
Definition 0.1. Let G be an affine group. A character of G is a group
homomorphism χ : G → Gm. We denote by X(G) [or X(G)] set of
characters of G. The set X(G) has a group structure defined by

(χ′χ′′)(g) := χ′(g)χ′′(g)

Remind that we denoted by Dn(k) the subgroup of diagonal matrices
in GLn(k).

Lemma 0.2. Let G = (G, A) be an affine group. The following three
conditions are equivalent.

a) G is commutative and all elements of G are semisimple.

b) G = (G, A) is isomorphic [as an affine group] to a subgroup of
Dn(k).

c) A is generated [as a vector space] by χ ∈ X(G).

Proof 0.3. I’ll only outline the proof and leave for you to fill the
details.

a) ⇒ b). As follows from Theorem 2.1 we can realize G as an alge-
braic subgroup of GLn(V ) where V is a finite-dimensional vector space.
If every g ∈ G is a scalar matrix then there is nothing to prove. If G
contains not-scalar matrices choose such g ∈ G. Since g is semisimple
we have a decomposition of V as a direct sum V = ⊕µVµ such that
g|Vµ

= µIdVµ
. Since the subspaces Vµ are G-invariant (?) we finish by

induction in dim(V ).

b) ⇒ c). Since G ⊂ Dn(k) is a closed subset and the restriction of
any character of Dn(k) is a character of G it is sufficient to show that
k[Dn] is generated by χ ∈ X(Dn). Let Ti, 1 ≤ i ≤ n be the function on
Dn(k) which associates to a diagonal matrix it i − th diagonal entry.
It is easy to see that k[Dn] = k[T±

i ], 1 ≤ i ≤ n and that the functions∏n

i=1 T ni

i , 1 ≤ i ≤ n, ni ∈ Z are characters of Dn(k).

c) ⇒ a). We first show that G is commutative that is we show that
g1g2g

−1
1 g−1

2 = e for all g1, g2 ∈ G. Let g := g1g2g
−1
1 g−1

2 . It is clear that
χ(g) = χ(e) = 1 for all χ ∈ X(G). Since A is generated by χ ∈ X(G)
we see that f(g) = f(e) for all f ∈ A. So g = e.

Let l be the left regular representation of G. To show that all ele-
ments of G are semisimple it is sufficient to show that for any g ∈ G the
locally finite operator l(g) : A → A is semisimple. But A is spanned
by vectors {χ}, χ ∈ X(G) which are eigen-vectors for l(g).

Definition 0.4. An affine group is diagonalizable if it satisfies the
conditions of this Lemma.
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Problem 0.5. Show that

a) For any affine group G the characters χ ∈ X(G) are linearly
independent.

b) For any diagonalizable affine group G the group X(G) of charac-
ters is a finitely generated Abelian group and the order of the torsion
part is prime to ch(k). Moreover X(G) is torsion free iff g is connected.

Sheaves

Definition 0.6. a) Let X be a topological space. A presheaf of sets
FX on X is a rule which

(i) associate to any open subset U ⊂ X of X a set F(U) and

(ii) for any inclusion U ′ ⊂ U of open subsets of X a map

rU,U ′ : F(U) → F(U ′)

such that rU,U = Id and

rU ′,U ′′ ◦ rU,U ′ = rU,U ′′

for any triple U ′′ ⊂ U ′ ⊂ U of open subsets.

b) we say that a presheaf F on X is a sheaf if for any open cover
Ui, i ∈ I of U and any fi ∈ F(Ui), i ∈ I such that

rUi,Ui∩Uj
(fi) = rUj ,Ui∩Uj

(fj), i, j ∈ I

there exists unique f ∈ F(U) such that rU,Ui
(f) = fi, i ∈ I.

c) a (pre)sheaf of groups (algebras) on X is a (pre)sheaf F on X
such that all the sets F(U) have a group (algebra) structure and the
restriction maps rU,U ′ are group (algebra) homomorphisms.

d) If F ,F ′ are (pre)sheaves on X. A morphism a : F → F ′ is a rule
which associates to any open subset U ⊂ X a map a(U) : F(U) →
F ′(U) such that for any inclusion U ′ ⊂ U of open subsets of X we have
rU,U ′ ◦ a(U) = a(U ′) ◦ rU,U ′.

e) A subset B of open subsets of a topological space X is a represen-
tative collection of the topology on X if X = ∪U, U ∈ B and for any
U ′, U ′′ ∈ B.

f) Let B a representative collection of the topology on X. A B-
presheaf FB on X is a rule which

(i) associate to any open subset U in B a set F(U) and
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(ii) for any inclusion U ′ ⊂ U, U ′, U ∈ B a map rU,U ′ : F(U) → F(U ′)
such that rU,U = Id and

rU ′,U ′′ ◦ rU,U ′ = rU,U ′′

for any triple U ′′ ⊂ U ′ ⊂ U, U ′′, U ′, U ∈ B.

g) a B-presheaf F on X is a B-sheaf if for any open cover Ui, i ∈ I
of U, Ui, U ∈ B and any fi ∈ F(Ui), i ∈ I such that

rUi,Ui∩Uj
(fi) = rUj ,Ui∩Uj

(fj), i, j ∈ I

there exists unique f ∈ F(U) such that rU,Ui
(f) = fi, i ∈ I.

Problem 0.7. Let X be a topological space. Show that

a) For any B-sheaf FB on X there exists a sheaf F on X and a family
of isomorphisms b(U) : FB(U) → F(U), U ∈ B such that rU,U ′ ◦ b(U) =
b(U ′) ◦ rU,U ′ for any U ′, U ∈ B, U ′ ⊂ U .

b) if (F ′, b′(U)) is another such data then there exists unique isomor-
phism a : F → F ′ such that for any U ∈ B we have b′(U)◦a(U) = b(U).

In other words the sheaf F is defined uniquely up to the unique
isomorphism.

c) Let F be a sheaf on X and Y be a closed subset of X. Then there
exists a unique sheaf FY on Y such that for any open U ⊂ X we have

FY (U ∩ Y ) = the restriction of F(U) on Y .

d) Let X = (X, A) be an affine variety. Show that set B of basic
subsets Ua ⊂ X, a ∈ A is a representative collection of the Zariski
topology on X and that we have an inclusion Ub ⊂ Ua, a, b ∈ A iff
there exists n ∈ N, c ∈ A such that bn = ac.

Definition 0.8. Let (X, A) be an affine algebraic variety and B the
representative collection of the topology on X consisting of basic sub-
sets Ua, a ∈ A.

For any A-module M and a basic subset Ua ⊂ X we define the set

FM(Ua) := Ma, a ∈ A

where Ma is the localization of M in respect of the set {an}, n ∈ N.
Given b, a ∈ A such that Ub ⊂ Ua we define a map ra,b : Ma → Mb by

ra,b(m/ad) := mcd/bnd ∈ Mb

where bn = ac.

It is easy to see (?) that the image ra,b(m/ad) ∈ Mb is well defined
[that is does not depend on a choice of a decomposition bn = ac] and
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that (FM , ra,b) is a B-presheaf on X [that is the conditions (i) and (ii)
of the definition 6 are satisfied].

Main Theorem 0.9. For any A-module M the B-presheaf FM is a
B-sheaf on X

Proof 0.10. Proof. Let Ufi
, fi ∈ A, i ∈ I be a cover of X and ni ∈ Mfi

be such that rfi,fifj
(ni) = rfj ,fifj

(nj) for all i, j ∈ I. We have to show
that there exists unique m ∈ M such that ni is the image of m in Mfi

for all i ∈ I.

Since the space X is quasi-compact we can assume that the set I
is finite. Consider the ideal (fi) ⊂ A generated by fi, i ∈ I. Since
Ufi

, i ∈ I is a cover of X there is no maximal ideal m of A containing
(fi). So (fi) = A. Therefore there exists gi ∈ A such that

∑
i∈I figi = 1.

First we prove the uniqueness of m ∈ M . Suppose we have two such
elements m′, m′′ ∈ M . Let n := m′ − m′′. Then for any i ∈ I the
image of n in Mfi

is equal to 0. Therefore there exist ri ∈ N such that
f ri

i n = 0. Let r := maxi∈Iri. Since the ideal generated by elements
fi, i ∈ I is equal to A the ideal generated by elements f r

i , i ∈ I is
also equal to A(?). Therefore there exists g′

i ∈ A, i ∈ I such that∑
i∈I g′

if
r
i = 1. Then we have

n = (
∑

i∈I

g′
if

r
i )n =

∑

i∈I

g′
if

r
i n = 0

I’ll prove the existence in the case when I = (1, 2) and leave for you to
extend the proof to the general case. We have to show that for any a1, a2

such that the ideal (a1, a2) is equal to A and m1/a
q
1 ∈ Ma1

, m2/a
q
2 ∈ Ma2

such that (m1a
q
2 − m1a

q
2)(a1a2)

p = 0, p >> 0 there exists m ∈ M such
that (m1−aq

1m)ar
1 = (m1−aq

1m)ar
1 = 0 for r >> 0. By replacing a1, a2

by their powers we can assume that we have m1/a1 ∈ Ma1
, m2/a2 ∈

Ma2
such that (a2m1 − a1m2)(a1a2) = 0.

Claim 0.11. There exists m′ ∈ M such that (m1 − a1m
′)a1 = 0.

Choose b1, b2 ∈ A such that a1b1 + a2b2 = 1 and write

m1 = a1b1m1 + a2b2m1 = a1b1m1 + b2a1m2 + b2c, n := a2m1 − a1m2

But n = a1b1n+a2b2n and therefore m1 = a1m
′+d where m′ := b1m1+

b2m2+b2b1n, d := a2b2n. Since a1d = 0 we see that (m1−a1m
′)a1 = 0.�

Analogously you can find m′′ ∈ M such that (m2 − a2m
′′)a2 = 0.

Now we can replace m1/a1 by m′ and m2/a2 by m′′. So we have to show
that for any m′, m′′ ∈ M such that (m′ − m′′)(a1a2) = 0 there exists
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m ∈ M such that (m − m′)a1 = (m − m′′)a2 = 0. Since m′ − m′′ =
a1b1(m

′ − m′′) + a2b2(m
′ − m′′) can take

m := m′ − a2b2(m
′ − m′′) = m′′ + a1b1(m

′ − m′′)�

Definition 0.12. a) As follows from Problem 7 the B-sheaf FM on X
defines a sheaf on X which we also denote by FM .

b) The sheaf OX := FA is called the structure sheaf of (X, A). It has
a natural structure of a sheaf of rings.

b) The sheaves on F on X of the form FM where M is an A-module
are called quasi-coherent sheaves. They have a natural structure of
a sheaves of OX-modules [that is for any open U ⊂ X,FM(U) has a
natural structure of an OX(U)-module].

Algebraic varieties

Definition 0.13. a) An algebraic prevariety is a pair X = (X,OX)
where X is a quasi-compact topological space, OX is a sheaf of rings
functions on X with values in k such that for any x ∈ X there exists on
open subset U ⊂ X, x ∈ U such that the pair (U,OX(U)) is isomorphic
to an affine algebraic variety.

b) An algebraic prevariety (X,OX) is an an algebraic variety iff the
diagonal [=image of ∆ : X → X × X] is closed in X × X.

c) Let X = (X,OX), Y = (Y,OY ) be algebraic varieties. A mor-
phism from X to Y is a continuous map φ : X → Y such that for any
open subset U of Y and any f ∈ OY (U) the function φ⋆(f) : V →
k, V := f−1(U) given by φ⋆(f) := f(φ(x) belongs to OX(V ).

Remark 0.14. As follows from Theorem 9 any affine algebraic variety
is an algebraic prevariety.

Problem 0.15. a) Show that

a) Any affine algebraic variety X is an algebraic variety which we
also denote by X. Moreover for any affine algebraic varieties X, Y the
set of morphisms from X to Y as algebraic varieties is the same as the
set of morphisms from X to Y as affine algebraic varieties.

b) Let X = (X,OX) be an algebraic variety and Y ⊂ X a closed
subset. Then the pair Y,OY where OY := OXY is an algebraic variety.

c) If (X,OX) is an algebraic variety and U, V ⊂ X are open affine
then U ∩V is also open affine and the images of OX(U) and OX(V ) in
OX(U ∩ V ) generate OX(U ∩ V ) as a subalgebra.
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d) If (X,OX) is an algebraic prevariety then X is a Noetherian topo-
logical space.

e) Let (X,OX), (Y,OY ) be algebraic prevarieties. Show that there
exists unique structure of an algebraic prevariety on the set X×Y such
that for any open affine subsets U ⊂ X, V ⊂ Y the subset U × V ⊂
X × Y is an open affine.

f) for any algebraic prevariety X the diagonal map ∆ : X → X ×X
is a homeomorphism of topological spaces.

g) ⋆. Let X be an algebraic prevariety, Ui, i ∈ I an open cover of X by
open affine. Then X is an algebraic variety iff for any i, j, 1 ≤ i, j ≤ m
the intersection Ui∩Uj is affine and the algebra OX(Ui∩Uj) is generated
by rUi,Ui∩Uj

(OX(Ui) and rUj ,Ui∩Uj
(OX(Uj)).

h) ⋆ Give an example of a sheaf of OX -modules over the line A
1 =

(K, K[t]) which is not a quasi-coherent sheaf.

Projective space P
n.

Definition 0.16. As a set Pn(k) is the set of all lines L ⊂ kn+1.
Equivalently Pn(k) = kn+1 −{0}/ ∼ where the equivalence relation ∼
is given by x ∼ y iff x = λy, λ ∈ k∗.

Let q : kn+1−{0} → P
n(k) be the natural projection. We write x∗ =

q(x) ∈ Pn(k) for the equivalence class of x = (x0, ..., xn) ∈ kn+1 − {0}
and call {xi}, 0 ≤ i ≤ n the homogeneous coordinates of x∗.

For any i, 0 ≤ i ≤ n we put

Ui := {(x0, ..., xn)∗ ∈ P
n(k)|xi 6= 0}

and define bijections φi : Ui → kn by

φi(x0, ..., xn) := (x−1
i x0, ..., x

−1
i xi−1, x

−1
i xi+1, ..., x

−1
i xn)

using the maps φi we will identify Ui with An.

We define a topology on Pn(k) by saying that a set U ⊂ Pn is open
iff for any i, 0 ≤ i ≤ n the set φi(U ∩ Ui) ⊂ Ui is open.

We define a presheaf OPn on Pn by defining

OPn(U) := {f : U → k|fUi
∈ OU∩Ui

, ∀i, 0 ≤ i ≤ n}

For any subset Z of Pn(k) we define Z∗ := 0 ∪ q−1(Z) ⊂ kn+1 and
I∗(Z) := I(Z∗) ⊂ k[xi], 0 ≤ i ≤ n.

Problem 0.17. Show that

a) OPn is a sheaf on P
n(k).
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b) P
n := (Pn(k),OPn) is an algebraic variety such that φi is a iso-

morphism between (Ui,OPn |Ui
) and An.

c) Any linear automorphism g of kn+1 defines an automorphism of
P

n [which we will also denote by g].

d) Let Z be a subset of Pn(k). Then Z is closed iff Z∗ is closed and
Z is irreducible iff Z∗ is irreducible.

e) The ideal I∗(Z) is homogeneous [ that is I∗(Z) is generated by
homogeneous polynomials ].

f) For any radical homogeneous proper ideal I∗ ⊂ k[xi] there exist
unique closed subset Z(I∗) ⊂ Pn(k) such that Z∗(I∗) = V(I∗).

g) Z(I∗) = ∅ iff I∗ = {f ∈ k[x0, ..., xn]|f(0) = 0}.
i)⋆ Let Y = (Y, A) be an affine algebraic variety. Describe a relation

between homogeneous ideals of A[xi], 0 ≤ i ≤ n and closed subvarieties
of Pn(k) × Y .

j) Let V be a finite-dimensional k-vector space. Define an algebraic
variety P(V ) = (P(V ),OP(V )) such that P(V ) is the set of lines in V .

h) Consider a map f : Pn(k) × Pm(k) → Pmn+m+n(k) given by

f((x0, ..., xn)∗, (y0, ..., ym)∗) := (xiyj)
∗

Show the image V n,m ⊂ Pmn+m+n(k) of f is closed and f defines an
isomorphism f : Pn(k) × Pm(k) → V n,m.

k) V 1,1 ⊂ P
3 is given by one homogeneous equation [ that is the ho-

mogeneous ideal I∗(V 1,1) ⊂ k[x0, ..., x3] is principal]. Find this equa-
tion.

Definition 0.18. Let V be an n-dimensional k-vector space. For any
m < n we denote by Λm(V ) the m-exterior power of V , by Grm(V )(k)
the set of m-dimensional subspaces L of V (k) and by φm : Grm(V ) →
P(Λm(V )) a map given by

φm(L) := Λm(iL)(ΛmL) ⊂ P(Λm(V ))

where iL : L → V is the natural imbedding.

Let ei, 1 ≤ i ≤ n be a basis of V . By the definition the vector space
Λm(V ) has a basis eī, ī ∈ I where I is the set subsets of [1, n] of size m.
For any ī ∈ I we denote by pī : V → Vī the natural projection where Vī

is the subspace spanned by ei, i ∈ ī. For any ī ∈ I we denote the subset
Uī ∈ Grm(V ) of subspaces W ⊂ V, dim(W ) = m such that restriction
of the projection pī on W defines an isomorphism pī : W → Vī.
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We denote by B(V )(k) the set of complete flags W1 ⊂ W2 ⊂ ... ⊂
Wn = V in V where Wi is an i-dimensional subspace of V and by

κ : B(V )(k) →
n−1∏

m=1

Grm(V )(k), κ(W1 ⊂ W2 ⊂ ... ⊂ Wd) = (W1, W2, ..., Wn−1

Problem 0.19. a) Construct a “natural” bijection Uī → kd [please
find d] and define a structure of an algebraic prevarity on Grm(V ).

Show that

b) ∪ī∈IUī = Grm(V ).

c) The image φ(Grm(V )) ⊂ P(Λm(V )) is closed and φ defines an
isomorphism of Grm(V ) with the image of φ in P(Λm(V )).

d) The image κ(B(V )(k)) in
∏n−1

m=1 Grm(V )(k) is closed and κ defines
an isomorphism of an algebraic variety B(V ) with the image of κ in∏n−1

m=1 Grm(V ).

e) In the case when n = 4, m = 2 the image Z := φ(Gr2(V )) ⊂
P(Λ2(V )) is closed is defined by one homogeneous quadratic equation.
Please find this equation.

f)⋆ Find the system of quadratic equations for the image φ(Grm(V )) ⊂
P(Λm(V )).

g)⋆⋆ Find the system of quadratic equations for the image κ in∏n−1
m=1 P(Λm(V )).

In the next problem you construct and study an important class of
sheaves on the projective space Pn called Line bundles .

Problem 0.20. a) Show that there exists unique sheaf O(r) and iso-
morphisms

φi : O(r)Ui
→ OUi

, 0 ≤ i ≤ n

such that for any i, j ∈ [0, n] the map

φiUi∩Uj
◦ φj

−1
Ui∩Uj

: OUi∩Uj
→ OUi∩Uj

is given by the multiplication by (xi/xj)
r.

b) For any linear automorphism g of kn+1 construct an isomorphism
g∗ : O(r) → g∗(O(r)) [ see the definition 5.1] in such a way that for
any two linear automorphisms g′, g′′ of kn+1 we have (g′g′′)∗ = g′

∗g
′′
∗ .

c) Evaluating g∗ on O(r)(Pn) we obtain a representation of the group
GL(n + 1, k) = Aut(kn+1) on the space O(r)(Pn).
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d) Show that for any open subset U ⊂ Pn we have O(r)(U) = {f ∈
O(q−1(U)|f(λx) = λrf(x)}, λ ∈ k∗.

e) Find dim(O(r)(Pn)) and describe the representation of the group
GL(n + 1, k) = Aut(kn+1) on the space O(r)(Pn).


