Lemma 0.1. a) Let S C T be a singular torus. There exists a € X*
such that S = Ker®(«) and Lie(Zg(S)/Ru(Za(S))) = Lie(Za(T)) &
kX, ® kEX_, where X\, X_o € G are weight vectors for a and —a«
respectively.

b) The subgroups Zg(S) C G where S runs through the set of singular
subtori of T generate G.

Definition 0.2. a) Characters & € X* as in Lemma 1 are roots of G.
b) We denote by R = R(G,T) C X* the set of roots.
c¢) We define the action of the Weyl group W = Ng(T')/T on X* and
X, by
(wz*)(t) = x(w™'t), (wr,)(a) = w(z.(a))

Lemma 0.3. For any o € R there exists unique o € X, such that
<a,a >=2 and

St =x— < x,0" >, 8,0 =2 — < a,z¥ > X 2V X,

Definition 0.4. a) Elements oY € X, a € R are coroots of G.

b) A root datum is a quadruple ¥ = (X, R, XV, RY) where X, X"
are finitely generated free abelian groups in duality <, >: X x XV —
Z,R Cc X,RY C XV finite subsets and an bijection R — RY,a — oV
such that < o, ¥ >=2,a € R and s,(R) = R, so(R") = RY where

S50 =2— <z, 0" >, 8.0 =1 — <a,x¥ > v X2 e X,.

c¢) A root datum is reduced if for any o € R,c € R such that ca € R
we have ¢ = £1.

d) We define W(¥) C Aut(X) as the group W is generated by
Sa, 0 € R.

e) A subset RT C R is a system of positive roots if R = RT U —R*
and no nontrivial linear combination »_ n;a;, a; € RT,n; > 0 vanishes.

Lemma 0.5. a) For any reductive group G the quadruple ¥V = (X*, R, X, RY)
1s a reduced root datum and the group W is generated by s,,a € R.

b) For any reduced root datum, system RT™ C R of positive roots
and any o, € R,a # —f3 there exists w € W such that such that
wa,wf € RT.

c¢) There exists a positive definite W -invariant form (,) on X ® R.

Using this form we identify X with XV. It is clear that under this

identification we identify o with 2(a, o)t
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d) For any x € X such that (x,a) # 0 for all « € R the set
R*(z) :={a € R|(z,a) > 0}
s a system of positive roots.
Proof of a).Given w € W := Ng(T')/T consider the homomorphism
W:T —-T,t—ntn 't teT
where n € Ng(T)n is a representative of w. Then either
(i) W is not surjective or
(ii) There map w — Id : Xj — X} is an isomorphism.

In the first case we replace G by Zg(S), S := Ker®(w). In the second
case choose any a € R(G,T) and consider z := (w — Id)"'(a) € X3.
Then

(z,7) = (wr,wr) = (z+ o,z +a) = (z,2) + 2(z, ) + (@, q)
So < z,a¥ >= —1 and therefore (s,w)z = z.00

Lemma 0.6. Let B D T be a Borel subgroup.

a) For any singular torus S C T there exists unique ag € R(G,T)
such that S = Ker®(ag) and Lie(BN Zg(S)/Ru(Zq(S))) = T ® kX,.

b) The set RY(B) := {ag} where S runs through the set of singular
tori is a system of positive roots.

Proof of Lemma. a) We prove that for any root a either a €
RT(B) or —a € RT(B) since BN Z5(S) is a Borel subgroup of Z(.5).

b) We choose a representation p : G — AutV and a vector v € V
such that B = Stg(v). Then the action of B of the line kv defines a
character x € X*. One shows that < z,a¥ >> 0 for all « € RT(B).0J

Theorem 0.7. Let G be a connected reductive group. Then the in-
tersection V' of unipotent radicals of Borel subgroups containing T is
finite.

Let V be the identity component of V. It is sufficient to prove the
V' is a normal subgroup of G. For any root o we denote by H, the
identity component of intersection H, of unipotent radicals of Borel
subgroups containing T with o € RT(B).

Lemma 0.8. V is a normal subgroup of H,.
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Proof of Lemma. Use Lemma 5 b) to show that Lie(H,) =
Lie(V) & kX,. Therefore dim(H,,V) = 1.

Proof of Theorem. Since G is generated by Zg(S) where S runs
through the set of singular tori and Z5(S) is generated by Zg(S) N B
where B runs through Borel subgroups containing 7" the result follows
from Lemma.

Corollary 0.9. Let G be a connected reductive group. Then

a) For any subtorus S the centralizer Z(S) is connected and reduc-
tive.

b) Za(T)=T.
c) Z(G)CT
Proof of Corollary. a)
R.(Zc(S)) = Npo1Za(S) N B, C NpsrBy = Ru(G) = {e}

Lemma 0.10. a) For any o € R there exists an isomorphism x, :
G, — X, where X, C G is a closed subgroup such that

try(a)t™ = zo(a(t)a),t € T,a € k
b) For any nontrivial homomorphism !, : G, — G such that
to! (a)t™! = 2! (a(t)a),t € T,a €k
there ezists ¢ € k* such that xl,(a) = x(ca),a € k.
c) Im(dz,) = G,.
d) T and X,,a € R(G,T) generate G.

Corollary 0.11. Roots of G are non-zero weights of the adjoint action
T — Aut(G).

Theorem 0.12. Let G be a connected semisimple group. Then
a) The subgroups X, € R(G,T) generate G.
b) G =(G,G).

c) Any connected normal subgroup G1 C G is semisimple and there
exists a connected normal subgroup G C G such that (G, Gy = {e}, G1N
Gy is finite and G1Gy = G

Proof of Theorem. a) Consider the subgroup H C G generated
by X.,a € R(G,T). As follows from Lemma 1 b) H C G is a normal
subgroup. Since R(H) C R)G) we see that H is semisimple. By
Lemma 1 b) the intersection Naer(eryKer(a) lies in the center of G
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we see that this group is finite. Therefore (7) roots a € R(G,T') span
a subgroup of finite index in X and the subgroup ov(G,,),« € R(G,T)
span T. So T'C H and [by the same Lemma 1 b) | H = G.

b) Form the equality
tro(a)t™ za(—a) = za((a(t) — 1)(a))
it follows that X, € (G, G) for all a € R(G,T).

¢) Let G; C G be a connected normal subgroup and 77 C T a
maximal torus of T". Then

(i) using the equality as in b) you show that for any o € R(G,T') we
have a € Ry := R(G1,T) iff a(Ty) # {1}. We define Ry = R — R;.

(ii) We show that for any o € Ry, 8 € R, the elements x,(a), x3(b) €
G commute for all a,b € k. Really consider

zp(a) == xp(b)x, (a)xgl (b)

It is clear that z;(a) € Gy and tizy(a)t;! = xy(a(ty)a) for all t; €
T;. By Lemma 10 b) there exists a homomorphism f : G; — G,,
of algebraic groups such that zp(a) = z,(f(b)a). Since there is no
nontrivial homomorphism f : G; — G,, of algebraic groups we see that
xp(a) = z4(a). So the elements z,(a), z5(b) € G commute. Let Gy be
the subgroup of G generated by X,,a € Ry. We see that (G1,Gs) =
{e} and G = G:1Gs.



