ R.
Using this form we identify X with X∨. It is clear that under this
identification we identify α∨ with 2(α, α)−1α
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d) For any x ∈ X such that (x, α) 6= 0 for all α ∈ R the set

R+(x) := {α ∈ R|(x, α) > 0}

is a system of positive roots.

Proof of a).Given w ∈ W := NG(T )/T consider the homomorphism

ŵ : T → T, t → ntn−1t−1, t ∈ T

where n ∈ NG(T )n is a representative of w. Then either

(i) ŵ is not surjective or

(ii) There map w − Id : X⋆
R
→ X⋆

R
is an isomorphism.

In the first case we replace G by ZG(S), S := Ker0(ŵ). In the second
case choose any α ∈ R(G, T ) and consider x := (w − Id)−1(α) ∈ X⋆

R
.

Then

(x, x) = (wx, wx) = (x + α, x + α) = (x, x) + 2(x, α) + (α, α)

So < x, α∨ >= −1 and therefore (sαw)x = x.�

Lemma 0.6. Let B ⊃ T be a Borel subgroup.

a) For any singular torus S ⊂ T there exists unique αS ∈ R(G, T )
such that S = Ker0(αS) and Lie(B ∩ZG(S)/Ru(ZG(S))) = T ⊕kXα.

b) The set R+(B) := {αS} where S runs through the set of singular
tori is a system of positive roots.

Proof of Lemma. a) We prove that for any root α either α ∈
R+(B) or −α ∈ R+(B) since B ∩ZG(S) is a Borel subgroup of ZG(S).

b) We choose a representation ρ : G → AutV and a vector v ∈ V
such that B = StG(v). Then the action of B of the line kv defines a
character x ∈ X⋆. One shows that < x, α∨ >> 0 for all α ∈ R+(B).�

Theorem 0.7. Let G be a connected reductive group. Then the in-
tersection Ṽ of unipotent radicals of Borel subgroups containing T is
finite.

Let V be the identity component of Ṽ . It is sufficient to prove the
V is a normal subgroup of G. For any root α we denote by Hα the
identity component of intersection H̃α of unipotent radicals of Borel
subgroups containing T with α ∈ R+(B).

Lemma 0.8. V is a normal subgroup of Hα.
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Proof of Lemma. Use Lemma 5 b) to show that Lie(Hα) =
Lie(V ) ⊕ kXα. Therefore dim(Hα, V ) = 1.

Proof of Theorem. Since G is generated by ZG(S) where S runs
through the set of singular tori and ZG(S) is generated by ZG(S) ∩ B
where B runs through Borel subgroups containing T the result follows
from Lemma.

Corollary 0.9. Let G be a connected reductive group. Then

a) For any subtorus S the centralizer ZG(S) is connected and reduc-
tive.

b) ZG(T ) = T .

c) Z(G) ⊂ T

Proof of Corollary. a)

Ru(ZG(S)) = ∩B⊃T ZG(S) ∩ Bu ⊂ ∩B⊃T Bu = Ru(G) = {e}

Lemma 0.10. a) For any α ∈ R there exists an isomorphism xα :
Ga → Xα where Xα ⊂ G is a closed subgroup such that

txα(a)t−1 = xα(α(t)a), t ∈ T, a ∈ k

b) For any nontrivial homomorphism x′

α : Ga → G such that

tx′

α(a)t−1 = x′

α(α(t)a), t ∈ T, a ∈ k

there exists c ∈ k⋆ such that x′

α(a) = xα(ca), a ∈ k.

c) Im(dxα) = Gα.

d) T and Xα, α ∈ R(G, T ) generate G.

Corollary 0.11. Roots of G are non-zero weights of the adjoint action
T → Aut(G).

Theorem 0.12. Let G be a connected semisimple group. Then

a) The subgroups Xα, α ∈ R(G, T ) generate G.

b) G = (G, G).

c) Any connected normal subgroup G1 ⊂ G is semisimple and there
exists a connected normal subgroup G2 ⊂ G such that (G1, G2 = {e}, G1∩
G2 is finite and G1G2 = G

Proof of Theorem. a) Consider the subgroup H ⊂ G generated
by Xα, α ∈ R(G, T ). As follows from Lemma 1 b) H ⊂ G is a normal
subgroup. Since R(H) ⊂ R)G) we see that H is semisimple. By
Lemma 1 b) the intersection ∩α∈R(G,T )Ker(α) lies in the center of G
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we see that this group is finite. Therefore (?) roots α ∈ R(G, T ) span
a subgroup of finite index in X and the subgroup α∨(Gm), α ∈ R(G, T )
span T . So T ⊂ H and [by the same Lemma 1 b) ] H = G.

b) Form the equality

txα(a)t−1xα(−a) = xα((α(t) − 1)(a))

it follows that Xα ∈ (G, G) for all α ∈ R(G, T ).

c) Let G1 ⊂ G be a connected normal subgroup and T1 ⊂ T a
maximal torus of T . Then

(i) using the equality as in b) you show that for any α ∈ R(G, T ) we
have α ∈ R1 := R(G1, T ) iff α(T1) 6= {1}. We define R2 = R − R1.

(ii) We show that for any α ∈ R1, β ∈ R2 the elements xα(a), xβ(b) ∈
G commute for all a, b ∈ k. Really consider

xb(a) := xβ(b)xα(a)x−1
β (b)

It is clear that xb(a) ∈ G1 and t1xb(a)t−1
1 = xb(α(t1)a) for all t1 ∈

T1. By Lemma 10 b) there exists a homomorphism f : G1 → Gm

of algebraic groups such that xb(a) = xα(f(b)a). Since there is no
nontrivial homomorphism f : G1 → Gm of algebraic groups we see that
xb(a) = xα(a). So the elements xα(a), xβ(b) ∈ G commute. Let G2 be
the subgroup of G generated by Xα, α ∈ R2. We see that (G1, G2) =
{e} and G = G1G2.


