
One of the formulations of the quantum mechanics and the quantum field theory
is in terms of Feynman integrals which are integrals over an infinite-dimensional
manifoldX of fields. To define these integrals we have to define rigorously a measure
on X. So we start with a discussion of some elements of the measure theory on real
vector spaces.

Definition 1. We say that a function f on a vector space V is positive definite
if the following three conditions are satisfied.

a) f(0) = 1.

b) f(−v) ≡ f(v), v ∈ V where for a complex number z we denote by z̄ the
complex conjugate of z.

c) For any n > 0 and any n-tuple v̄ = {v1, ..., vn}, vi ∈ V the Hermitian n × n
matrix aij(w̄) := f(wi − wj) is non-negative.

Let V be a locally convex topological vector space and µ be a normalized measure
on the dual vector space V ∨ [that is

∫
V ∨ µ = 1]. We define the Fourier transform

of the measure µ as the function µ̃ on the dual space V given by

µ̃(v) :=

∫
V ∨

exp(
√
−1 < ϕ, v >)µ(ϕ), v ∈ V

Lemma 1. The Fourier transform of any normalized measure µ on V ∨ is positive
definite.

Proof. It is clear that µ̃ satisfies the conditions a) and b) of the Definition 1.
To prove the part c) one has to show that for any n complex numbers zi, 1 ≤ i ≤ n
and n vectors v1, ..., vn we have

∑n
i=1 µ̃(vi − vj)ziz̄j ≥ 0. But by the definition we

have
n∑

i=1

µ̃(vi − vj)ziz̄j =

∫
V

|
n∑

i=1

zi exp(
√
−1 < ϕ, vi >)|2µ(ϕ)

Theorem 1. ( Bochner) Any positive definite function f on a finite-dimensional
vector space V is the Fourier transform of the unique normalized measure on V ∨.

You can find a proof in Rudin, W. (1990), Fourier analysis on groups, Wiley-
Interscience.

Definition 2. Let V be a vector space. We say that a linear operator A :
V → V ∨ a positive-definite if the quadratic form QA(v) :=< A(v), v > /2 on V is
positive-definite.

Example. Let V be a finite-dimensional vector space and A : V → V ∨ be a
positive-definite linear operator. In this case the inverse operator A−1 : V ∨ →
V = (V ∨)∨ is also positive-definite and we can consider the positive-definite qua-
dratic form QA−1 on V ∨. We denote by µA the measure on V ∨ of the form
µA = cA exp(−A−1(v))dv∨ where dv∨ is an invariant Lebesgue measure on V ∨

and the constant cA ∈ R+ is such that the measure µA is normalized.

Lemma 2. µ̃A = exp(−QA).

Proof. By the definitions we have µ̃A(v) =
∫
V ∨ cA exp(−QA(ϕ)+

√
−1 < ϕ, v >

)dϕ for v ∈ V . Let ϕ0 := A(v) ∈ V ∨. Then

−QA(ϕ) +
√
−1 < ϕ, v >= −QA(ϕ+

√
−1ϕ0)−QA(v)
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and after the change of variables ϕ → ϕ+
√
−1ϕ0 we see that µ̃A(v) = exp(−QA)(v).

Please justify these arguments!!!

Definition 3. For any normalized measure µ on a vector space V ∨ we denote
by Wn(µ) the correlation function on V n given by ϕ1, ..ϕn ∈ V ∨

Wn(v1, .., vn) :=

∫
V ∨

< ϕ, v1 >< ϕ, v2 > ... < ϕ, vn > µ(ϕ)

[under the assumption of the convergence].
Corollary. For finite-dimensional vector space V and a positive-definite linear

map A : V → V ∨ we have

W2n+1(µA) ≡ 0,W2(µA)(v1, v2) = GA(v1, v2) whereGA(v1, v2) :=< v1, A
−1(v2) >

and W2n(µA)(v1, .., v2n) =
∑

σ W
σ
2n(µA)(v1, .., v2n) where

Wσ
2n(µA)(v1, .., v2n) :=

∏
i∈[1,2n]/σ

W2(µA)(vi, vσ(i))

where σ runs through the set of free involutions on the set [1, 2n]. In other words
σ runs through the set of parings on [1, 2n] and W σ

2n(µA)(v1, .., v2n) is the product
of the corresponding pairwise correlations.

Proof. Since the function < ϕ, v1 >< ϕ, v2 > ... < ϕ, v2n+1 > on V ∨ is odd and
the measure µA is invariant under ϕ → −ϕ we see that W2n+1(µA) ≡ 0. To com-
pute W2(µA)(v1, v2) we consider the value of second derivative ∂2/∂v1∂v2 of the
both sides of the equality

∫
V ∨ cA exp(−QA(v) +

√
−1 < ϕ, v >)dv = exp(−QA−1)

at ϕ = 0. To find W2n(µA)(v1, .., v2n) one has to apply the 2n-th derivative
∂2n/∂v1∂v2...∂v2n to the both sides of the same equality and to evaluate the result
at 0.

It is clear that using this Corollary we can compute the integral
∫
V ∨ P (ϕ)µA

for any polynomial function P on V ∨. Therefore we can also compute correlation
functions of measures µ of the form µ = µA exp(ϵP (ϕ)) for any polynomial function
P on V ∨ as formal power series in ϵ. The combinatorics of these computations is
performed in terms of Feynman graphs to be discussed later.

Now let’s consider the infinite-dimensional case. Let now V be a locally convex
topological vector space and f be a positive-definite function on V . One can asked
when is it a Fourier transform of a measure on V ∨.

Theorem 2 ( Minlos ). If V is a nuclear space then any positive-definite
function on V is a Fourier transform of the unique measure on V ∨.

You can find on my web page a definition and basic properties of nuclear spaces.
I will not repeat now the definition but will give a couple of examples.

a) For any compact C∞-manifold M the space S(M) of smooth functions on M
is a nuclear space.

b) The Schwartz space S(Rn) of rapidly decreasing smooth functions on Rn is a
nuclear space.

Let now V be a nuclear space and A : V → V ∨ be a positive-definite linear
operator. Then the function exp(−QA(v)) is positive definite and by the theorem
of Minlos is a Fourier transform of a measure µA on V ∨ which is called a Gaussian
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measure. It is easy to see that the correlation function of the measure µA are given
by the same formulas as in the finite-dimensional case.

Consider the case when M is a compact Riemannian C∞-manifold, V = S(M)
and A = (−∆+1)−1 where ∆ is the Laplacian. The corresponding measures µA on
the space D(M) of distributions correspond to free field theories and majority of
rigorous works on Quantum Field Theories are on the study of formal perturbations
of such measures.

Let’s analyze the corresponding correlation functions. Fix two points m1 ̸= m2

on M consider

W2(m1,m2) :=

∫
D(M)

ϕ(m1)ϕ(m2)µA(ϕ)

Since elements of D(M) are distributions the linear functionals ϕ → ϕ(m),m ∈ M
are not well defined but it is easy to see that the correlation functions W2(m1,m2)
are well defined and could be computed as limits ofW2(v

n
1 , v

n
2 ) where v

n
1 , v

n
2 ∈ S(M)

are any sequences convergent to δm1 , δm2 such that supp(vn1 ) ∩ supp(vm2 ) = ∅.
Moreover one can easily check that W2(m1,m2) = G(m1,m2) where G(m1,m2)
the Green function of the operator −∆+1 [ that is for any m1 ∈ M,G(m1,m) is a
distribution on M such that (−∆+ 1)(G(m1,m) = δm1 ]. In particular we see that
the functions G(m1,m2) on M × M − ∆M [where ∆M is the diagonal] extend to
continuous functions on M × M if dim(M) = 1, have logarithmic singularities at
∆M when dim(M) = 2 and have singularities at ∆M of the form ddim(M)−2(m1,m2)
when dim(M) > 2 where d(m1,m2) is the distance on M between points m1 and
m1.

For the computation of Feynman integrals one has to consider integrals of the
form

∫
D(M)

∫
M

P (ϕ)µA(ϕ) which are expressed [using the combinatorics of Feynman

graphs] in term of
∫
M×M

G(m1,m2)dm1dm2. In the case when dim(M) ≤ 2 the

Green functions are integrable and the integrals of the form
∫
D(M)

∫
M

P (ϕ)µA(ϕ)

are well defined. Therefore one can easily define the formal perturbations µϵ of
the measure µA of the form exp(ϵ

∫
M

R(ϕ)dm)µA and to compute the correlation
functions of µϵ for any polynomial R. But in the case when dim(M) > 2 the
definition of the formal perturbations µϵ is quite tricky. In this course we discuss
the contemporary approach to the perturbative quantum field theory.


