Problem 0.1. Let f : X — Y be a morphism of algebraic varieties, X
is affine and irreducible and f : X — Y is a bijection. Then dim(X) =
dim(Y")

Definition 0.2. A curve is an algebraic variety of dimension 1.
Remark. I always assume that curves are irreducible.

Let X be an irreducible affine variety, f : X — C' be a non-constant
morphism to a curve, ¢ € Im(f),Y := f~(c).

Claim. Then dim(Y) = dim(X) — 1.

This is a very useful result but the proof of this result is based on
some results from Commutative algebra [such as the Normalization
Lemma of Noether] but the proof requires more extensive knowledge
of Algebra then I assume. I'll prove a very special case of the theorem
which will suffice for our needs. We start with the following general
result.

Lemma 0.3. Let X be an irreducible affine variety, f : X — C be a
non-constant morphism to a curve, There exists a curve Y C X such
that the restriction of f on'Y is not a constant.

Proof. It is clear (7) that we can assume that the curve C is affine.
The proof is by induction in the dimension of X. If dim(X) = 1 then
we can take Y = X. So assume that dim(X) > 1. It is sufficient to
show the existence of a proper closed subset Y C X such that that the
restriction of f on Y is not a constant morphism.

Since dim(X) > 1 there exist (?) regular functions
g: X = A r:C— A
such that r o f and g are algebraically independent. Consider the map
¢: X — A%z — (ro f(z), g(x))

and define X’ := Im(¢) C A% Then X’ C A? and since A? is irre-
ducible we see that dim(A? — X') < 2. Therefore (?) there exists b € k
such that the set {a € k|(a,b) ¢ X'} is finite. Let Y = ¢g~'(b). Then
the restriction of f on Y is not a constant morphism.[]

Lemma 0.4. Let f : X — C be as Lemma 3 and assume that an
algebraic group H acts on X without fized points in such a way that

fibers of f are H-orbits. Then dim(H) = dim(G) — 1.

Proof.As follows from Problem 1 we have dim(f~!(z)) = dim(H)
for all z € X. Since X is irreducible we see that dim(H) < dim(G).

Assume that dim(H) < dim(G) — 1. Let Y C G be a curve as in
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Lemma 3 and consider the map a : H x Y — G given by a(h,y) := hy.
Since f(Y') is not constant the image Im(f) is dense in C' and therefore
the subset Z := a(H x Y') is dense in X. So

dim(H)+1=dim(H xY) > dim(Z) = dim(X)
So dim(H) > dim(X) — 1.00

Problem 0.5. a) Let f X — Y be a morphism of irreducible alge-
braic varieties such that f(X) is dense in Y.

a) There exists a closed subvariety Z of X such that dim(Z) =
dim(Y) and f(Z) is dense in Y.

b) Assume that an algebraic group H acts on X without fixed points
in such a way that fibers of f are H-orbits. Then dim(H) = dim(X) —
dim(Y).

Lemma 0.6. Let X, Y be irreducible algebraic varieties andp : X — Y
a morphism such that p(X) is dense in Y and there exists an non-
empty open subset U of Y such that p~'(u) is finite for all u € U.
Then dim(X) = dim(Y').

Remark. The conclusion of the Lemma is true under the much
weaker assumption. It is sufficient to know that there exists one y € Y
such that the set p~'(y) is finite and not empty.

Proof. Since the image p(X) is dense in Y it is easy to see (7) that
dim(X) > dim(Y'). Assume that dim(X) > dim(Y). One can easily
reduce the proof to the case when X = (X, A) and Y = (Y, B) are
affine and the map p : X — Y is surjective. Since p(X) is dense in
Y we see that p* : B — A is an imbedding and we consider B as a
subring of A.

Let F, E be the fields of fractions of the rings A, B. We want to show
that trdegy(B) = trdegi(A). Assume that trdegi(B) < trdegi(A).
Then we can find (?) f € A such that for any by,..b, € B,b, # 0
we have Y " (b f* # 0. Let Z C Y x k be the image of the map
x — (p(x), f(x)). Since Z is constructible we see (?) that Z is dense
in Y x k and therefore there exists a closed proper subset W € Y x k
such that Z D (Y x k) — W. Since Y is irreducible and W is proper
subset of Y x k the intersection (U x k) N W is a proper subset of
U x k. Therefore (7) there exists u € U such that the intersection
({u} x k) N W is finite. But then the fiber p~t(u) = {u} x kN 7 is
infinite.[]
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Lemma 0.7. a) If P C G is a parabolic subgroup then for any action
of G on X and a point x € X such that P C St, the orbit Q(z) C X
18 closed and complete.

b) A closed subgroup P C G is parabolic iff there exists a finite
dimensional representation p : G — GL(V) and a line L C V such
that P = Sty and the orbit Q(L) C P(V') is closed.

¢) If G is connected then Z°(G) C Z(B) C Z(G) where Z(G) is the
center of G and B C G is a Borel subgroup.

d) If G is connected and B is nilpotent then B = G.

Proof of a). As follows from the proof of Proposition 14 there exists
a finite dimensional representation p : G — GL(V) and a line L C V
such that P D Sty and the orbit Q(L) C P(V) is closed. We can
assume (7) Q(z) C X is dense. Let Y = Q(L). Consider the G orbit
Z of the point (z,L) € X x Y of diagonal action of G on X x Y.

Claim 0.8. Z C X xY is closed.

Proof of Claim. It is clear (?) that the restriction ¢ of the projec-
tion py : X xY — Y on Z is a bijection. Consider the closure Z. Since
Y is a G-orbit all the fibers of restriction ¢ of the projection py to Z
are isomorphic. But this implies (?) that they consists of one point.
Since ¢ : Z — Y is onto we see that Z = Z.[J

Since Y is complete the projection px(Z) C X is closed and proper
[see Problem 5.3].00

Proof of b). It is easy to derive (?) from the part a) and the
Chevalley theorem that for any for any parabolic subgroup P C G
there exists a finite dimensional representation and a line L C V' such
that P = Sty and the orbit (L) C P(V) is closed. Conversely, let
p : G — GL(V) be Choose a Borel subgroup B’. As follows from
Proposition 5.14 there exists a point = € Q(L) such that B’ C St,. Let
g € G be such that © = gL. But then B := ¢ 'B'g C P = St;.00

Proof of c¢). Since Z°(G) is connected and solvable it lies in some
Borel subgroup B’. But since B and B’ are conjugate Z°(G) lies in B.
But then Z°(G) C Z(B).

To finish the proof of ¢) we have to show that any z € Z(B) belongs
to Z(G). Fix z € Z(B) and consider the morphism f : G — G, g —
gzg~'. Since z € Z(B), f factors through a morphism f : G/B — G.
Since G/ B is complete and G is affine and f(e) = z we see that f = 2.[]




Proof of d). The proof is by induction in dim(B). If B = {e} the
G = G/B is complete and affine. So G = {e}. If B # {e} then [since
B is nilpotent| Z(B) # {e}. Since Z(B) C Z(G) we can replace G by
G/Z(B) , B by B/Z(B) and apply the inductive assumption.[]

Definition 0.9. a) We denote the algebraic variety G/H (po, L) by
G/H and call the natural morphism ¢ : G — G/H the canonical
projection.

b) We define the stabilizer Stq/y C G x G/H of the action of G on
G/H by Sta/u = {(g9,v)|gx = x} and write X¢/p : pa(Ste/u) C G.

c) For any h € H we define Yy, := {y € G/H|y 'hy € H}.
Problem 0.10. Show that

a) The stabilizer Sty is a closed subset of G x G/H.

b) dim(Sta/u) = dim(G)

[A hint] Use the result of Problem 5.

c) If H C G is a parabolic subgroup then the image X of Stq/m
under the projection G/H x G — G [= UyeqgHg™' C G] is closed.

Lemma 0.11. Assume that the there exists an open dense subset U of
H such that the sets Yy, ulU are finite. Then X = Uyegg™Hyg is dense
mn G.

Proof. Let V := Ugeguevg 'ug C Stgm and m : V. — G be the
restriction of the projection pg : G/H x G — G on V, Z = 7G(V).
Since G is irreducible it is sufficient to show that dim(Z) = dim(G).

Since for any v = g~ ug the fiber 77! (7 (v)) = Y,, are finite it follows
from Lemma 6 that dim(Z) = dim(V) = dim(G) = dim(Stgu) =
dim(G).O

Solvable groups

Let T}, be the group of upper-triangular n x n-matrices and U,, C T,
the subgroup of unipotent upper-triangular matrices.

Problem 0.12. a) Let G be a closed connected subgroup of T5. Then
either G = (e) or G = U, or G is conjugated to Dy or G = Th.

b) For any closed connected solvable group G the subset G,, C G of
unipotent elements is a closed normal subgroup of G.

Lemma 0.13. a) Let G be a commutative connected affine algebraic
group and G, G, be the subsets of semisimple and unipotent elements.
Then Gy, G, are closed subgroups of G and G = G,G,,.
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b) Let G be a solvable connected affine algebraic group such that
all g € G are semisimple. Then G is diagonalizable. [ that is G is
isomorphic to a subgroup of the group D, of diagonal matrices].

Proof of a). By the Levi-Kolchin Theorem we can assume that
G CT,. Tt is clear (7) that G, = GNU,. So G, C G is closed.

Since G be a commutative it is clear (?) that the subset G, C G is a
subgroup. Moreover we can (7) choose a basis in k" such that G5 C D,
where D,, C GL,(k) is the subgroup of diagonal matrices. But then
Gs,cGnNnD, =G.0

Proof of b). As before we assume that G C T,,. Then the com-
mutator [G,G] lies in the subgroup U,, of unipotent upper-triangular
matrices. Since all elements of G are semisimple we see that G is
commutative. So we can choose a basis in k™ such that G, C D,,.00

Theorem 0.14. a) There exists a torus T C G such that the map
T x G, — G, (t,u) — tu is one-to-one and onto,

b) If T' C G is any mazimal torus in G then there exists u € G,
such that vT'u™" C T.

Remark. One can show that the map T x G, — G, (t,u) — tu
defines an isomorphism of algebraic varieties.

Proof. We will prove the Theorem by induction in dim(G). So we
assume that the result is known for all connected solvable groups H
such that dim(H) < dim(G).

Since G is a solvable connected affine algebraic group we can assume
that G is a subgroup of the group 7,,. Let A be the set of pairs

A={(,)H}1<i<j<n A" =AU

We define an order on A* by saying that (i, j) < (p, ¢q) if either
j—i<qg—porj—i=qg—pandi<p
and say that oo > (7,7) for ;1 <i,7 <mn.

For any pair (7,7),1 < 4,7 < n we can consider the (i,j) matrix
coefficient as a function

ag LT, — A ag(X) =z for X = (2,4),1 <p,g<n

By the definition a;; = 0 is ¢ > j. For any subset X C T,, we define
A(X) CAby

AX) = {A € Aaa(X) # 0}
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and define A\(X) € A by A\(X) := Minxea(x)A. SO MX) = oo iff
X C D,. We define \(X) := maz,er, A(rXr~"). Tt is clear that it
is sufficient to prove Theorem in the case when A(G) = A(G). So we

assume from now on that \(G) = A(G).
Let (4,j) = A(G). Consider a map ¢ : G — T3 given by

6(g) = (anég) aij(g))

a;;(9)
It is easy to see that the map ¢ : G — T5 is homomorphism of algebraic
groups.

Lemma 0.15. Im(¢) D U,

Proof of Lemma. If U, does not lie in G then it follows from
Problem 7 that there exists 7 € Ty such that #G7~ ' C D,. Choose a
preimage r € G of 7. Then (?) If we have a;;j(rgr~') =0forall g € G
and therefore A(rGr=") < (i,j). But this contradicts the assumption
that A(G) = A(G). So Im(¢) D U,.O0

Set H := ¢~1(D,) C G and define

f:G— AL f(g) = a;'(9)ai(9)
Since f(hg) = f(9),h € H,g € G it follows from Lemma 4 that
dim(H) = dim(G) — 1(?). Let H® C H be the connected component
of H containing e.

Lemma 0.16. H'G, =G

Proof. Since G, is a normal subgroup of G the set H°G, is a
subgroup of G. Since G, € H and dim(H") = dim(G) — 1 we have
dim(H°G,,) = dim(G). Since G is connected we H°G, = G.0J

Now we can prove the part a) of the Theorem. By the construc-
tion H° is a solvable connected affine algebraic group and dim(H°) <
dim(G). By the inductive assumptions there exists a torus T C H
such that the map the map T x H? — H° (t,u) — tu is one-to-one
and onto. Therefore the map T' x G, — G, (t,u) — tu is onto. Since
T NG, = (e) the part a) of Theorem is proven. It is clear (7) that T'
is a maximal torus in G.

Now we prove the part b). Let 7' C G be a maximal torus. Consider
S = ¢(T") C Ty. As follows from Problem 7 there exists @ € U, such
that @S"a=' C D,. By Lemma 10 there exists u € G, such that
@ = ¢(u). Then uT'u™" C H. The Theorem follows now from the
inductive assumptions.[]
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Corollary 0.17. Let G be a connected affine algebraic group. T,T" C
G be mazimal tori. Then there exists g € G such that gT'g~' =T.

Proof. Let B C T,B' ¢ T' C G be maximal connected solvable
subgroups containing 7" and 7”. By the Borel’s theorem there exists
g € G such that gB'g~"' = B. Then ¢'T"¢’"" C B. But [by the part b)
of Theorem] the tori T, ¢T'¢"' C B are conjugate in B.0

Let U be a connected unipotent normal subgroup of an algebraic
group G and s € G a semisimple element. Define

Ys(u) == usu™'s™H u € U, M := Im(v,),C = Zy(s)
Problem 0.18. If v € Z(U),y € U then ~,(xy) = vs(2)7s(y)
Theorem 0.19. The product morphism 7 : C x M — U s bijective.

Proof. To prove the injectivity of 7 is it is sufficient to show that
CNM =1(. Choose any ¢ € C' N M. Since ¢ € M we have ¢ =
usu~'s™'u € U. Then cs = usu™!. Since ¢ € C the product cs is
the Jordan decomposition of the semisimple element usu~!. It follows

from the uniqueness of Jordan decomposition that ¢ = e.lJ

To prove the surjectivity of 7 we consider first the case when U
is commutative. Then [see Problem 18] 7 and ~, are group homo-
morphsims and C' = Ker(vy)).

Since v, : U — M is a group surjective homomorphism we have
dim(U) = dim(C) + dim(M). It follows from the injectivity of 7 that
dim(Im(7)) = dim(U). Since U is connected we see that 7 is onto.lJ

We prove the general case by induction in dim(U). Let V := Z(U)°.
Then V is a connected normal subgroup of G,dim(V) > 0. If V =U

then U is commutative and the result is already known. So we assume
that V' C U. Define

G =GV, U :=U/V,s . =n(s) e G
where 7 : G — G’ be the natural projection and denote by

7. C'xM —=U ,1:Cyx My —V
the maps corresponding to the triples (G'),s’) and (G,V,s). By the
inductive assumptions we know that that maps 7" and 7y, are bijections.
Claim 0.20. For any ¢ € C' there exists ¢ € C' such that ¢ = 7(c).

Proof of Claim. Choose any ¢ € U such that ¢ = 7(¢). Then we
have sés™! = ¢v,v € V. We want to find y € V such that s(cy)s™! =
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cy. For any y € V we have

1 1

s(Cy)s™! = sés lsys™! = vsys ' = eyy tusys Tt = (Gy)vsys ty~

since V is commutative. So we want to find y € V such that
vsys ty~t = e. As follows from the the surjectivity of 7, we we can
find ¢ € U such that w(c) = ¢ and scs™' = cz,z € Cy. But the

ze CNM={e}.00

To prove the surjectivity of 7 we have to show the existence of a
decomposition z = em,c € C;m € M for any x € U. Let 2/ = w(z) €
U'. As follows from the surjectivity of 7" we can write 2’ = du/,c €
C',m’ € M'. Let ¢ € C be a preimage of ¢ as in the Claim. We have

r=ciusu ‘s tbuelUceC,oeV

As follows from the surjectivity of 7y, we have

1 1

r=ccvsv s tusuT s ueUe,d €eCloeV

Since v € Z(U) we have [see Problem 18] z = (¢’ )7ys(uv).Od

Problem 0.21. The restriction of s on M is bijective.

A hint. Use the following result. Let f : X — Y be a morphism of
algebraic varieties such that f : X — Y is a bijection. Then f: X — Y
is a homeomorphism.

Corollary 0.22. For any connected solvable group G and a semisimple
s € G the centralizer Zg(s) is connected.

Proof. As follows from Theorem 9 we have a decomposition G =
TG, where T is a maximal torus of G containing s. Then Zg(s) =
TZg,(s). So it is sufficient to show that the group Zg, (s) is connected.
As follows from Theorem 14 we have a bijection 7 : Zg,(s) X M — G,,.
So Zg,(s) is connected. [



