- **Lemma 0.1.** a) Let $S \subset T$ be a singular torus. There exists $\alpha \in X^*$ such that $S = Ker^0(\alpha)$ and $Lie(Z_G(S)/R_u(Z_G(S))) = Lie(Z_G(T)) \oplus kX_{\alpha} \oplus kX_{-\alpha}$ where $X_{\alpha}, X_{-\alpha} \in \mathcal{G}$ are weight vectors for α and $-\alpha$ respectively.
- b) The subgroups $Z_G(S) \subset G$ where S runs through the set of singular subtori of T generate G.

Definition 0.2. a) Characters $\alpha \in X^*$ as in Lemma 1 are *roots* of G.

- b) We denote by $R = R(G, T) \subset X^*$ the set of roots.
- c) We define the action of the Weyl group $W = N_G(T)/T$ on X^* and X_* by

$$(wx^*)(t) := x(w^{-1}t), (wx_*)(a) := w(x_*(a))$$

Lemma 0.3. For any $\alpha \in R$ there exists unique $\alpha^{\vee} \in X_{\star}$ such that $\langle \alpha, \alpha^{\vee} \rangle = 2$ and

$$s_{\alpha}x = x - < x, \alpha^{\vee} > \alpha, s_{\alpha}x^{\vee} = x^{\vee} - < \alpha, x^{\vee} >, x \in X^{\star}, x^{\vee} \in X_{\star}$$

Definition 0.4. a) Elements $\alpha^{\vee} \in X_{\star}$, $\alpha \in R$ are *coroots* of G.

b) A root datum is a quadruple $\Psi = (X, R, X^{\vee}, R^{\vee})$ where X, X^{\vee} are finitely generated free abelian groups in duality $<,>: X \times X^{\vee} \to \mathbb{Z}, R \subset X, R^{\vee} \subset X^{\vee}$ finite subsets and an bijection $R \to R^{\vee}, \alpha \to \alpha^{\vee}$ such that $<\alpha, \alpha^{\vee}>=2, \alpha \in R$ and $s_{\alpha}(R)=R, s_{\alpha}(R^{\vee})=R^{\vee}$ where

$$s_{\alpha}x = x - \langle x, \alpha^{\vee} \rangle \alpha, s_{\alpha}x^{\vee} = x^{\vee} - \langle \alpha, x^{\vee} \rangle, x \in X^{\star}, x^{\vee} \in X_{\star}.$$

- c) A root datum is reduced if for any $\alpha \in R, c \in \mathbb{R}$ such that $c\alpha \in R$ we have $c = \pm 1$.
- d) We define $W(\Psi) \subset Aut(X)$ as the group W is generated by $s_{\alpha}, \alpha \in R$.
- e) A subset $R^+ \subset R$ is a system of positive roots if $R = R^+ \cup -R^+$ and no nontrivial linear combination $\sum n_i \alpha_i$, $\alpha_i \in R^+$, $n_i \geq 0$ vanishes.

Lemma 0.5. a) For any reductive group G the quadruple $\Psi = (X^*, R, X_*, R^{\vee})$ is a reduced root datum and the group W is generated by $s_{\alpha}, \alpha \in R$.

- b) For any reduced root datum, system $R^+ \subset R$ of positive roots and any $\alpha, \beta \in R, \alpha \neq -\beta$ there exists $w \in W$ such that such that $w\alpha, w\beta \in R^+$.
- c) There exists a positive definite W-invariant form (,) on $X \otimes \mathbb{R}$. Using this form we identify X with X^{\vee} . It is clear that under this identification we identify α^{\vee} with $2(\alpha,\alpha)^{-1}\alpha$

d) For any $x \in X$ such that $(x, \alpha) \neq 0$ for all $\alpha \in R$ the set

$$R^+(x) := \{ \alpha \in R | (x, \alpha) > 0 \}$$

is a system of positive roots.

Proof of a).Given $w \in W := N_G(T)/T$ consider the homomorphism

$$\hat{w}: T \to T, t \to ntn^{-1}t^{-1}, t \in T$$

where $n \in N_G(T)$ n is a representative of w. Then either

- (i) \hat{w} is not surjective or
- (ii) There map $w-Id:X_{\mathbb{R}}^{\star}\to X_{\mathbb{R}}^{\star}$ is an isomorphism.

In the first case we replace G by $Z_G(S), S := Ker^0(\hat{w})$. In the second case choose any $\alpha \in R(G,T)$ and consider $x := (w-Id)^{-1}(\alpha) \in X_{\mathbb{R}}^{\star}$. Then

$$(x,x) = (wx, wx) = (x + \alpha, x + \alpha) = (x,x) + 2(x,\alpha) + (\alpha,\alpha)$$

So $\langle x, \alpha^{\vee} \rangle = -1$ and therefore $(s_{\alpha}w)x = x.\square$

Lemma 0.6. Let $B \supset T$ be a Borel subgroup.

- a) For any singular torus $S \subset T$ there exists unique $\alpha_S \in R(G,T)$ such that $S = Ker^0(\alpha_S)$ and $Lie(B \cap Z_G(S)/R_u(Z_G(S))) = \mathcal{T} \oplus kX_{\alpha}$.
- b) The set $R^+(B) := \{\alpha_S\}$ where S runs through the set of singular tori is a system of positive roots.

Proof of Lemma. a) We prove that for any root α either $\alpha \in R^+(B)$ or $-\alpha \in R^+(B)$ since $B \cap Z_G(S)$ is a Borel subgroup of $Z_G(S)$.

b) We choose a representation $\rho: G \to AutV$ and a vector $v \in V$ such that $B = St_G(v)$. Then the action of B of the line kv defines a character $x \in X^*$. One shows that $\langle x, \alpha^{\vee} \rangle > 0$ for all $\alpha \in R^+(B)$. \square

Theorem 0.7. Let G be a connected reductive group. Then the intersection \tilde{V} of unipotent radicals of Borel subgroups containing T is finite.

Let V be the identity component of \tilde{V} . It is sufficient to prove the V is a normal subgroup of G. For any root α we denote by H_{α} the identity component of intersection \tilde{H}_{α} of unipotent radicals of Borel subgroups containing T with $\alpha \in R^+(B)$.

Lemma 0.8. V is a normal subgroup of H_{α} .

Proof of Lemma. Use Lemma 5 b) to show that $Lie(H_{\alpha}) = Lie(V) \oplus kX_{\alpha}$. Therefore $dim(H_{\alpha}, V) = 1$.

Proof of Theorem. Since G is generated by $Z_G(S)$ where S runs through the set of singular tori and $Z_G(S)$ is generated by $Z_G(S) \cap B$ where B runs through Borel subgroups containing T the result follows from Lemma.

Corollary 0.9. Let G be a connected reductive group. Then

- a) For any subtorus S the centralizer $Z_G(S)$ is connected and reductive.
 - b) $Z_G(T) = T$.
 - c) $Z(G) \subset T$

Proof of Corollary. a)

$$R_u(Z_G(S)) = \bigcap_{B \supset T} Z_G(S) \cap B_u \subset \bigcap_{B \supset T} B_u = R_u(G) = \{e\}$$

Lemma 0.10. a) For any $\alpha \in R$ there exists an isomorphism $x_{\alpha} : \mathbb{G}_a \to X_{\alpha}$ where $X_{\alpha} \subset G$ is a closed subgroup such that

$$tx_{\alpha}(a)t^{-1} = x_{\alpha}(\alpha(t)a), t \in T, a \in k$$

b) For any nontrivial homomorphism $x'_{\alpha}: \mathbb{G}_a \to G$ such that

$$tx'_{\alpha}(a)t^{-1} = x'_{\alpha}(\alpha(t)a), t \in T, a \in k$$

there exists $c \in k^*$ such that $x'_{\alpha}(a) = x_{\alpha}(ca), a \in k$.

- c) $Im(dx_{\alpha}) = \mathcal{G}_{\alpha}$.
- d) T and $X_{\alpha}, \alpha \in R(G,T)$ generate G.

Corollary 0.11. Roots of G are non-zero weights of the adjoint action $T \to Aut(\mathcal{G})$.

Theorem 0.12. Let G be a connected semisimple group. Then

- a) The subgroups $X_{\alpha}, \alpha \in R(G,T)$ generate G.
- b) G = (G, G).
- c) Any connected normal subgroup $G_1 \subset G$ is semisimple and there exists a connected normal subgroup $G_2 \subset G$ such that $(G_1, G_2 = \{e\}, G_1 \cap G_2)$ is finite and $G_1G_2 = G$

Proof of Theorem. a) Consider the subgroup $H \subset G$ generated by $X_{\alpha}, \alpha \in R(G,T)$. As follows from Lemma 1 b) $H \subset G$ is a normal subgroup. Since $R(H) \subset R(G)$ we see that H is semisimple. By Lemma 1 b) the intersection $\bigcap_{\alpha \in R(G,T)} Ker(\alpha)$ lies in the center of G

we see that this group is finite. Therefore (?) roots $\alpha \in R(G,T)$ span a subgroup of finite index in X and the subgroup $\alpha^{\vee}(\mathbb{G}_m)$, $\alpha \in R(G,T)$ span T. So $T \subset H$ and [by the same Lemma 1 b)] H = G.

b) Form the equality

$$tx_{\alpha}(a)t^{-1}x_{\alpha}(-a) = x_{\alpha}((\alpha(t) - 1)(a))$$

it follows that $X_{\alpha} \in (G, G)$ for all $\alpha \in R(G, T)$.

- c) Let $G_1 \subset G$ be a connected normal subgroup and $T_1 \subset T$ a maximal torus of T. Then
- (i) using the equality as in b) you show that for any $\alpha \in R(G,T)$ we have $\alpha \in R_1 := R(G_1,T)$ iff $\alpha(T_1) \neq \{1\}$. We define $R_2 = R R_1$.
- (ii) We show that for any $\alpha \in R_1, \beta \in R_2$ the elements $x_{\alpha}(a), x_{\beta}(b) \in G$ commute for all $a, b \in k$. Really consider

$$x_b(a) := x_\beta(b) x_\alpha(a) x_\beta^{-1}(b)$$

It is clear that $x_b(a) \in G_1$ and $t_1x_b(a)t_1^{-1} = x_b(\alpha(t_1)a)$ for all $t_1 \in T_1$. By Lemma 10 b) there exists a homomorphism $f : \mathbb{G}_1 \to \mathbb{G}_m$ of algebraic groups such that $x_b(a) = x_\alpha(f(b)a)$. Since there is no nontrivial homomorphism $f : \mathbb{G}_1 \to \mathbb{G}_m$ of algebraic groups we see that $x_b(a) = x_\alpha(a)$. So the elements $x_\alpha(a), x_\beta(b) \in G$ commute. Let G_2 be the subgroup of G generated by $X_\alpha, \alpha \in R_2$. We see that $(G_1, G_2) = \{e\}$ and $G = G_1G_2$.