
Problem 0.1. Let f : X → Y be a morphism of algebraic varieties, X
is affine and irreducible and f : X → Y is a bijection. Then dim(X) =
dim(Y )

Definition 0.2. A curve is an algebraic variety of dimension 1.

Remark. I always assume that curves are irreducible.

Let X be an irreducible affine variety, f : X → C be a non-constant
morphism to a curve, c ∈ Im(f), Y := f−1(c).

Claim. Then dim(Y ) = dim(X) − 1.

This is a very useful result but the proof of this result is based on
some results from Commutative algebra [such as the Normalization
Lemma of Noether] but the proof requires more extensive knowledge
of Algebra then I assume. I’ll prove a very special case of the theorem
which will suffice for our needs. We start with the following general
result.

Lemma 0.3. Let X be an irreducible affine variety, f : X → C be a
non-constant morphism to a curve, There exists a curve Y ⊂ X such
that the restriction of f on Y is not a constant.

Proof. It is clear (?) that we can assume that the curve C is affine.
The proof is by induction in the dimension of X. If dim(X) = 1 then
we can take Y = X. So assume that dim(X) > 1. It is sufficient to
show the existence of a proper closed subset Y ⊂ X such that that the
restriction of f on Y is not a constant morphism.

Since dim(X) > 1 there exist (?) regular functions

g : X → A1, r : C → A1

such that r ◦ f and g are algebraically independent. Consider the map

φ : X → A2, x → (r ◦ f(x), g(x))

and define X ′ := Im(φ) ⊂ A2. Then X ′ ⊂ A2 and since A2 is irre-
ducible we see that dim(A2 −X ′) < 2. Therefore (?) there exists b ∈ k
such that the set {a ∈ k|(a, b) /∈ X ′} is finite. Let Y = g−1(b). Then
the restriction of f on Y is not a constant morphism.�

Lemma 0.4. Let f : X → C be as Lemma 3 and assume that an
algebraic group H acts on X without fixed points in such a way that
fibers of f are H-orbits. Then dim(H) = dim(G) − 1.

Proof.As follows from Problem 1 we have dim(f−1(x)) = dim(H)
for all x ∈ X. Since X is irreducible we see that dim(H) < dim(G).
Assume that dim(H) < dim(G) − 1. Let Y ⊂ G be a curve as in
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Lemma 3 and consider the map a : H ×Y → G given by a(h, y) := hy.
Since f(Y ) is not constant the image Im(f) is dense in C and therefore
the subset Z := a(H × Y ) is dense in X. So

dim(H) + 1 = dim(H × Y ) ≥ dim(Z) = dim(X)

So dim(H) ≥ dim(X) − 1.�

Problem 0.5. a) Let f : X → Y be a morphism of irreducible alge-
braic varieties such that f(X) is dense in Y .

a) There exists a closed subvariety Z of X such that dim(Z) =
dim(Y ) and f(Z) is dense in Y .

b) Assume that an algebraic group H acts on X without fixed points
in such a way that fibers of f are H-orbits. Then dim(H) = dim(X)−
dim(Y ).

Lemma 0.6. Let X, Y be irreducible algebraic varieties and p : X → Y
a morphism such that p(X) is dense in Y and there exists an non-
empty open subset U of Y such that p−1(u) is finite for all u ∈ U .
Then dim(X) = dim(Y ).

Remark. The conclusion of the Lemma is true under the much
weaker assumption. It is sufficient to know that there exists one y ∈ Y
such that the set p−1(y) is finite and not empty.

Proof. Since the image p(X) is dense in Y it is easy to see (?) that
dim(X) ≥ dim(Y ). Assume that dim(X) > dim(Y ). One can easily
reduce the proof to the case when X = (X, A) and Y = (Y, B) are
affine and the map p : X → Y is surjective. Since p(X) is dense in
Y we see that p⋆ : B → A is an imbedding and we consider B as a
subring of A.

Let F, E be the fields of fractions of the rings A, B. We want to show
that trdegk(B) = trdegk(A). Assume that trdegk(B) < trdegk(A).
Then we can find (?) f ∈ A such that for any b0, ..bn ∈ B, bn 6= 0
we have

∑n
i=0 bif

i 6= 0. Let Z ⊂ Y × k be the image of the map
x → (p(x), f(x)). Since Z is constructible we see (?) that Z is dense
in Y × k and therefore there exists a closed proper subset W ∈ Y × k
such that Z ⊃ (Y × k) − W . Since Y is irreducible and W is proper
subset of Y × k the intersection (U × k) ∩ W is a proper subset of
U × k. Therefore (?) there exists u ∈ U such that the intersection
({u} × k) ∩ W is finite. But then the fiber p−1(u) = {u} × k ∩ Z is
infinite.�
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Lemma 0.7. a) If P ⊂ G is a parabolic subgroup then for any action
of G on X and a point x ∈ X such that P ⊂ Stx the orbit Ω(x) ⊂ X
is closed and complete.

b) A closed subgroup P ⊂ G is parabolic iff there exists a finite
dimensional representation ρ : G → GL(V ) and a line L ⊂ V such
that P = StL and the orbit Ω(L) ⊂ P(V ) is closed.

c) If G is connected then Z0(G) ⊂ Z(B) ⊂ Z(G) where Z(G) is the
center of G and B ⊂ G is a Borel subgroup.

d) If G is connected and B is nilpotent then B = G.

Proof of a). As follows from the proof of Proposition 14 there exists
a finite dimensional representation ρ : G → GL(V ) and a line L ⊂ V
such that P ⊃ StL and the orbit Ω(L) ⊂ P(V ) is closed. We can
assume (?) Ω(x) ⊂ X is dense. Let Y = Ω(L). Consider the G orbit
Z of the point (x, L) ∈ X × Y of diagonal action of G on X × Y .

Claim 0.8. Z ⊂ X × Y is closed.

Proof of Claim. It is clear (?) that the restriction q of the projec-
tion pY : X×Y → Y on Z is a bijection. Consider the closure Z̄. Since
Y is a G-orbit all the fibers of restriction q̄ of the projection pY to Z̄
are isomorphic. But this implies (?) that they consists of one point.
Since q : Z → Y is onto we see that Z̄ = Z.�

Since Y is complete the projection pX(Z) ⊂ X is closed and proper
[see Problem 5.3].�

Proof of b). It is easy to derive (?) from the part a) and the
Chevalley theorem that for any for any parabolic subgroup P ⊂ G
there exists a finite dimensional representation and a line L ⊂ V such
that P = StL and the orbit Ω(L) ⊂ P(V ) is closed. Conversely, let
ρ : G → GL(V ) be Choose a Borel subgroup B′. As follows from
Proposition 5.14 there exists a point x ∈ Ω(L) such that B′ ⊂ Stx. Let
g ∈ G be such that x = gL. But then B := g−1B′g ⊂ P = StL.�

Proof of c). Since Z0(G) is connected and solvable it lies in some
Borel subgroup B′. But since B and B′ are conjugate Z0(G) lies in B.
But then Z0(G) ⊂ Z(B).

To finish the proof of c) we have to show that any z ∈ Z(B) belongs
to Z(G). Fix z ∈ Z(B) and consider the morphism f : G → G, g →
gzg−1. Since z ∈ Z(B), f factors through a morphism f̄ : G/B → G.

Since G/B is complete and G is affine and f(e) = z we see that f̄ ≡ z.�
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Proof of d). The proof is by induction in dim(B). If B = {e} the
G = G/B is complete and affine. So G = {e}. If B 6= {e} then [since
B is nilpotent] Z(B) 6= {e}. Since Z(B) ⊂ Z(G) we can replace G by
G/Z(B) , B by B/Z(B) and apply the inductive assumption.�

Definition 0.9. a) We denote the algebraic variety G/H(ρ0, L) by

G/H and call the natural morphism φ : G → G/H the canonical
projection.

b) We define the stabilizer StG/H ⊂ G×G/H of the action of G on
G/H by StG/H := {(g, x)|gx = x} and write XG/H : pG(StG/H) ⊂ G.

c) For any h ∈ H we define Yh := {y ∈ G/H|y−1hy ∈ H}.

Problem 0.10. Show that

a) The stabilizer StG/H is a closed subset of G × G/H .

b) dim(StG/H) = dim(G)

[A hint] Use the result of Problem 5.

c) If H ⊂ G is a parabolic subgroup then the image X of StG/H

under the projection G/H × G → G [= ∪g∈GgHg−1 ⊂ G] is closed.

Lemma 0.11. Assume that the there exists an open dense subset U of
H such that the sets Yu, uU are finite. Then X = ∪g∈Gg−1Hg is dense
in G.

Proof. Let V := ∪g∈G,u∈Ug−1ug ⊂ StG/H and π : V → G be the
restriction of the projection pG : G/H × G → G on V, Z := πG(V ).
Since G is irreducible it is sufficient to show that dim(Z) = dim(G).

Since for any v = g−1ug the fiber π−1(π(v)) = Yu are finite it follows
from Lemma 6 that dim(Z) = dim(V ) = dim(G) = dim(StG/H) =
dim(G).�

Solvable groups

Let Tn be the group of upper-triangular n×n-matrices and Un ⊂ Tn

the subgroup of unipotent upper-triangular matrices.

Problem 0.12. a) Let G be a closed connected subgroup of T2. Then
either G = (e) or G = U2 or G is conjugated to D2 or G = T2.

b) For any closed connected solvable group G the subset Gu ⊂ G of
unipotent elements is a closed normal subgroup of G.

Lemma 0.13. a) Let G be a commutative connected affine algebraic
group and Gs, Gu be the subsets of semisimple and unipotent elements.
Then Gs, Gu are closed subgroups of G and G = GsGu.
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b) Let G be a solvable connected affine algebraic group such that
all g ∈ G are semisimple. Then G is diagonalizable. [ that is G is
isomorphic to a subgroup of the group Dn of diagonal matrices].

Proof of a). By the Levi-Kolchin Theorem we can assume that
G ⊂ Tn. It is clear (?) that Gu = G ∩ Un. So Gu ⊂ G is closed.

Since G be a commutative it is clear (?) that the subset Gs ⊂ G is a
subgroup. Moreover we can (?) choose a basis in kn such that Gs ⊂ Dn

where Dn ⊂ GLn(k) is the subgroup of diagonal matrices. But then
Ḡs ⊂ G ∩ Dn = Gs.�

Proof of b). As before we assume that G ⊂ Tn. Then the com-
mutator [G, G] lies in the subgroup Un of unipotent upper-triangular
matrices. Since all elements of G are semisimple we see that G is
commutative. So we can choose a basis in kn such that Gs ⊂ Dn.�

Theorem 0.14. a) There exists a torus T ⊂ G such that the map
T × Gu → G, (t, u) → tu is one-to-one and onto,

b) If T ′ ⊂ G is any maximal torus in G then there exists u ∈ Gu

such that uT ′u−1 ⊂ T .

Remark. One can show that the map T × Gu → G, (t, u) → tu
defines an isomorphism of algebraic varieties.

Proof. We will prove the Theorem by induction in dim(G). So we
assume that the result is known for all connected solvable groups H
such that dim(H) < dim(G).

Since G is a solvable connected affine algebraic group we can assume
that G is a subgroup of the group Tn. Let Λ be the set of pairs

Λ := {(i, j)}, 1 ≤ i < j ≤ n, Λ∗ := Λ ∪∞

We define an order on Λ∗ by saying that (i, j) < (p, q) if either

j − i < q − p or j − i = q − p and i < p

and say that ∞ > (i, j) for , 1 ≤ i, j ≤ n.

For any pair (i, j), 1 ≤ i, j ≤ n we can consider the (i, j) matrix
coefficient as a function

aij : T n → A1, aij(X) := xi,j for X = (xp,q), 1 ≤ p, q ≤ n

By the definition aij = 0 is i > j. For any subset X ⊂ Tn we define
Λ(X) ⊂ Λ by

Λ(X) = {λ ∈ Λ|aλ(X) 6= 0}
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and define λ̃(X) ∈ Λ by λ̃(X) := minλ∈Λ(X)λ. So λ̃(X) = ∞ iff

X ⊂ Dn. We define λ(X) := maxr∈Tn
λ̃(rXr−1). It is clear that it

is sufficient to prove Theorem in the case when λ(G) = λ̃(G). So we

assume from now on that λ(G) = λ̃(G).

Let (i, j) = λ(G). Consider a map φ : G → T2 given by

φ(g) :=

(

aii(g) aij(g)
0 ajj(g)

)

It is easy to see that the map φ : G → T2 is homomorphism of algebraic
groups.

Lemma 0.15. Im(φ) ⊃ U2

Proof of Lemma. If U2 does not lie in Ḡ then it follows from
Problem 7 that there exists r̄ ∈ T2 such that r̄Ḡr̄−1 ⊂ D2. Choose a
preimage r ∈ G of r̄. Then (?) If we have aij(rgr−1) = 0 for all g ∈ G

and therefore λ̃(rGr−1) < (i, j). But this contradicts the assumption

that λ(G) = λ̃(G). So Im(φ) ⊃ U2.�

Set H := φ−1(D2) ⊂ G and define

f : G → A1, f(g) := a−1
ii (g)aij(g)

Since f(hg) = f(g), h ∈ H, g ∈ G it follows from Lemma 4 that
dim(H) = dim(G) − 1(?). Let H0 ⊂ H be the connected component
of H containing e.

Lemma 0.16. H0Gu = G

Proof. Since Gu is a normal subgroup of G the set H0Gu is a
subgroup of G. Since Gu ( H0 and dim(H0) = dim(G) − 1 we have
dim(H0Gu) = dim(G). Since G is connected we H0Gu = G.�

Now we can prove the part a) of the Theorem. By the construc-
tion H0 is a solvable connected affine algebraic group and dim(H0) <
dim(G). By the inductive assumptions there exists a torus T ⊂ H
such that the map the map T × H0

u → H0, (t, u) → tu is one-to-one
and onto. Therefore the map T × Gu → G, (t, u) → tu is onto. Since
T ∩ Gu = (e) the part a) of Theorem is proven. It is clear (?) that T
is a maximal torus in G.

Now we prove the part b). Let T ′ ⊂ G be a maximal torus. Consider
S′ := φ(T ′) ⊂ T 2. As follows from Problem 7 there exists ū ∈ U2 such
that ūS ′ū−1 ⊂ D2. By Lemma 10 there exists u ∈ Gu such that
ū = φ(u). Then uT ′u−1 ⊂ H . The Theorem follows now from the
inductive assumptions.�
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Corollary 0.17. Let G be a connected affine algebraic group. T , T ′ ⊂
G be maximal tori. Then there exists g ∈ G such that gT ′g−1 = T .

Proof. Let B ⊂ T , B′ ⊂ T ′ ⊂ G be maximal connected solvable
subgroups containing T and T ′. By the Borel’s theorem there exists
g ∈ G such that gB′g−1 = B. Then g′T ′g′−1 ⊂ B. But [by the part b)
of Theorem] the tori T, g′T ′g′−1 ⊂ B are conjugate in B.�

Let U be a connected unipotent normal subgroup of an algebraic
group G and s ∈ G a semisimple element. Define

γs(u) := usu−1s−1, u ∈ U, M := Im(γs), C := ZU(s)

Problem 0.18. If x ∈ Z(U), y ∈ U then γs(xy) = γs(x)γs(y)

Theorem 0.19. The product morphism τ : C × M → U is bijective.

Proof. To prove the injectivity of τ is it is sufficient to show that
C ∩ M = ∅. Choose any c ∈ C ∩ M . Since c ∈ M we have c =
usu−1s−1, u ∈ U . Then cs = usu−1. Since c ∈ C the product cs is
the Jordan decomposition of the semisimple element usu−1. It follows
from the uniqueness of Jordan decomposition that c = e.�

To prove the surjectivity of τ we consider first the case when U
is commutative. Then [see Problem 18] τ and γs are group homo-
morphsims and C = Ker(γs)).

Since γs : U → M is a group surjective homomorphism we have
dim(U) = dim(C) + dim(M). It follows from the injectivity of τ that
dim(Im(τ)) = dim(U). Since U is connected we see that τ is onto.�

We prove the general case by induction in dim(U). Let V := Z(U)0.
Then V is a connected normal subgroup of G, dim(V ) > 0. If V = U
then U is commutative and the result is already known. So we assume
that V ( U . Define

G′ := G/V, U ′ := U/V, s′ := π(s) ∈ G′

where π : G → G′ be the natural projection and denote by

τ ′ : C ′ × M ′ → U ′, τV : CV × MV → V

the maps corresponding to the triples (G′,′ , s′) and (G, V, s). By the
inductive assumptions we know that that maps τ ′ and τV are bijections.

Claim 0.20. For any c′ ∈ C ′ there exists c ∈ C such that c′ = π(c).

Proof of Claim. Choose any c̃ ∈ U such that c′ = π(c̃). Then we
have sc̃s−1 = c̃v, v ∈ V . We want to find y ∈ V such that s(c̃y)s−1 =
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c̃y. For any y ∈ V we have

s(c̃y)s−1 = sc̃s−1sys−1 = c̃vsys−1 = c̃yy−1vsys−1 = (c̃y)vsys−1y−1

since V is commutative. So we want to find y ∈ V such that
vsys−1y−1 = e. As follows from the the surjectivity of τV we we can
find c ∈ U such that π(c) = c′ and scs−1 = cz, z ∈ CV . But the
z ∈ C ∩ M = {e}.�

To prove the surjectivity of τ we have to show the existence of a
decomposition x = cm, c ∈ C, m ∈ M for any x ∈ U . Let x′ = π(x) ∈
U ′. As follows from the surjectivity of τ ′ we can write x′ = c′u′, c′ ∈
C ′, m′ ∈ M ′. Let c ∈ C be a preimage of c′ as in the Claim. We have

x = cṽusu−1s−1, u ∈ U, c ∈ C, ṽ ∈ V

As follows from the surjectivity of τV we have

x = cc′vsv−1s−1usu−1s−1, u ∈ U, c, c′ ∈ C, v ∈ V

Since v ∈ Z(U) we have [see Problem 18] x = (cc′)γs(uv).�

Problem 0.21. The restriction of γs on M is bijective.

A hint. Use the following result. Let f : X → Y be a morphism of
algebraic varieties such that f : X → Y is a bijection. Then f : X → Y
is a homeomorphism.

Corollary 0.22. For any connected solvable group G and a semisimple
s ∈ G the centralizer ZG(s) is connected.

Proof. As follows from Theorem 9 we have a decomposition G =
TGu where T is a maximal torus of G containing s. Then ZG(s) =
TZGu

(s). So it is sufficient to show that the group ZGu
(s) is connected.

As follows from Theorem 14 we have a bijection τ : ZGu
(s)×M → Gu.

So ZGu
(s) is connected. �


