Problem 0.1. Let $\underline{f}: \underline{X} \to \underline{Y}$ be a morphism of algebraic varieties, \underline{X} is affine and irreducible and $f: X \to Y$ is a bijection. Then dim(X) = dim(Y)

Definition 0.2. A *curve* is an algebraic variety of dimension 1.

Remark. I always assume that curves are irreducible.

Let \underline{X} be an irreducible affine variety, $f: \underline{X} \to \underline{C}$ be a non-constant morphism to a curve, $c \in Im(f), Y := f^{-1}(c)$.

Claim. Then dim(Y) = dim(X) - 1.

This is a very useful result but the proof of this result is based on some results from Commutative algebra [such as the Normalization Lemma of Noether] but the proof requires more extensive knowledge of Algebra then I assume. I'll prove a very special case of the theorem which will suffice for our needs. We start with the following general result.

Lemma 0.3. Let \underline{X} be an irreducible affine variety, $f: \underline{X} \to \underline{C}$ be a non-constant morphism to a curve, There exists a curve $Y \subset X$ such that the restriction of f on Y is not a constant.

Proof. It is clear (?) that we can assume that the curve C is affine. The proof is by induction in the dimension of X. If dim(X) = 1 then we can take Y = X. So assume that dim(X) > 1. It is sufficient to show the existence of a proper closed subset $Y \subset X$ such that that the restriction of f on Y is not a constant morphism.

Since dim(X) > 1 there exist (?) regular functions

$$g: X \to \mathbb{A}^1, r: C \to \mathbb{A}^1$$

such that $r \circ f$ and g are algebraically independent. Consider the map

$$\phi: X \to \mathbb{A}^2, x \to (r \circ f(x), g(x))$$

and define $X' := Im(\phi) \subset \mathbb{A}^2$. Then $X' \subset \mathbb{A}^2$ and since \mathbb{A}^2 is irreducible we see that $dim(\mathbb{A}^2 - X') < 2$. Therefore (?) there exists $b \in k$ such that the set $\{a \in k | (a,b) \notin X'\}$ is finite. Let $Y = g^{-1}(b)$. Then the restriction of f on Y is not a constant morphism. \square

Lemma 0.4. Let $f: \underline{X} \to \underline{C}$ be as Lemma 3 and assume that an algebraic group H acts on X without fixed points in such a way that fibers of f are H-orbits. Then dim(H) = dim(G) - 1.

Proof. As follows from Problem 1 we have $dim(f^{-1}(x)) = dim(H)$ for all $x \in X$. Since X is irreducible we see that dim(H) < dim(G). Assume that dim(H) < dim(G) - 1. Let $Y \subset G$ be a curve as in

Lemma 3 and consider the map $a: H \times Y \to G$ given by a(h, y) := hy. Since f(Y) is not constant the image Im(f) is dense in C and therefore the subset $Z := a(H \times Y)$ is dense in X. So

$$dim(H) + 1 = dim(H \times Y) \ge dim(Z) = dim(X)$$

So $dim(H) \ge dim(X) - 1.\square$

Problem 0.5. a) Let $\underline{f}: \underline{X} \to \underline{Y}$ be a morphism of irreducible algebraic varieties such that f(X) is dense in Y.

- a) There exists a closed subvariety Z of X such that dim(Z) = dim(Y) and f(Z) is dense in Y.
- b) Assume that an algebraic group H acts on X without fixed points in such a way that fibers of f are H-orbits. Then dim(H) = dim(X) dim(Y).

Lemma 0.6. Let $\underline{X}, \underline{Y}$ be irreducible algebraic varieties and $\underline{p} : \underline{X} \to \underline{Y}$ a morphism such that p(X) is dense in Y and there exists an non-empty open subset U of Y such that $p^{-1}(u)$ is finite for all $u \in U$. Then $dim(\underline{X}) = dim(\underline{Y})$.

Remark. The conclusion of the Lemma is true under the much weaker assumption. It is sufficient to know that there exists one $y \in Y$ such that the set $p^{-1}(y)$ is finite and not empty.

Proof. Since the image p(X) is dense in Y it is easy to see (?) that $dim(\underline{X}) \geq dim(\underline{Y})$. Assume that dim(X) > dim(Y). One can easily reduce the proof to the case when $\underline{X} = (X, A)$ and $\underline{Y} = (Y, B)$ are affine and the map $p: X \to Y$ is surjective. Since p(X) is dense in Y we see that $p^*: B \to A$ is an imbedding and we consider B as a subring of A.

Let F, E be the fields of fractions of the rings A, B. We want to show that $trdeg_k(B) = trdeg_k(A)$. Assume that $trdeg_k(B) < trdeg_k(A)$. Then we can find (?) $f \in A$ such that for any $b_0, ...b_n \in B, b_n \neq 0$ we have $\sum_{i=0}^n b_i f^i \neq 0$. Let $Z \subset Y \times k$ be the image of the map $x \to (p(x), f(x))$. Since Z is constructible we see (?) that Z is dense in $Y \times k$ and therefore there exists a closed proper subset $W \in Y \times k$ such that $Z \supset (Y \times k) - W$. Since Y is irreducible and W is proper subset of $Y \times k$ the intersection $(U \times k) \cap W$ is a proper subset of $U \times k$. Therefore (?) there exists $u \in U$ such that the intersection $(\{u\} \times k) \cap W$ is finite. But then the fiber $p^{-1}(u) = \{u\} \times k \cap Z$ is infinite. \square

- **Lemma 0.7.** a) If $P \subset G$ is a parabolic subgroup then for any action of \underline{G} on \underline{X} and a point $x \in X$ such that $P \subset St_x$ the orbit $\Omega(x) \subset X$ is closed and complete.
- b) A closed subgroup $P \subset G$ is parabolic iff there exists a finite dimensional representation $\rho: G \to GL(V)$ and a line $L \subset V$ such that $P = St_L$ and the orbit $\Omega(L) \subset \mathbb{P}(V)$ is closed.
- c) If G is connected then $Z^0(G) \subset Z(B) \subset Z(G)$ where Z(G) is the center of G and $B \subset G$ is a Borel subgroup.
 - d) If G is connected and B is nilpotent then B = G.

Proof of a). As follows from the proof of Proposition 14 there exists a finite dimensional representation $\rho: G \to GL(V)$ and a line $L \subset V$ such that $P \supset St_L$ and the orbit $\Omega(L) \subset \mathbb{P}(V)$ is closed. We can assume (?) $\Omega(x) \subset X$ is dense. Let $Y = \Omega(L)$. Consider the G orbit Z of the point $(x, L) \in X \times Y$ of diagonal action of G on $X \times Y$.

Claim 0.8. $Z \subset X \times Y$ is closed.

Proof of Claim. It is clear (?) that the restriction q of the projection $p_Y: X \times Y \to Y$ on Z is a bijection. Consider the closure \bar{Z} . Since Y is a G-orbit all the fibers of restriction \bar{q} of the projection p_Y to \bar{Z} are isomorphic. But this implies (?) that they consists of one point. Since $q: Z \to Y$ is onto we see that $\bar{Z} = Z$. \square

Since Y is complete the projection $p_X(Z) \subset X$ is closed and proper [see Problem 5.3]. \square

- **Proof of b).** It is easy to derive (?) from the part a) and the Chevalley theorem that for any for any parabolic subgroup $P \subset G$ there exists a finite dimensional representation and a line $L \subset V$ such that $P = St_L$ and the orbit $\Omega(L) \subset \mathbb{P}(V)$ is closed. Conversely, let $\rho: G \to GL(V)$ be Choose a Borel subgroup B'. As follows from Proposition 5.14 there exists a point $x \in \Omega(L)$ such that $B' \subset St_x$. Let $g \in G$ be such that x = gL. But then $B := g^{-1}B'g \subset P = St_L.\square$
- **Proof of c)**. Since $Z^0(G)$ is connected and solvable it lies in some Borel subgroup B'. But since B and B' are conjugate $Z^0(G)$ lies in B. But then $Z^0(G) \subset Z(B)$.

To finish the proof of c) we have to show that any $z \in Z(B)$ belongs to Z(G). Fix $z \in Z(B)$ and consider the morphism $f : \underline{G} \to \underline{G}, g \to gzg^{-1}$. Since $z \in Z(B), f$ factors through a morphism $\overline{f} : \underline{G/B} \to G$. Since G/B is complete and G is affine and f(e) = z we see that $\overline{f} \equiv z.\square$

Proof of d). The proof is by induction in dim(B). If $B = \{e\}$ the G = G/B is complete and affine. So $G = \{e\}$. If $B \neq \{e\}$ then [since B is nilpotent] $Z(B) \neq \{e\}$. Since $Z(B) \subset Z(G)$ we can replace G by G/Z(B), B by B/Z(B) and apply the inductive assumption. \square

Definition 0.9. a) We denote the algebraic variety $\underline{G/H}(\rho_0, L)$ by $\underline{G/H}$ and call the natural morphism $\underline{\phi}:\underline{G}\to\underline{G/H}$ the canonical projection.

- b) We define the stabilizer $St_{G/H} \subset G \times G/H$ of the action of G on G/H by $St_{G/H} := \{(g, x) | gx = x\}$ and write $X_{G/H} : p_G(St_{G/H}) \subset G$.
 - c) For any $h \in H$ we define $Y_h := \{ y \in G/H | y^{-1}hy \in H \}.$

Problem 0.10. Show that

- a) The stabilizer $St_{G/H}$ is a closed subset of $G \times G/H$.
- b) $dim(St_{G/H}) = dim(G)$
- [A hint] Use the result of Problem 5.
- c) If $H \subset G$ is a parabolic subgroup then the image X of $St_{G/H}$ under the projection $G/H \times G \to G$ [= $\bigcup_{g \in G} gHg^{-1} \subset G$] is closed.

Lemma 0.11. Assume that the there exists an open dense subset U of H such that the sets $Y_u, u\underline{U}$ are finite. Then $X = \bigcup_{g \in G} g^{-1}Hg$ is dense in G.

Proof. Let $V := \bigcup_{g \in G, u \in U} g^{-1}ug \subset St_{G/H}$ and $\pi : V \to G$ be the restriction of the projection $p_G : G/H \times G \to G$ on $V, Z := \pi G(V)$. Since G is irreducible it is sufficient to show that dim(Z) = dim(G).

Since for any $v = g^{-1}ug$ the fiber $\pi^{-1}(\pi(v)) = Y_u$ are finite it follows from Lemma 6 that $dim(Z) = dim(V) = dim(G) = dim(St_{G/H}) = dim(G)$.

Solvable groups

Let T_n be the group of upper-triangular $n \times n$ -matrices and $U_n \subset T_n$ the subgroup of unipotent upper-triangular matrices.

Problem 0.12. a) Let G be a closed connected subgroup of T_2 . Then either G = (e) or $G = U_2$ or G is conjugated to D_2 or $G = T_2$.

b) For any closed connected solvable group G the subset $G_u \subset G$ of unipotent elements is a closed normal subgroup of G.

Lemma 0.13. a) Let \underline{G} be a commutative connected affine algebraic group and G_s , G_u be the subsets of semisimple and unipotent elements. Then G_s , G_u are closed subgroups of G and $G = G_sG_u$.

b) Let \underline{G} be a solvable connected affine algebraic group such that all $g \in G$ are semisimple. Then \underline{G} is diagonalizable. [that is \underline{G} is isomorphic to a subgroup of the group \underline{D}_n of diagonal matrices].

Proof of a). By the Levi-Kolchin Theorem we can assume that $G \subset T_n$. It is clear (?) that $G_u = G \cap U_n$. So $G_u \subset G$ is closed.

Since \underline{G} be a commutative it is clear (?) that the subset $G_s \subset G$ is a subgroup. Moreover we can (?) choose a basis in k^n such that $G_s \subset D_n$ where $D_n \subset GL_n(k)$ is the subgroup of diagonal matrices. But then $\bar{G}_s \subset G \cap D_n = G_s$. \square

Proof of b). As before we assume that $G \subset T_n$. Then the commutator [G, G] lies in the subgroup U_n of unipotent upper-triangular matrices. Since all elements of G are semisimple we see that G is commutative. So we can choose a basis in k^n such that $G_s \subset D_n$. \square

Theorem 0.14. a) There exists a torus $\underline{T} \subset \underline{G}$ such that the map $T \times G_u \to G, (t, u) \to tu$ is one-to-one and onto,

b) If $\underline{T}' \subset \underline{G}$ is any maximal torus in \underline{G} then there exists $u \in G_u$ such that $uT'u^{-1} \subset T$.

Remark. One can show that the map $\underline{T} \times \underline{G}_u \to \underline{G}, (t, u) \to tu$ defines an isomorphism of algebraic varieties.

Proof. We will prove the Theorem by induction in dim(G). So we assume that the result is known for all connected solvable groups \underline{H} such that $dim(\underline{H}) < dim(\underline{G})$.

Since \underline{G} is a solvable connected affine algebraic group we can assume that G is a subgroup of the group T_n . Let Λ be the set of pairs

$$\Lambda := \{(i,j)\}, 1 \leq i < j \leq n, \Lambda^* := \Lambda \cup \infty$$

We define an order on Λ^* by saying that (i, j) < (p, q) if either

$$j - i < q - p$$
 or $j - i = q - p$ and $i < p$

and say that $\infty > (i, j)$ for $1 \le i, j \le n$.

For any pair $(i, j), 1 \leq i, j \leq n$ we can consider the (i, j) matrix coefficient as a function

$$a_{ij}: \underline{T}_n \to \mathbb{A}^1, a_{ij}(X):=x_{i,j} \text{ for } X=(x_{p,q}), 1 \leq p, q \leq n$$

By the definition $a_{ij} = 0$ is i > j. For any subset $X \subset T_n$ we define $\Lambda(X) \subset \Lambda$ by

$$\Lambda(X) = \{ \lambda \in \Lambda | a_{\lambda}(X) \neq 0 \}$$

and define $\tilde{\lambda}(X) \in \Lambda$ by $\tilde{\lambda}(X) := \min_{\lambda \in \Lambda(X)} \lambda$. So $\tilde{\lambda}(X) = \infty$ iff $X \subset D_n$. We define $\lambda(X) := \max_{r \in T_n} \tilde{\lambda}(rXr^{-1})$. It is clear that it is sufficient to prove Theorem in the case when $\lambda(G) = \lambda(G)$. So we assume from now on that $\lambda(G) = \lambda(G)$.

Let $(i, j) = \lambda(G)$. Consider a map $\phi: G \to T_2$ given by

$$\phi(g) := \begin{pmatrix} a_{ii}(g) & a_{ij}(g) \\ 0 & a_{jj}(g) \end{pmatrix}$$

 $\phi(g):=\begin{pmatrix}a_{ii}(g)&a_{ij}(g)\\0&a_{jj}(g)\end{pmatrix}$ It is easy to see that the map $\phi:G\to T_2$ is homomorphism of algebraic groups.

Lemma 0.15. $Im(\phi) \supset U_2$

Proof of Lemma. If U_2 does not lie in \bar{G} then it follows from Problem 7 that there exists $\bar{r} \in T_2$ such that $\bar{r}\bar{G}\bar{r}^{-1} \subset D_2$. Choose a preimage $r \in G$ of \bar{r} . Then (?) If we have $a_{ij}(rgr^{-1}) = 0$ for all $g \in G$ and therefore $\tilde{\lambda}(rGr^{-1}) < (i,j)$. But this contradicts the assumption that $\lambda(G) = \lambda(G)$. So $Im(\phi) \supset U_2$.

Set $H := \phi^{-1}(D_2) \subset G$ and define

$$f: \underline{G} \to \mathbb{A}^1, f(g) := a_{ii}^{-1}(g)a_{ij}(g)$$

Since $f(hg) = f(g), h \in H, g \in G$ it follows from Lemma 4 that dim(H) = dim(G) - 1?). Let $\underline{H}^0 \subset \underline{H}$ be the connected component of \underline{H} containing e.

Lemma 0.16. $H^0G_u = G$

Proof. Since G_u is a normal subgroup of G the set H^0G_u is a subgroup of G. Since $G_u \subseteq H^0$ and $dim(\underline{H}^0) = dim(\underline{G}) - 1$ we have $dim(\underline{H}^0\underline{G}_u) = dim(\underline{G})$. Since \underline{G} is connected we $H^0G_u = G.\square$

Now we can prove the part a) of the Theorem. By the construction \underline{H}^0 is a solvable connected affine algebraic group and $dim(\underline{H}^0)$ < $dim(\underline{G})$. By the inductive assumptions there exists a torus $\underline{T} \subset \underline{H}$ such that the map the map $T \times H_u^0 \to H^0$, $(t, u) \to tu$ is one-to-one and onto. Therefore the map $T \times G_u \to G$, $(t, u) \to tu$ is onto. Since $T \cap G_u = (e)$ the part a) of Theorem is proven. It is clear (?) that T is a maximal torus in G.

Now we prove the part b). Let $\underline{T}' \subset \underline{G}$ be a maximal torus. Consider $\underline{S'} := \phi(\underline{T'}) \subset \underline{T}_2$. As follows from Problem 7 there exists $\bar{u} \in U_2$ such that $\bar{u}S'\bar{u}^{-1} \subset D_2$. By Lemma 10 there exists $u \in G_u$ such that $\bar{u} = \phi(u)$. Then $uT'u^{-1} \subset H$. The Theorem follows now from the inductive assumptions. \square

Corollary 0.17. Let \underline{G} be a connected affine algebraic group. $\underline{T},\underline{T}'\subset G$ be maximal tori. Then there exists $g\in G$ such that $gT'g^{-1}=T$.

Proof. Let $\underline{B} \subset \underline{T}, \underline{B'} \subset \underline{T'} \subset \underline{G}$ be maximal connected solvable subgroups containing T and T'. By the Borel's theorem there exists $g \in G$ such that $gB'g^{-1} = B$. Then $g'T'g'^{-1} \subset B$. But [by the part b) of Theorem] the tori $T, g'T'g'^{-1} \subset B$ are conjugate in $B.\Box$

Let U be a connected unipotent normal subgroup of an algebraic group G and $s \in G$ a semisimple element. Define

$$\gamma_s(u) := usu^{-1}s^{-1}, u \in U, M := Im(\gamma_s), C := Z_U(s)$$

Problem 0.18. If $x \in Z(U), y \in U$ then $\gamma_s(xy) = \gamma_s(x)\gamma_s(y)$

Theorem 0.19. The product morphism $\tau: C \times M \to U$ is bijective.

Proof. To prove the injectivity of τ is it is sufficient to show that $C \cap M = \emptyset$. Choose any $c \in C \cap M$. Since $c \in M$ we have $c = usu^{-1}s^{-1}, u \in U$. Then $cs = usu^{-1}$. Since $c \in C$ the product cs is the Jordan decomposition of the semisimple element usu^{-1} . It follows from the uniqueness of Jordan decomposition that $c = e.\Box$

To prove the surjectivity of τ we consider first the case when U is commutative. Then [see Problem 18] τ and γ_s are group homomorphsims and $C = Ker(\gamma_s)$).

Since $\gamma_s: U \to M$ is a group surjective homomorphism we have dim(U) = dim(C) + dim(M). It follows from the injectivity of τ that $dim(Im(\tau)) = dim(U)$. Since U is connected we see that τ is onto.

We prove the general case by induction in dim(U). Let $V := Z(U)^0$. Then V is a connected normal subgroup of G, dim(V) > 0. If V = U then U is commutative and the result is already known. So we assume that $V \subsetneq U$. Define

$$G' := G/V, U' := U/V, s' := \pi(s) \in G'$$

where $\pi: G \to G'$ be the natural projection and denote by

$$\tau': C' \times M' \to U', \tau_V: C_V \times M_V \to V$$

the maps corresponding to the triples (G', ', s') and (G, V, s). By the inductive assumptions we know that that maps τ' and τ_V are bijections.

Claim 0.20. For any $c' \in C'$ there exists $c \in C$ such that $c' = \pi(c)$.

Proof of Claim. Choose any $\tilde{c} \in U$ such that $c' = \pi(\tilde{c})$. Then we have $s\tilde{c}s^{-1} = \tilde{c}v, v \in V$. We want to find $y \in V$ such that $s(\tilde{c}y)s^{-1} =$

 $\tilde{c}y$. For any $y \in V$ we have

$$s(\tilde{c}y)s^{-1} = s\tilde{c}s^{-1}sys^{-1} = \tilde{c}vsys^{-1} = \tilde{c}yy^{-1}vsys^{-1} = (\tilde{c}y)vsys^{-1}y^{-1}$$

since V is commutative. So we want to find $y \in V$ such that $vsys^{-1}y^{-1} = e$. As follows from the the surjectivity of τ_V we we can find $c \in U$ such that $\pi(c) = c'$ and $scs^{-1} = cz, z \in C_V$. But the $z \in C \cap M = \{e\}.\square$

To prove the surjectivity of τ we have to show the existence of a decomposition $x = cm, c \in C, m \in M$ for any $x \in U$. Let $x' = \pi(x) \in U'$. As follows from the surjectivity of τ' we can write $x' = c'u', c' \in C', m' \in M'$. Let $c \in C$ be a preimage of c' as in the Claim. We have

$$x = c\tilde{v}usu^{-1}s^{-1}, u \in U, c \in C, \tilde{v} \in V$$

As follows from the surjectivity of τ_V we have

$$x = cc'vsv^{-1}s^{-1}usu^{-1}s^{-1}, u \in U, c, c' \in C, v \in V$$

Since $v \in Z(U)$ we have [see Problem 18] $x = (cc')\gamma_s(uv).\square$

Problem 0.21. The restriction of γ_s on M is bijective.

A hint. Use the following result. Let $\underline{f}: \underline{X} \to \underline{Y}$ be a morphism of algebraic varieties such that $f: X \to Y$ is a bijection. Then $f: X \to Y$ is a homeomorphism.

Corollary 0.22. For any connected solvable group G and a semisimple $s \in G$ the centralizer $Z_G(s)$ is connected.

Proof. As follows from Theorem 9 we have a decomposition $G = TG_u$ where T is a maximal torus of G containing s. Then $Z_G(s) = TZ_{G_u}(s)$. So it is sufficient to show that the group $Z_{G_u}(s)$ is connected. As follows from Theorem 14 we have a bijection $\tau: Z_{G_u}(s) \times M \to G_u$. So $Z_{G_u}(s)$ is connected. \square