
Definition 1. a) An operator L on a Hilbert space H is compact if it can be
written in the form

L(h) =
∞∑

n=1

ρn⟨fn, h⟩gn

where f1, . . . , fn, ..., g1, . . . , gn, ... are orthonormal sets, ρ1, . . . , ρn, ... are real
numbers such that ρn → 0 for n→ ∞ where the sum converges in norm.

b) An operator L is Nuclear if it is compact and
∑∞

n=1 |ρn| <∞.

A nuclear operator on a Hilbert space has the important property that its trace
may be defined so that it is finite and is independent of the basis. Given any
orthonormal basis {ψn} for the Hilbert space, one may define the trace as TrL as
the sum

∑
n⟨ψn,Lψn⟩. Furthermore, this trace is identical to the sum over the

eigenvalues of L (counted with multiplicity).

The definition of trace-class operator was extended to Banach spaces by Alexan-
der Grothendieck in 1955.

Definition 2. a) If A is a Banach space we denote by A′ be the dual Banach
space which is the set of all continuous or (equivalently) bounded linear functionals
on A with the usual norm.

b) Let A and B be Banach spaces. An operator L : A → B is nuclear if
there exist sequences of vectors {gn} ∈ B with ∥gn∥ ≤ 1 , functionals {f∗n} ∈ A′

with ∥f∗n∥ ≤ 1 and complex numbers {ρn} with
∑

n |ρn| < ∞, such that L(a) =∑
n ρnf

∗
n(a)gn, a ∈ A with the sum converging in the operator norm.

Definition 3. a) A seminorm on a vector space V is a function p on V , such
that

p(v) ≥ 0, p(cv) = |c|p(v), p(v + w) ≤ p(v) + p(w), v, w ∈ V, c ∈ R

It is clear that Ker(p) := {v ∈ V |p(v) = 0} is a subspace of V . A seminorm is a
norm if Ker(p) = {0}.

b) A locally convex topological vector space is a vector space V whose topology
is defined by some family pi, i ∈ I of seminorms. For any seminorm p, the unit ball
Bp = {v ∈ V |p(v) ≤ 1} is a closed convex symmetric neighborhood of 0. Conversely
any closed convex symmetric neighborhood of 0 is the unit ball of some continuous
seminorm. If p is a seminorm on V , we write Vp for the Banach space given by
completing V using the seminorm p. There is a natural map from V to Vp whose
kernel is Ker(p).

c) A nuclear space is a locally convex topological vector space such that for any
seminorm p we can find a larger seminorm q so that the natural map from Vq to Vp
is nuclear.

d) A locally convex topological vector space V is Frechet if V is complete and
the topology on V is given by a countable family of seminorms.

Examples.

Any finite-dimensional vector space is nuclear.
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There are no infinite-dimensional Banach spaces that are nuclear. In practice a
sort of converse to this is often true: if a ”naturally occurring” topological vector
space is not a Banach space, then there is a good chance that it is nuclear.

The simplest infinite example of a nuclear space is the space C of rapidly decreas-
ing sequences c = (c1, c2, ...) (”Rapidly decreasing” means that sequences (cnP (n))
are bounded for any polynomial P ). For each real number s, we denote by Cs the
completion of C in the norm ps(C) := sup |cn|ns.

Whenever s ≥ t there is a natural map from Cs to Ct which is nuclear if s > t+1.
So the space C is nuclear.

The space of smooth functions on any compact manifold is nuclear.

The Schwartz space of smooth functions on Rn for which the derivatives of all
orders are rapidly decreasing is a nuclear space.

The space of entire holomorphic functions on the complex plane is nuclear.

The inductive limit of a sequence of nuclear spaces is nuclear.

The strong dual of a nuclear Frechet space is nuclear.

The product of a family of nuclear spaces is nuclear.

The completion of a nuclear space is nuclear (and in fact a space is nuclear if
and only if its completion is nuclear).

Properties.

Nuclear spaces are in many ways similar to finite-dimensional spaces and have
many of their good properties.

A closed bounded subset of a nuclear Frechet space is compact. (A subset B of
a topological vector space V is bounded if for any neighborhood U of 0 in V there
exists a positive real scalar c such that B ⊂ cU .)

Any subspace of a nuclear space and any quotient of a nuclear space by a closed
subspace is nuclear.

Definition 4. Let A and B be Banach spaces.

a) The algebraic tensor product A⊗B is the tensor product of A and B as vector
spaces without topology. Elements of A⊗B are finite sums x = Σn

i=1ai⊗ bi, ai ∈ A
and bi ∈ B for i = 1, . . . , n.

When A and B are Banach spaces a cross norm p on the algebraic tensor product
A⊗ B is any norm satisfying the conditions

p(a⊗ b) = ∥a∥∥b∥, p′(a′ ⊗ b′) = ∥a′∥∥b′∥, a ∈ A, a′ ∈ A′, b ∈ B, b′ ∈ B′.

where A′, B′ are the Banach spaces dual to A and B , and p′ is the dual norm
of p.

There is the largest cross norm π called the projective cross norm, given by

π(x) = inf{Σn
i=1∥ai∥∥bi∥ : x = Σai ⊗ bi}, x ∈ A⊗B

and also the smallest cross norm ε called the injective cross norm, given by
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ε(x) = sup{|(a′ ⊗ b′)(x)| : a′ ∈ X ′, b′ ∈ Y ′, ∥a′∥ = ∥b′∥ = 1}x ∈ A⊗B

The completions of the algebraic tensor product in these two norms are called
the projective and injective tensor products, and are denoted by A⊗̂πB and A⊗̂εB.
It is easy to see that π(x) ≥ ε(x) for all x ∈ A⊗B and therefore there is a canonical
map from A⊗̂πB to A⊗̂εB.

Remark. The norm used for the Hilbert space tensor product is not equal to
either of these norms.

Tensor products of locally convex topological vector spaces.

The topologies of locally convex topological vector spaces A and B are given by
families of seminorms. For each choice of seminorms on A and on B we define the
projective and injective seminorms on the algebraic tensor product A ⊗ B. These
families of norms define the projective and injective tensor products denoted by
A⊗̂πB and A⊗̂εB. As before there is a canonical map from A⊗̂πB to A⊗̂εB.

Theorem 1. If A is a nuclear space then for any locally convex topological
vector space B the canonical map from A⊗̂πB to A⊗̂εB is an isomorphism.

Definition 5. Let V,W be locally convex topological vector spaces. We say
that a continuous bilinear form β : V ×W → R is nuclear if there exist linear forms
λn ∈ V ′, νn ∈ W ′, 1 ≤ n < ∞ and continuous seminorms pV ′ , pW ′ on V ′,W ′ such
that∑

n pV ′(λn)pW ′(νn) <∞ and β(v, w) =
∑

n λn(v)νn(w).

Theorem 2 (The kernel theorem). Any bilinear form on V ×W where the
space V is nuclear is a nuclear bilinear form.

Measures. Definition 6. a) For any normalized (that is of the total volume
one) measure µ on a locally convex topological vector space V we denote by µ̃ the
Fourier transform of µ which is a complex-valued function on V given by

µ̃(y) :=

∫
v∈V

ei⟨v,y⟩dµ

b) A continuous function ϕ on a locally convex topological vector space A is
called a characteristic functional if ϕ(0) = 1, and for any complex numbers zj and
vectors xj ∈ A, j, k = 1, ..., n we have

n∑
j=1

n∑
k=1

zj z̄kϕ(xj − xk) ≥ 0.

It is easy to see that for any normalized measure µ on V the function µ̃ on V ′ is
a characteristic functional.

Theorem 3 (The BochnerMinlos theorem). Any characteristic functional
on a nuclear space V is the Fourier transform of a measure on the dual space V ′.

In particular, if A is the nuclear space of the form A =
∩∞

k=0Hk, where Hk

are Hilbert spaces, the Bochner Minlos theorem guarantees the existence of a

probability measure on the dual space A′ with the characteristic function e−
1
2∥y∥

2
H0 ,

that is, the existence of the Gaussian measure on the dual space. Such measure
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is called white noise measure. When A is the Schwartz space, the corresponding
random element is a random distribution.


