One of the formulations of the quantum mechanics and the quantum field theory
is in terms of Feynman integrals which are integrals over an infinite-dimensional
manifold X of fields. To define these integrals we have to define rigorously a measure
on X. So we start with a discussion of some elements of the measure theory on real
vector spaces.

Definition 1. We say that a function f on a vector space V' is positive definite
if the following three conditions are satisfied.

8) £(0) = 1.

b) f(—v) = f(v),v € V where for a complex number z we denote by z the
complex conjugate of z.

¢) For any n > 0 and any n-tuple o = {v1,...,v,},v; € V the Hermitian n x n
matrix a;; (@) := f(w; — w;) is non-negative.

Let V be alocally convex topological vector space and p be a normalized measure
on the dual vector space V'V [that is fvv = 1]. We define the Fourier transform
of the measure p as the function i on the dual space V' given by

a(v) == /VV exp(vV—1 < ¢, v >)u(¢),v €V

Lemma 1. The Fourier transform of any normalized measure p on V'V is positive
definite.

Proof. It is clear that fi satisfies the conditions a) and b) of the Definition 1.
To prove the part c¢) one has to show that for any n complex numbers z;,1 <i <n
and n vectors v1, ..., v, we have Y I | fi(v; — v;)z;Z; > 0. But by the definition we
have

> v = vj)zz = /V 1> ziexp(vV=1 < ¢,0; >)|*u(6)
=1 i=1

Theorem 1. ( Bochner) Any positive definite function f on a finite-dimensional
vector space V is the Fourier transform of the unique normalized measure on VV.

You can find a proof in Rudin, W. (1990), Fourier analysis on groups, Wiley-
Interscience.

Definition 2. Let V be a vector space. We say that a linear operator A :
V — VV a positive-definite if the quadratic form Q4 (v) :=< A(v),v > /2 on V is
positive-definite.

Example. Let V be a finite-dimensional vector space and A : V — VV be a
positive-definite linear operator. In this case the inverse operator A=! : VV —
V = (VV)V is also positive-definite and we can consider the positive-definite qua-
dratic foorm Q4-1 on VV. We denote by ps the measure on VV of the form
pa = caexp(—A~1(v))dvY where dvV is an invariant Lebesgue measure on V"V
and the constant c4 € Ry is such that the measure p14 is normalized.

Lemma 2. jig = exp(—Qa).

Proof. By the definitions we have fi4(v) = [i,, caexp(—Qa(¢)+v—-1 < ¢,v >
Yd¢ for v € V. Let ¢g := A(v) € VV. Then

—Qa(8) + V=1 < ¢,v>=—-Qa(d+V—1dy) — Qa(v)
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and after the change of variables ¢ — ¢++/—1¢g we see that fi4(v) = exp(—Q4)(v).
Please justify these arguments!!!

Definition 3. For any normalized measure p on a vector space V'V we denote
by W, (i) the correlation function on V™ given by ¢1, .., € V'V

Wn(vla "7U7l) ::/ < ¢7’U1 >< ¢7 vg > ... < ¢7’UTL > M(¢)
vV

[under the assumption of the convergence].
Corollary. For finite-dimensional vector space V' and a positive-definite linear
map A : V — VV we have

Wont1(pa) = 0, Wa(pa)(vi,v2) = Ga(vi,v2) where Ga(v1,v2) :==< vy, A= (vg) >
and Wap (pa)(v1, .., v2n) = Y, W3, (1a)(v1, .., v2,,) wWhere

W3, (na)(vi, .., v2p) = H Wa(pa) (i, Vo(iy)
i€[1,2n]/o
where o runs through the set of free involutions on the set [1,2n]. In other words
o runs through the set of parings on [1,2n] and Wg, (14)(v1, .., U2,) is the product
of the corresponding pairwise correlations.

Proof. Since the function < ¢, v; >< ¢,v2 > ... < @, V2,41 > on V" is odd and
the measure pi4 is invariant under ¢ — —¢ we see that Way,11(ua) = 0. To com-
pute Wa(pa)(v1,v2) we consider the value of second derivative §%/dv10vy of the
both sides of the equality [;,, caexp(—=Qa(v) + /=1 < ¢,v >)dv = exp(—Q 4-1)
at ¢ = 0. To find Wa,(na)(v1,..,v2,) one has to apply the 2n-th derivative
0" |0v10vs...0va,, to the both sides of the same equality and to evaluate the result
at 0.

It is clear that using this Corollary we can compute the integral fvv P(d)pa
for any polynomial function P on VV. Therefore we can also compute correlation
functions of measures p of the form pu = p4 exp(eP(¢)) for any polynomial function
P on VV as formal power series in e. The combinatorics of these computations is
performed in terms of Feynman graphs to be discussed later.

Now let’s consider the infinite-dimensional case. Let now V be a locally convex
topological vector space and f be a positive-definite function on V. One can asked
when is it a Fourier transform of a measure on VV.

Theorem 2 ( Minlos ). If V is a nuclear space then any positive-definite
function on V is a Fourier transform of the unique measure on V.

You can find on my web page a definition and basic properties of nuclear spaces.
I will not repeat now the definition but will give a couple of examples.

a) For any compact C*°-manifold M the space $(M) of smooth functions on M
is a nuclear space.

b) The Schwartz space S(R™) of rapidly decreasing smooth functions on R™ is a
nuclear space.

Let now V be a nuclear space and A : V — V'V be a positive-definite linear
operator. Then the function exp(—Qa(v)) is positive definite and by the theorem
of Minlos is a Fourier transform of a measure g4 on V'V which is called a Gaussian



measure. It is easy to see that the correlation function of the measure p14 are given
by the same formulas as in the finite-dimensional case.

Consider the case when M is a compact Riemannian C°°-manifold, V' = §(M)
and A = (—A+1)~! where A is the Laplacian. The corresponding measures pi4 on
the space D(M) of distributions correspond to free field theories and majority of
rigorous works on Quantum Field Theories are on the study of formal perturbations
of such measures.

Let’s analyze the corresponding correlation functions. Fix two points my # maq

on M consider
Wa(mi,m2) 12/ p(ma)p(ma)pa(e)
D(M)

Since elements of D(M) are distributions the linear functionals ¢ — ¢(m), m € M
are not well defined but it is easy to see that the correlation functions Wa(my,ms)
are well defined and could be computed as limits of Wa (v}, v5) where v}, v§ € 8(M)
are any sequences convergent to p,,,0m, such that supp(v]) N supp(vy*) = 0.
Moreover one can easily check that Wa(mi,ms) = G(mq, ma) where G(my, ms)
the Green function of the operator —A + 1 [ that is for any m; € M, G(mq,m) is a
distribution on M such that (—A + 1)(G(mq1,m) = §pn,]. In particular we see that
the functions G(my, ma) on M x M — Ay [where Ay is the diagonal] extend to
continuous functions on M x M if dim(M) = 1, have logarithmic singularities at
A when dim(M) = 2 and have singularities at Ay of the form d*™(M)=2(m;, my)
when dim(M) > 2 where d(mq,m2) is the distance on M between points m; and
my.

For the computation of Feynman integrals one has to consider integrals of the
form [ (M) Sy P(6)1a(¢) which are expressed [using the combinatorics of Feynman
graphs| in term of [, . G(mi,my)dmidms. In the case when dim(M) < 2 the
Green functions are integrable and the integrals of the form fD(M) S P(@)1a(e)
are well defined. Therefore one can easily define the formal perturbations p. of
the measure 114 of the form exp(e [,, R(¢)dm)ua and to compute the correlation
functions of u. for any polynomial R. But in the case when dim(M) > 2 the
definition of the formal perturbations pu. is quite tricky. In this course we discuss
the contemporary approach to the perturbative quantum field theory.



